
CS19: Solutions to Homework 5

Prepared by David Blinn and Amit Chakrabarti

February 20, 2006

The notation Pi.j-k refers to Problem k from the list of problems after Section i.j in your textbook. Thus,
P1.2-4 refers to Problem 4 on page 17.

1. Solve P4.3-14, parts (b) and (c). Please draw out your recursion tree neatly, following the same scheme
as the examples in the book.

Solution:

(b)

So,

T (n) =
n−1∑
i=0

2i(n− i)

= n

n−i∑
i=0

2i −
n−1∑
i=0

i2i

= n

(
2n−1

2− 1

)
− n2n+1 − n2n − 2n+1 + 2

(2− 1)2
[
using the result

∑n−1
i=0 ibi = nbn+1−nbn−bn+1+b

(b−1)2

]
= n2n − n− n2n+1 + n2n + 2n+1 − 2
= 2n+1 − n− 2
= O(2n) .
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(c)

So, T (n) =
∑i

j=0 1 = i + 1

Now we use the fact that if n = 22i

, taking log to the base 2 on both sides, we get, log2 n = 2i and
taking another log to the base 2 on both sides, we get log2 log2 n = i.

Thus, T (n) = i + 1 = log2 log2 n + 1 = Θ(log log n).

2. Solve P4.4-1 (all five parts). Do not draw recursion trees; just use the master theorem. You must show
the steps that led you to one of the three cases of the master theorem.

Solution:

(a) a = 8, b = 2, c = 1
log2 8 = 3 > c = 1. So, we have,
Case 3: Θ(n3).

(b) a = 8, b = 2, c = 3
log2 8 = 3 = c. So. we have,
Case 2: Θ(n3 log n).

(c) a = 3, b = 2, c = 1
log2 3 > c = 1. So, we have,
Case 3: Θ(nlog2 3).

(d) a = 1, b = 4, c = 0
log4 1 = c = 0. So, we have,
Case 2: Θ(log n).

(e) a = 3, b = 3, c = 2
log3 3 = 1 < c = 2. So, we have,
Case 1: Θ(n2).

3. Solve P4.4-2, P4.4-3, P4.4-4 and P4.4-5. Use the general version of the master theorem that handles
ceilings.

Solution:

P4.4-2 Since
√

n + 3 = Θ(n1/2), and log2 3 > 1/2, we have according to case 3 of the master theorem
that T (n) = Θ(nlog2 3).
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P4.4-3 Since
√

n3 + 3 = Θ(n3/2) and log2 3 > 3/2, we have according to case 3 of the master theorem
that T (n) = Θ(nlog2 3).

P4.4-4 Since
√

n4 + 3 = Θ(n4/2) = Θ(n2), and log2 3 < 2, we have according to case 1 of the master
theorem that T (n) = Θ(n2).

P4.4-5 Since
√

n2 + 3 = Θ(n2/2) = Θ(n), and log2 2 = 1, we have according to case 2 of the master
theorem that T (n) = Θ(n log2 n).

4. Solve P4.5-3. Mimic the style of the induction proofs in exercises 4.5-{1,2,3}.
Solution: We are given that T (n) ≤ 2T (n/3) + c log3 n. We may assume n is a power of three. We
want to show that there is a n0 and a k > 0 so that T (n) ≤ kn log3 n for n ≥ n0. Since log3 1 = 0, n0

must be at least 2. But we are assuming n is a power of 3, so we may as well try assuming n0 = 3.
Since we want T (3) ≤ k3 log3 3 = 3k, we must have k ≥ T (3)/3. Suppose inductively that n > 3 and
for all m < n, T (m) ≤ km log3 m. Then

T (n) ≤ 2
(

kn

3
log3

(n

3
))

+ c log3

(n

3
)

=
2kn

3
log3 n− 2kn

3
+ c log3 n− c

=
(

2kn

3
+ c

)
log3 n− 2kn

3
− c

= (kn− 1
3
kn + c) log3 n− 2kn

3
− c

We want this to be no more than kn log3 n. Since n > 3, we have 1
3kn > k, so as long as we choose

k > c, we have T (n) = kn log3 n. Thus by the principle of mathematical induction, so long as k is
at least c and at least T (3)/3, we have T (n) = kn log3 n for all n ≥ 3 with n being a power of 3. If
we replace the 2 by 3, the same kind of argument works, but it is more delicate. (We lose the helpful
1
3kn and have to play a −kn off against a c log3 n.) Since logb n = Θ(log3 n), changing the base of the
logarithm just amounts to changing the constant c, so the same proof works.

