
Chapter 2

Cryptography and Number Theory

2.1 Cryptography and Modular Arithmetic

Introduction to Cryptography

For thousands of years people have searched for ways to send messages secretly. There is a story
that, in ancient times, a king needed to send a secret message to his general in battle. The king
took a servant, shaved his head, and wrote the message on his head. He waited for the servant’s
hair to grow back and then sent the servant to the general. The general then shaved the servant’s
head and read the message. If the enemy had captured the servant, they presumably would not
have known to shave his head, and the message would have been safe.

Cryptography is the study of methods to send and receive secret messages. In general, we
have a sender who is trying to send a message to a receiver. There is also an adversary, who
wants to steal the message. We are successful if the sender is able to communicate a message to
the receiver without the adversary learning what that message was.

Cryptography has remained important over the centuries, used mainly for military and diplo-
matic communications. Recently, with the advent of the internet and electronic commerce,
cryptography has become vital for the functioning of the global economy, and is something that
is used by millions of people on a daily basis. Sensitive information such as bank records, credit
card reports, passwords, or private communication, is (and should be) encrypted—modified in
such a way that, hopefully, it is only understandable to people who should be allowed to have
access to it, and undecipherable to others.

Undecipherability by an adversary is, of course, a difficult goal. No code is completely undeci-
pherable. If there is a printed “codebook,” then the adversary can always steal the codebook, and
no amount of mathematical sophistication can prevent this possibility. More likely, an adversary
may have extremely large amounts of computing power and human resources to devote to trying
to crack a code. Thus our notion of security is tied to computing power—a code is only as safe
as the amount of computing power needed to break it. If we design codes that seem to need
exceptionally large amounts of computing power to break, then we can be relatively confident in
their security.

39

40 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

Private Key Cryptography

Traditional cryptography is known as private key cryptography. The sender and receiver agree
in advance on a secret code, and then send messages using that code. For example, one of the
oldest codes is known as a Caesar cipher. In this code, the letters of the alphabet are shifted by
some fixed amount. Typically, we call the original message the plaintext and the encoded text
the ciphertext. An example of a Caesar cipher would be the following code:

plaintext A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
ciphertext E F G H I J K L M N O P Q R S T U V W X Y Z A B C D .

Thus if we wanted to send the plaintext message

ONE IF BY LAND AND TWO IF BY SEA ,

we would send the ciphertext

SRI MJ FC PERH ERH XAS MJ FC WIE .

A Caeser cipher is especially easy to implement on a computer using a scheme known as
arithmetic mod 26. The symbolism

m mod n

means the remainder we get when we divide m by n. A bit more precisely we can give the
following definition.

Definition 2.1 For integers m and n, m mod n is the smallest nonnegative integer r such that

m = nq + r (2.1)

for some integer q.

We will refer to the fact that m mod n is always well defined as Euclid’s division theorem. The
proof appears in the next section.1

Theorem 2.1 (Euclid’s division theorem) For every integer m and positive integer n, there
exist unique integers q and r such that m = nq + r and 0 ≤ r < n.

Exercise 2.1-1 Use The definition of m mod n to compute 10 mod 7 and −10 mod 7.
What are q and r in each case? Does (−m) mod n = −(m mod n)?

1In an unfortunate historical evolution of terminology, the fact that for every nonnegative integer m and positive
integer n, there exist unique nonnegative integers q and r such that m = nq + r and r < n is called “Euclid’s
algorithm.” In modern language we would call this “Euclid’s Theorem” instead. While it seems obvious that there is
such a smallest nonnegative integer r and that there is exactly one such pair q, r with r < n, a technically complete
study would derive these facts from the basic axioms of number theory, just as “obvious” facts of geometry are
derived from the basic axioms of geometry. The reasons why mathematicians take the time to derive such obvious
facts from basic axioms is so that everyone can understand exactly what we are assuming as the foundations of
our subject; as the “rules of the game” in effect.

2.1. CRYPTOGRAPHY AND MODULAR ARITHMETIC 41

Exercise 2.1-2 Using 0 for A, 1 for B, and so on, let the numbers from 0 to 25 stand for
the letters of the alphabet. In this way, convert a message to a sequence of strings of
numbers. For example SEA becomes 18 4 0. What does (the numerical representation
of) this word become if we shift every letter two places to the right? What if we shift
every letter 13 places to the right? How can you use the idea of m mod n to implement
a Caeser cipher?

Exercise 2.1-3 Have someone use a Caeser cipher to encode a message of a few words in
your favorite natural language, without telling you how far they are shifting the letters
of the alphabet. How can you figure out what the message is? Is this something a
computer could do quickly?

