
CS19: Solutions to Homework 6

Prepared by David Blinn and Amit Chakrabarti

February 27, 2006

You must demonstrate how you arrived at your final answers — i.e., you must show your steps — unless the
problem statement makes an exception. You must also justify any steps that are not trivial. Simply writing
down a final answer will not earn any credit. Please think carefully about how you are going to organise
your answers before you begin writing.

The notation Pi.j-k refers to Problem k from the list of problems after Section i.j in your textbook. Thus,
P1.2-4 refers to Problem 4 on page 17.

1. Solve both parts of P5.1-6.

Solution:

(a)
Sample Space Probability
(Coin1,Coin2) Weight

(P, P ) 2/12
(P,N) 2/12
(P,D) 2/12
(N,P ) 2/12
(N,D) 1/12
(D,P ) 2/12
(D,N) 1/12

(b) Eleven must be one penny and one dime or one dime one penny. From above, the probability of
(P,D) or (D,P ) is (2/12 + 2/12) = 1/3.

2. Solve P5.1-11.

Solution: A student who gets 80 or higher, may get 100, 90, or 80. There are 210 patterns of right
and wrong answers. There is one way to get 100. There are

(
10
1

)
= 10 ways to get 90. There are(

10
2

)
= 45 ways to get 80. Thus, the probability of scoring an 80 or above is

1 + 10 + 45
210

=
56

1024
=

7
128

= 0.0546875 .

The probability of a score of 70 or lower is 1− 7/128 = 121/128, which is 0.9453125.

3. Poker is a rather mathematical card game with many variations, but all based on the basic principle
that certain hands “beat” (i.e., have higher value than) certain others. A hand consists of five distinct
cards chosen from a standard deck of 52 cards. There are nine special hands and they are given specific
names, as follows.

A royal flush consists of the Ace, King, Queen, Jack and 10, all of the same suit. A straight flush is
any five-card sequence within a suit, except for the one beginning with the Ace (that would make it
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royal), for instance, Jack, 10, 9, 8, 7. A straight is any five-card sequence with not all cards of the same
suit and a flush is a set of five cards of the same suit but not in sequence.

A four-of-a-kind is hand with four cards of the same value (e.g. with four 9s). A three-of-a-kind has
three cards of the same value and two other cards with two other different values; had these two other
cards had the same value that would give us a full house; thus, three 5s, a King and a 9 give us a
three-of-a-kind whereas three 5s and two 10s give us a full house. A two pair contains two different
equal-value pairs and an unrelated fifth card, e.g. two 7s, two Kings, and an Ace. Finally, a pair has
just one equal-value pair and three other unrelated cards.

(a) Suppose you shuffle a deck of 52 cards and then draw five cards at random. What is the probability
of getting each of the nine special hands (royal flush, straight flush, straight, flush, four-of-a-kind,
three-of-a-kind, full house, two pair and pair)?

(b) A sensible design of the rules of poker would ensure that if you have been lucky enough to draw an
“unlikely” hand, then your hand should beat that of an opponent who has drawn a more “mundane”
hand. In fact, poker was sensibly designed. By arranging the hands from least likely to most likely,
figure out the “pecking order” of these special hands in poker. You might want to use a calculator
unless you’re a whiz with numbers!

Solution: A sample space for our experiment (of drawing five random cards from a deck) is the
family of all 5-card subsets (i.e., “hands”) of the set of all 52 cards. The hands are equally likely∗ and
so the probability measure is uniform. The size of the sample space is

(
52
5

)
. Therefore, to find the

probability of an event like “the hand is a straight flush” we simply count the number of hands that
are straight flushes and divide by

(
52
5

)
.

• For a royal flush, we have only 4 choices: we choose the suit, and the values of the cards are fixed:
{A,K,Q, J, 10}. Thus there are exactly 4 hands which are royal flushes.

• For a straight flush, we get to choose the suit (4 choices) and the value of the highest card (8
choices: anything from K to 6). Therefore, there are 4× 8 = 32 total straight flushes.

• For a straight, we get to choose the value of the top card (9 choices: anything from A to 6) and
this fixes the values of the other four cards. We still have many choices for the suits: 4 choices
for each card, giving 45 = 1024 choices, except that four of these choices are “bad” because
they put all cards in the same suit. So, overall, we have 9 choices for the top card’s value times
1024− 4 = 1020 choices for the suits, giving 9× 1020 = 9180 straights.

