CS 19: Discrete Mathematics

Amit Chakrabarti

Logic and Logical Notation

Proposition

A declarative sentence that is either true or false, but not both. Examples:

- CS19 is a required course for the CS major.
- Tolkien wrote The Lord of the Rings.
- Pigs can fly.

Non-examples:

- What a beautiful evening!
- Do your homework.

Compound Proposition

One that can be broken down into more primitive propositions. E.g.,

• If it is sunny outside then I walk to work; otherwise I drive, and if it is raining then I carry my umbrella.

This consists of several primitive propositions:

- p = "It is sunny outside" q = "I walk to work"
- r = "I drive"
- q = "I walk to work s = "It is raining"
- t = "I carry my umbrella"

Connectives: "if... then", "otherwise", "and"

Compound Proposition

If it is sunny outside then I walk to work; otherwise I drive, and if it is raining then I carry my umbrella.

р	"It is sunny outside"	q = "I walk to work"
r	"I drive"	s = "It is raining"
t	"I carry my umbrella"	

If p then q; otherwise r and if s then t. If p then q and (if not p then (r and (if s then t))). p implies q and ((not p) implies (r and (s implies t))).

Logical Connectives

Used to form compound propositions from primitive ones.

English name	Math name	Symbol	Java operator
"and"	conjuction	۸	ራራ
°or"	disjunction	V	II
"not"	negation	7	!
"or but not both"	xor	\oplus	-none-
"ifthen"	implication	⇒	-none-
"if & only if"	equivalence	⇔	-none-

Compound Proposition, in Symbols

If it is sunny outside then I walk to work; otherwise I drive, and if it is raining then I carry my umbrella.

p = "It is sunny outside"	q = "I walk to work"
r = "I drive"	s = "It is raining"
t = "I carry my umbrella"	

p implies q and ((not p) implies (r and (s implies t))). $(p \Rightarrow q) \land (\neg p \Rightarrow (r \land (s \Rightarrow t)))$

Defining a Logical Connective

Consider a connective that combines two propositions, e.g. implication " $p \Rightarrow q$ ". There are exactly four possibilities:

- p is true, q is true
- p is true, q is false
- p is false, q is true
- p is false, q is false

In each case, specify the truth value of " $p \Rightarrow q$ ".

Pondering Implication

s = "It is raining", t = "I carry my umbrella", $s \Rightarrow t$ Think of the implication as a promise or a contract: "if s, then I guarantee that t".

In which of the following situations can I said to have stood by my contract?

Situation 1

It was raining and I carried my umbrella.

s is true, t is true

Pondering Implication

s = "It is raining", t = "I carry my umbrella", $s \Rightarrow t$

Think of the implication as a promise or a contract: "if s, then I guarantee that t".

In which of the following situations can I said to have stood by my contract?

Situation 2

It was raining and I didn't carry my umbrella.

s is true, t is false

Pondering Implication

s = "It is raining", t = "I carry my umbrella", s \Rightarrow t

Think of the implication as a promise or a contract: "if s, then I guarantee that t".

In which of the following situations can I said to have stood by my contract?

Situation 3

It was not raining and I carried my umbrella.

s is false, t is true

Pondering Implication

s = "It is raining", t = "I carry my umbrella", $s \Rightarrow t$

Think of the implication as a promise or a contract: "if s, then I guarantee that t".

In which of the following situations can I said to have stood by my contract?

Situation 4

It was not raining and I didn't carry my umbrella.

s is false, t is false

Р	P	$p \Rightarrow q$
true	true	true
true	false	false
false	true	true
false	false	true

Truth Table

р	q	$p\Rightarrowq$
т	т	т
т	F	F
F	т	т
F	F	т

More Truth Tables

Using Logical Notation

We can rewrite some of our earlier definitions and theorems.

• If $A \subseteq B$ and $B \subseteq A$, then A = B.

$$\neg A \subseteq B \land B \subseteq A \Rightarrow A = B \qquad [Precedence: \land before \Rightarrow]$$

• We can also say: if A = B then $A \subseteq B$ and $B \subseteq A$.

$\neg A = B \Rightarrow A \subseteq B \land B \subseteq A$

• We can combine the two statements above.

$-A \subseteq B \land B \subseteq A \Leftrightarrow A = B$

Verifying Logical Equivalence

I claim that the following two propositions are equivalent, no matter what p and q represent:

$$p \Rightarrow q''$$
 and " $q \lor \neg p''$

How to verify this?

P	q	¬p	q v ¬p	p ⇒ q
т	Т	F	т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

Important Reading Assignment

Please read Sections 3.1 and 3.2 of your textbook before next class.

Some of the examples refer to things from Chapter 2 in the book. Feel free to skim over those examples if you don't understand them.