In Exercise 2.1-1, 10 = 7(1)+3 and so 10 mod 7 is 3, while −10 = 7(−2)+4 and so −10 mod 7
is 4. These two calculations show that (−m) mod n = −(m mod n) is not necessarily true. Note
that −3 mod 7 is 4 also. Furthermore, −10 + 3 mod 7 = 0, suggesting that −10 is essentially the
same as −3 when we are considering integers mod 7.

In Exercise 2.1-2, to shift each letter two places to the right, we replace each number n in our
message by (n+2) mod 26, so that SEA becomes 20 8 2. To shift 13 places to the right, we replace
each number n in our message with (n + 13) mod 26 so that SEA becomes 5 17 13. Similarly to
implement a shift of s places, we replace each number n in our message by (n+ s) mod 26. Since
most computer languages give us simple ways to keep track of strings of numbers and a “mod
function,” it is easy to implement a Caeser cipher on a computer.

Exercise 2.1-3 considers the complexity of encoding, decoding and cracking a Ceasar cipher.
Even by hand, it is easy for the sender to encode the message, and for the receiver to decode the
message. The disadvantage of this scheme is that it is also easy for the adversary to just try the
26 different possible Caesar ciphers and decode the message. (It is very likely that only one will
decode into plain English.) Of course, there is no reason to use such a simple code; we can use
any arbitrary permutation of the alphabet as the ciphertext, e.g.

plaintext A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
ciphertext H D I E T J K L M X N Y O P F Q R U V W G Z A S B C

If we encode a short message with a code like this, it would be hard for the adversary to decode it.
However, with a message of any reasonable length (greater than about 50 letters), an adversary
with a knowledge of the statistics of the English language can easily crack the code. (These codes
appear in many newspapers and puzzle books under the name cryptograms. Many people are
able to solve these puzzles, which is compelling evidence of the lack of security in such a code.)

We do not have to use simple mappings of letters to letters. For example, our coding algorithm
can be to

• take three consecutive letters,

• reverse their order,

• interpret each as a base 26 integer (with A=0; B=1, etc.),

• multiply that number by 37,

42 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

• add 95 and then

• convert that number to base 8.

We continue this processing with each block of three consecutive letters. We append the blocks,
using either an 8 or a 9 to separate the blocks. When we are done, we reverse the number, and
replace each digit 5 by two 5’s. Here is an example of this method:

plaintext: ONEIFBYLANDTWOIFBYSEA

block and reverse: ENO BFI ALY TDN IOW YBF AES
base 26 integer: 3056 814 310 12935 5794 16255 122
*37 +95 base 8: 335017 73005 26455 1646742 642711 2226672 11001
appended : 33501787300592645591646742964271182226672811001
reverse, 5rep : 10011827662228117246924764619555546295500378710533

As Problem 20 shows, a receiver who knows the code can decode this message. Furthermore,
a casual reader of the message, without knowledge of the encryption algorithm, would have no
hope of decoding the message. So it seems that with a complicated enough code, we can have
secure cryptography. Unfortunately, there are at least two flaws with this method. The first is
that if the adversary learns, somehow, what the code is, then she can easily decode it. Second, if
this coding scheme is repeated often enough, and if the adversary has enough time, money and
computing power, this code could be broken. In the field of cryptography, some entities have all
these resources (such as a government, or a large corporation). The infamous German Enigma
code is an example of a much more complicated coding scheme, yet it was broken and this helped
the Allies win World War II. (The reader might be interested in looking up more details on this;
it helped a lot in breaking the code to have a stolen Enigma machine, though even with the
stolen machine, it was not easy to break the code.) In general, any scheme that uses a codebook,
a secretly agreed upon (possibly complicated) code, suffers from these drawbacks.

Public-key Cryptosystems

A public-key cryptosystem overcomes the problems associated with using a codebook. In a public-
key cryptosystem, the sender and receiver (often called Alice and Bob respectively) don’t have
to agree in advance on a secret code. In fact, they each publish part of their code in a public
directory. Further, an adversary with access to the encoded message and the public directory
still cannot decode the message.

More precisely, Alice and Bob will each have two keys, a public key and a secret key. We will
denote Alice’s public and secret keys as KPA and KSA and Bob’s as KPB and KSB. They each
keep their secret keys to themselves, but can publish their public keys and make them available
to anyone, including the adversary. While the key published is likely to be a symbol string of
some sort, the key is used in some standardized way (we shall see examples soon) to create a
function from the set D of possible messages onto itself. (In complicated cases, the key might be
the actual function). We denote the functions associated with KSA, KPA, KSB and KPB by

2.1. CRYPTOGRAPHY AND MODULAR ARITHMETIC 43

SA, PA, SB, and PB, respectively. We require that the public and secret keys are chosen so that
the corresponding functions are inverses of each other, i.e for any message M ∈ D we have that

M = SA(PA(M)) = PA(SA(M)), and (2.2)
M = SB(PB(M)) = PB(SB(M)). (2.3)

