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1. By simple application of linearity of expectation, we get n(1+2+3+4+5+6
6 ) = 21n

6 = 7n
2 .

2. Suppose the students really knows the answer of x questions and guesses at the other y ones. How many
questions can he answer correctly? Since there are five choices, so when he makes a guess, he has one-fifth
chance. Thus, on the average, he has x + y/5 questions right and (4/5)y questions wrong. So, what is the
reasonable formula for computing his corrected score? A little thought tells us that

E(x + y/5)− cE((4/5)y) = E(x)

Obviously, c should be 1/4. Put in words, it means we should subtract one-fourth of incorrect answers from
correct ones.

3. We have to consider two cases.

(a) n ≤ m, then by definition of conditional probability, P (X ≥ n|X ≥ m) = 1.

(b) n > m, then

P (X ≥ n|X ≥ m) =
P (X ≥ n ∩X ≥ m)

P (X ≥ m)
=

P (X ≥ n)
P (X ≥ m)

=
(1− p)n−1

(1− p)m−1
= (1− p)n−m.

4. You should be able to observe the similarity between this problem and the hashing function: the “candies” are
equivalent to the “slots” and the “kids” “keys”.

(a) The probability that a child does not choose a specific candy is (d − 1)/d, and since each child buys the
candies independently, we have (d−1

d )c.

(b) By linearity of expectation, we have d(d−1
d )c.

(c) Remember that when d is large, (d−1
d )d → e−1. Thus, it implies that 1/e fraction of all types of candy

are not sold to any kid.

5. This question is essentially a reincarnation of coupon collecting problem. The answer is d
∑d

i=1 1/i.

6. This question is very similar to question 4. Given a specific slot, the probably of its being left empty is
(1− 1/k)2k. Again, by linearity of expectation, we have k(1− 1/k)2k empty slots. When k is large, we know
that (1− 1/k)2k → e−2. So, e−2 fraction of the slots will be empty.
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7. We know that Hn = Θ(log n). Therefore,

Hn + Hn+1 + · · ·+ H2 = Θ(log n + log(n− 1) + · · · log 2) = O(n log n).

On the other hand, observe that the first half of the terms in the Θ notation is greater than log(n/2). Therefore,
the sum must be greater than some constant times (n/2) log(n/2), which is Ω(n log n). Combining the Ω and
the big O, we can conclude the bound is tight.

8. The probability of picking up a value in the middle half is obviously 1/2. But when there are three “draws”,
things become more complicated. Let us list the possible scenarios in which this strategy really works. Re-
member what we want is that the “median” of the three numbers falls in the middle part.

• All three numbers fall in the middle half. The probability of this is (1/2)3.

• Two of them fall in the middle half while the remaining falls outside. The probability of this is
(
3
2

)
(1/2)2(1/2).

• One of them falls in the middle half. For the remaining two falling outside of the middle half, one must
be smaller (thus on the “left” of the middle one) and the other must be greater (on the “right”). The
probability of this is

(
3
1

)
(1/2)

(
2
1

)
(1/4)(1/4).

Summing up all the three above probability, we get 11/16, which is better than one-half. Thus, in terms of
probability, it is really an improvement. However, it is not clear that the potential time savings is worth the
extra complexity.

9. We first prove Theorem 5.23.

n∑
i=1

E(X|Fi)P (Fi) =
n∑

i=1

m∑
j=1

xjP (X = xj |Fi)P (Fi)

=
n∑

i=1

m∑
j=1

xjP (X = xj ∩ Fi)

=
m∑

j=1

xj

n∑
i=1

P (X = xj ∩ Fi)

=
m∑

j=1

xjP (X = xj)

= E(X).

For Bayes’ theorem, first notice the fact that A1, . . . An are mutually exclusive and their union composes S.
Thus, for the event B ⊆ S, it can be decomposed into P (B) = P (B ∩ S) = P (B ∩ (A1 ∪ A2 ∪ · · ·An)) =
P ((B ∩A1) ∪ (B ∩A2) ∪ · · · (B ∩An)) =

∑n
k=1 P (Ak ∩B).

Now we can prove Bayes’ Theorem:

P (Ai|B) =
P (Ai ∩B)

P (B)
=

P (Ai)P (B|Ai)
P (B)

=
P (Ai)P (B|Ai)

P (
⋃n

k=1 B ∩Ak)
=

P (Ai)P (B|Ai)∑n
k=1 P (Ak ∩B)

=
P (Ai)P (B|Ai)∑n

k=1 P (B|Ak)P (Ak)
.
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