CS 109	II 1 17	Prof. Amit Chakrabarti
Spring 2008	Homework /	Computer Science Department
Theory of Computation: Advanced	Due Tue Apr 29, 5:00pm	Dartmouth College

General Instructions: Same as in Homework 1.

Honor Principle: For this homework, you should work entirely on your own and not discuss with anyone.

- 14. Give a full formal proof that $ZPP = RP \cap coRP$.
- 15. For constants $0 < \alpha < \beta < 1$, define the class $\mathsf{BPP}_{\alpha,\beta}$ to be the class of all languages $L \subseteq \Sigma^*$ such that there exists a PTM M that runs in polynomial time and behaves as follows on an input $x \in \Sigma^*$:

 $\begin{array}{ll} x \notin L & \Rightarrow & \Pr[M \text{ accepts } x] \leq \alpha \,, \\ x \in L & \Rightarrow & \Pr[M \text{ accepts } x] \geq \beta \,. \end{array}$

Note that our definition of BPP in class coincides with $\mathsf{BPP}_{\frac{1}{3},\frac{2}{3}}$ in this notation.

Using Chernoff bounds, give a full formal proof that for all α and β as above, $\mathsf{BPP}_{\alpha,\beta} = \mathsf{BPP}$.

[2 points]

[2 points]