5. Supposing we replace “≤” with “=” in the recurrence in problem 4. Now, does the O(n log3 n) bound
of problem 4 become a Θ(n log3 n) bound?. Solve this problem and explain your answer; i.e., if you
think that the answer is “no,” then state and prove the correct big-Θ bound. Note that the master
theorem does not apply in this case, so you will not be able to use it.

Solution: No, the O(n log3 n) bound in the previous problem is not a Θ(n log3 n) bound. To see why,
note that log3 n = O(n0.1). The complexity of the original recurrence, T (n) = 2T (n/3)+ c log3 n, must
then be less than or equal to the complexity of a new recurrence, S(n) = 2S(n/3) + cn0.1 (meaning
T (n) = O(S(n))). Note that we can apply the master theorem to S(n). Since log3 2 > 0.1, case 3 of
the master theorem tells us that S(n) = O(nlog3 2). Because we have obtained a better upper bound,
the O(n log3 n) bound in the previous problem can not be a Θ(n log3 n) bound. In fact you can prove
by induction, or with a recursion tree, that T (n) = Θ(nlog3 2) (or equivalently, that T (n) = Θ(2log3 n)).

6. Let α, β and c be positive real constants with α + β < 1. Suppose T (n) is a sequence defined on the
integers that satisfies the inequality

T (n) ≤ T (dαne) + T (dβne) + cn .

Give a careful proof, using induction and the precise definition of big-O, that T (n) = O(n).
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Solution: We shall prove that there exists a positive constant k such that T (n) ≤ kn for every
integer n ≥ 1. We shall prove this using strong induction. Choose n0 and k so that they satisfy

n0 ≥ 4
1− α− β

, (1)

k ≥ max
1≤i≤n0

{
T (i)

i

}
, (2)

k ≥ 2c

1− α− β
. (3)

Note that the quantity (1−α−β), which appears twice above and several more times below, is positive
because we have been given α + β < 1. This fact is used tacitly in what follows. First, we make (and
prove) two important claims:

Claim 1: For n ≥ n0, we have dαne < n and dβne < n.

Claim 2: For n ≥ n0, we have (1− α− β)n− 2 ≥ (1− α− β)n
2

.

Proof of Claim 1: Using (1), (1−α−β)n ≥ (1−α−β)n0 ≥ 4. We can rewrite that as αn ≤ n−βn−4.
Now, using this, dαne < αn + 1 ≤ n− βn− 4 + 1 < n. Similarly, dβne < n.

Proof of Claim 2: Using (1), 2
n ≤ 2

n0
≤ 2( 1−α−β

4 ) = 1−α−β
2 . Thus,

(1− α− β)n− 2
n

= (1− α− β)− 2
n

≥ (1− α− β)− 1− α− β

2
=

1− α− β

2
.

Multiplying out by n gives us the inequality we claimed.

Let us return to the problem at hand. As our base cases, we first establish T (n) ≤ kn for 1 ≤ n ≤ n0.
This is easy: it follows directly from (2).

For the inductive step, suppose n > n0 and suppose we have shown T (i) ≤ ki for all positive integers
i < n. We shall show that T (n) ≤ kn as well. Claim 1 tell us that dαne < n and dβne < n, so the
inductive hypothesis applies and we get

T (n) ≤ T (dαne) + T (dβne) + cn

≤ kdαne+ kdβne+ cn

< k(αn + 1) + k(βn + 1) + cn

= kn− k((1− α− β)n− 2) + cn .

Now, using Claim 2,∗ we obtain

T (n) ≤ kn− k
(1− α− β)n

2
+ cn .

Next, using (3),† we obtain

T (n) ≤ kn− 2c

1− α− β

(1− α− β)n
2

+ cn = kn− cn + cn = kn .

This completes the inductive step.

∗Do you see why we made such an outlandish looking claim?
†Do you now see why we wanted k to satisfy inequality (3)?
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