• For a flush, having chosen the suit (4 choices), we are left with
(
13
5

)
= 1287 ways to pick the values

of the five cards, except that 9 of these choices are “bad” because the values are in sequence.
Overall, this gives us 4× (1287− 9) = 5112 flushes.

• The four equal-valued cards in a four-of-a-kind can be chosen in 13 ways (we can only choose the
value). The fifth card can then be any of the 52− 4 = 48 cards remaining in the deck. This gives
us 13× 48 = 624 such hands.

• In a three-of-a-kind, we still have 13 ways to choose the value of the triplet, but now we also
have

(
4
3

)
= 4 ways to choose which three suits these cards will be in. The remaining two cards

must have two distinct values out of the 12 other values —
(
12
2

)
= 66 choices — and for each

choice of values we have 42 = 16 ways to assign them suits. Putting it all together, the number
of three-of-a-kind hands is 13× 4× 66× 16 = 54912.†

• For a full house, there are 13 ways to choose the value of the triplet and then 12 ways to choose
the value of the doublet. Note that the number of ways of choosing these two values together is

∗If it bothers you that we are using unordered subsets instead of ordered lists of length 5, then just note that each subset
corresponds to exactly 5! = 120 lists. Unlike in the case of rolling dice, where both dice might show the same number, there is
no chance here of two cards in a hand being exactly the same.

†Note that we didn’t need to worry about “accidentally” hitting a flush or a straight, since the presence of three equal-valued
cards already prevented that.

2



not
(
13
2

)
because order matters: we care which value is for the triplet and which for the doublet.

After this, there are
(
4
3

)
= 4 ways to pick the suits of the cards in the triplet and

(
4
2

)
= 6 ways to

do it for the doublet. Overall, this give us 13× 12× 4× 6 = 3744 full houses.

• Counting two pair hands can be somewhat tricky: pay attention! There are
(
13
2

)
= 78 ways to pick

the values of the pairs. Having picked two values, we can choose the suits of the lower valued pair
in
(
4
2

)
= 6 ways and those of the higher valued pair in

(
4
2

)
= 6 ways. The fifth card is forbidden

from having either of these two values, so there are 4 × (13 − 2) = 44 ways of picking it. Thus,
there are 78× 6× 6× 44 = 123552 two pairs.

• For a pair, we have 13 choices for the paired value and
(
4
2

)
= 6 ways to pick suits for the paired

cards. The remaining three cards must have three other distinct values, giving us
(
12
3

)
= 220

choices. We can then choose a 3-tuple of suits (43 = 64 choices) and then sort these three
cards by value and match suits to values (there’s only one way to do this). Overall, we have
13× 6× 220× 64 = 1098240 pairs.

As mentioned earlier, the probability values are obtained by dividing these numbers by
(
52
5

)
= 2598960.

For completeness’s sake, here are the values. They are sorted, so the table below also reveals the pecking
order of hands in poker.

Hand type Number Probability

Royal flush 4 .0000015
Straight flush 32 .0000123
Four-of-a-kind 624 .0002401
Full house 3744 .0014406
Flush 5112 .0019669
Straight 9180 .0035322
Three-of-a-kind 54912 .0211285
Two pair 123552 .0475390
Pair 1098240 .4225690

Note that in many games of Poker, an Ace may be given a value of either above a King or below a Two.
In choosing his or her hand, a player may set the value of the Ace to achieve the best hand possible.
Under these rules, the hand (A 2 3 4 5) is also considered a straight. Taking this into account, the
odds for achieving a straight or straight flush change slightly. Either the solution above or the modified
solution below will be given credit.

• For a straight flush, we get to choose the suit (4 choices) and the value of the highest card (9
choices: anything from K to 5). Therefore, there are 4× 9 = 36 total straight flushes.

• For a straight, we get to choose the value of the top card (10 choices: anything from A to 5) and
this fixes the values of the other four cards. We still have many choices for the suits: 4 choices
for each card, giving 45 = 1024 choices, except that four of these choices are “bad” because
they put all cards in the same suit. So, overall, we have 9 choices for the top card’s value times
1024− 4 = 1020 choices for the suits, giving 10× 1020 = 10200 straights.

