General Instructions: Same as in Homework 1.

Honor Principle: Same as in Homework 1.

16. Prove that $NP \subseteq BPP$ implies NP = RP.

Hint: Once you "solve" one NP-complete problem, you can solve them all!

17. Let X and Y be finite sets and let Y^X denote the set of all functions from X to Y. We will think of these functions as "hash" functions.* A family $\mathcal{H} \subseteq Y^X$ is said to be 2-universal if the following property holds, with $h \in \mathcal{H}$ picked uniformly at random:

$$\forall x, x' \in X \; \forall y, y' \in Y \left(x \neq x' \; \Rightarrow \; \Pr_h[h(x) = y \land h(x') = y'] = \frac{1}{|Y|^2} \right) \,.$$

Consider the sets $X = \{0,1\}^n$ and $Y = \{0,1\}^k$, with $k \le n$. Treat the elements of X and Y as column vectors with 0/1 entries. For a matrix $A \in \{0,1\}^{k \times n}$ and vector $b \in \{0,1\}^k$, define the function $h_{A,b} : X \to Y$ as follows: $h_{A,b}(x) = Ax + b$, where all additions and multiplications are performed mod 2.

Prove that $\{h_{A,b}: A \in \{0,1\}^{k \times n}, b \in \{0,1\}^k\}$ is a 2-universal family of hash functions. [2 points]

[2 points]

^{*}The term "hash function" has no formal meaning; instead, one should speak of a "family of hash functions" or a "hash family" as we do here.