The pecking order of hands remains the same, although with slightly different odds.
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Hand type Number Probability

Royal flush 4 .0000015
Straight flush 36 .0000139
Four-of-a-kind 624 .0002401
Full house 3744 .0014406
Flush 5112 .0019669
Straight 10200 .0039246
Three-of-a-kind 54912 .0211285
Two pair 123552 .0475390
Pair 1098240 .4225690

4. Solve P5.2-10. You will want to use the principle of inclusion and exclusion and your final answer will
be a formula using summation (i.e., Σ) notation. It is not possible to simplify the summation, so leave
it at that.

Let Ei be the event that location i is empty. We are interested in 1 − P (E1 ∪ E2 ∪ . . . ∪ Ek). By
Equation 5.6 in the textbook,

P

(
k⋃

i=1

Ei

)
=

n∑
k=1

(−1)k+1
∑

i1,i2,...,ik :
1≤i1≤i2≤...≤ik≤n

P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik
) .

We can see that P (E1) = (k−1)n

kn , P (E1 ∩ E2) = (k−2)n

kn , and in general:

P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik
) =

(k − j)n

kn
.

There are
(
k
j

)
subsets of size j, so we have 1 −

∑k
j=1 (−1)j−1

(
k
j

) (k−j)n

kn for the probability that each
location gets one key. Another way, using the principle of inclusion and exclusion for counting: The
problem can be transformed to the problem of how many onto mappings are there from an n-element
set to a k-element set. Thus, we have

kn −
∑k

j=1 (−1)j−1
(
k
j

)
(k − j)n

kn
=

∑k
j=0 (−1)j

(
k
j

)
(k − j)n

kn

In deriving this equation, we have used the fact that total number of ways of mapping the n-element
set to a k-element set is kn (each of the n-element can be mapped to one of the k-elements).

5. Find the number of integers between 1 and 10,000 (inclusive) that are not divisible by 4, nor by 5, nor
by 6.

Solution: Let A = {1, 2, 3, . . . , 10000} and for an arbitrary integer k, let Ak = {x ∈ A : x is divisible
by k}, i.e., Ak is the set of those integers from 1 through 10000 that are divisible by k. The problem
asks for the size of the set A − (A4 ∪ A5 ∪ A6). Since (A4 ∪ A5 ∪ A6) is a subset of A, the size of the
difference of the two sets is the difference of their sizes; thus, the answer we seek is

|A− (A4 ∪A5 ∪A6)| = |A| − |A4 ∪A5 ∪A6| = 10000− |A4 ∪A5 ∪A6| .

Now, by the principle of inclusion and exclusion,

|A4 ∪A5 ∪A6| = |A4|+ |A5|+ |A6| − |A4 ∩A5| − |A4 ∩A6| − |A5 ∩A6|+ |A4 ∩A5 ∩A6| .
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It is easy to figure out |A4|. Every fourth integer is divisible by 4, so the number of integers from 1
to 10000 that are divisible by 4 is simply b10000/4c = 2500. Thus, |A4| = 2500. Similarly, |A5| =
b10000/5c = 2000 and |A6| = b10000/6c = 1666.

What about A4 ∩A5? Some experimentation should convince you that an integer is divisible by both
4 and 5 if and only if it is divisible by 20, i.e., A4 ∩ A5 = A20 (think of how you might prove this
formally; we’ll see a proof later in the course). Similarly, A5 ∩ A6 = A30. But A4 ∩ A6 = A12 and not
A24! (why?) and A4 ∩A5 ∩A6 = A60.‡ Using all of this we get

|A4 ∪A5 ∪A6| = |A4|+ |A5|+ |A6| − |A20| − |A12| − |A30|+ |A60|
= 2500 + 2000 + 1666− 500− 833− 333 + 166
= 4666 .

This is the number of integers in A that are divisible by one of 4, 5, 6. As we mentioned before, the
answer we seek is 10000 minus this, i.e., 5334.

6. Solve P5.3-2.

Solution:

A = event that two flips in a row are heads

B = event that there is an even number of heads

A ∩B = the event that two flips in a row are heads and the remaining flip is a tail Now, P (A ∩B) =
2/23 = 1/4 as HHT and THH are the only possibilities. Also, P (B) = 1/2 (HHT, HTH, THH, TTT).
So, P (A|B) = 1/4

1/2 = 1/2 Thus, the probability that two flips in a row are heads given that there is an
even number of heads is 1/2.

The event of two flips of heads in a row is the event (HHT, HHH, THH) which has probability 3/8.
Thus by the definition of independence, the two events are not independent.

Another approach to the problem would be to note that the probability of an even number of heads is
1/2, and 1/2 × 3/8 = 3/16 while the probability of an even number of heads and two heads in a row
is the probability of the event (HHT,THH) which is 1/4. Thus by Theorem 5.5, the events are not
independent.

7. Solve P5.3-7.

The tree diagram is given below. Adding the probabilities adjacent to the paths that end in an N node
gives 1/5. The probability of a quarter on the last draw is similarly 2/5, while the probability of a
quarter on the first and last draw is 1/10. Therefore the probability that the first coin is a quarter,
given that the last coin is a quarter is 1/10

2/5 = 1/4.

‡Hopefully, some of you have discovered the general rule: a number is divisible by all of k1, k2, . . . , kt if and only if it is
divisible by the least common multiple (lcm) of k1, k2, . . . , kt. If you read Chapter 2 of your textbook, you can learn how to
prove this.
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8. Solve P5.3-8.

The number of ways that a bridge hand has four aces is
(
48
9

)
(because having 4 aces in our hand leaves

us with 9 cards to choose from the remaining 48 in the deck). The number of ways that a bridge hand
has one ace is

(
52
13

)
−
(
48
13

)((
52
13

)
is the total no. of ways a bridge hand can be chosen, and

(
48
13

)
is the no.

of ways a bridge hand can be chosen without any ace. So,
(
52
13

)
−
(
48
13

)
gives us the no. of ways a bridge

hand can contain at least one ace
)
. Thus, the probability that a bridge hand (which is 13 cards, chosen

from an ordinary deck) has four aces, given that it has (at least) one ace is (48
9 )

(52
13)−(48

13)
= 0.000947.

The number of ways that a bridge hand has four aces is
(
48
9

)
. The number of ways that a bridge hand

has the ace of spades is
(
51
12

)
. Thus, the probability that a bridge hand (which is 13 cards, chosen from

an ordinary deck) has four aces, given that it has the ace of spades is (48
9 )

(51
12)

= 0.002841.

Since 0.000947 < 0.002841., the probability that a bridge hand has four aces given that it has the ace
of spades is larger.

9. This problem should convince you not to trust vaguely formed “intuitions” about probability, but
instead to carefully work out the numbers using the proper definitions and theorems from probability
theory. It is the famous (some would say infamous) Monty Hall problem, which gets its name from the
TV game show Let’s Make A Deal, hosted by Monty Hall.

You are asked to select one closed door of three, behind one of which there is a prize. The other two
doors hide nothing. Once you have made your selection, Monty Hall opens one of the remaining doors,
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revealing that it does not contain the prize. He then asks you if you would like to switch your selection
to the other unopened door, or stay with your original choice. The problem: should you switch?

Work this out meticulously. Carefully define a sample space, define any necessary events and then
work out two probabilities:

(a) The probability that you win the prize if you don’t switch.

(b) The probability that you win the prize if you do switch.

Do you find the answers intuitive? (There is no incorrect answer to that question!) If not, the lesson
you have learnt is that you need to wait until your intuition has matured before trusting it.

Solution: The key is to recognize the difference betwen the following two situations:

(1) The door we pick initially is the prize door.

(2) The door we pick initially is not the prize door.

In situation (1), we will definitely lose if we switch. In situation (2), Monty Hall has no choice about
which door he is to open: he must open the only door which is different from our pick and from the
prize door. Therefore, we will definitely win if we switch. Therefore, all we have to do is work out the
probabilities of being in situations (1) and (2).

For this, we can use a sample space consiting of ordered pairs (i, j) where i is the number of the door
we pick and j is the number of the prize door; 1 ≤ i, j ≤ 3. Since no door is special, all of these
3×3 = 9 situations are equally likely. By definition, we are in situation (1) in three out the nine cases:
(1, 1), (2, 2), and (3, 3). Therefore situation (1) occurs with probability 3/9 = 1/3 and situation (2)
with probability 1− 1/3 = 2/3. In other words, the probability that we win if we switch is 2/3.

If we don’t switch, the analysis is exactly as above except that we win in situation (1), i.e., with
probability 1/3 and lose in situation (2), i.e., with probability 2/3.

Thus, we should most definitely switch. It doubles our winning chances.
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