We also assume that, for Alice, SA and PA are easily computable. However, it is essential that
for everyone except Alice, SA is hard to compute, even if you know PA. At first glance, this may
seem to be an impossible task, Alice creates a function PA, that is public and easy to compute
for everyone, yet this function has an inverse, SA, that is hard to compute for everyone except
Alice. It is not at all clear how to design such a function. In fact, when the idea for public
key cryptography was proposed (by Diffie and Hellman2), no one knew of any such functions.
The first complete public-key cryptosystem is the now-famous RSA cryptosystem, widely used
in many contexts. To understand how such a cryptosystem is possible requires some knowledge
of number theory and computational complexity. We will develop the necessary number theory
in the next few sections.

Before doing so, let us just assume that we have such a function and see how we can make
use of it. If Alice wants to send Bob a message M , she takes the following two steps:

1. Alice obtains Bob’s public key PB.

2. Alice applies Bob’s public key to M to create ciphertext C = PB(M).

Alice then sends C to Bob. Bob can decode the message by using his secret key to compute
SB(C) which is identical to SB(PB(M)), which by (2.3) is identical to M , the original message.
The beauty of the scheme is that even if the adversary has C and knows PB, she cannot decode
the message without SB, since SB is a secret that only Bob has. Even though the adversary
knows that SB is the inverse of PB, the adversary cannot easily compute this inverse.

Since it is difficult, at this point, to describe an example of a public key cryptosystem that is
hard to decode, we will give an example of one that is easy to decode. Imagine that our messages
are numbers in the range 1 to 999. Then we can imagine that Bob’s public key yields the function
PB given by PB(M) = rev(1000 − M), where rev() is a function that reverses the digits of a
number. So to encrypt the message 167, Alice would compute 1000−167 = 833 and then reverse
the digits and send Bob C = 338. In this case SB(C) = 1000 − rev(C), and Bob can easily
decode. This code is not secure, since if you know PB, you can figure out SB. The challenge is to
design a function PB so that even if you know PB and C = PB(M), it is exceptionally difficult
to figure out what M is.

Arithmetic modulo n

The RSA encryption scheme is built upon the idea of arithmetic mod n, so we introduce this
arithmetic now. Our goal is to understand how the basic arithmetic operations, addition, sub-
traction, multiplication, division, and exponentiation behave when all arithmetic is done mod
n. As we shall see, some of the operations, such as addition, subtraction and multiplication,
are straightforward to understand. Others, such as division and exponentiation, behave very
differently than they do for normal arithmetic.

2Whitfield Diffie and Martin Hellman. “New directions in cryptography” IEEE Transactions on Information
Theory , IT-22(6) pp 644-654, 1976.

44 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

Exercise 2.1-4 Compute 21 mod 9, 38 mod 9, (21 · 38) mod 9, (21 mod 9) · (38 mod 9),
(21 + 38) mod 9, (21 mod 9) + (38 mod 9).

Exercise 2.1-5 True or false: i mod n = (i + 2n) mod n; i mod n = (i − 3n) mod n

In Exercise 2.1-4, the point to notice is that

(21 · 38) mod 9 = (21 mod 9)(38 mod 9)

and
(21 + 38) mod 9 = (21 mod 9) + (38 mod 9).

These equations are very suggestive, though the general equations that they first suggest aren’t
true! As we shall soon see, some closely related equations are true.

Exercise 2.1-5 is true in both cases, as adding multiples of n to i does not change the value
of i mod n. In general, we have

Lemma 2.2 i mod n = (i + kn) mod n for any integer k.

Proof: By Theorem 2.1, for unique integers q and r, with 0 ≤ r < n, we have

i = nq + r. (2.4)

Adding kn to both sides of Equation 2.4, we obtain

i + kn = n(q + k) + r. (2.5)

Applying the definition of i mod n to Equation 2.4, we have that r = i mod n and applying the
same definition to Equation 2.5 we have that r = (i + kn) mod n. The lemma follows.

Now we can go back to the equations of Exercise 2.1-4; the correct versions are stated below.
Informally, we are showing if we have a computation involving addition and multiplication, and
we plan to take the end result mod n, then we are free to take any of the intermediate results
mod n also.

Lemma 2.3

(i + j) mod n = [i + (j mod n)] mod n

= [(i mod n) + j] mod n

= [(i mod n) + (j mod n)] mod n

(i · j) mod n = [i · (j mod n)] mod n

= [(i mod n) · j] mod n

= [(i mod n) · (j mod n)] mod n

2.1. CRYPTOGRAPHY AND MODULAR ARITHMETIC 45

Proof: We prove the first and last terms in the sequence of equations for plus are equal; the
other equalities for plus follow by similar computations. The proofs of the equalities for products
are similar.

By Theorem 2.1, we have that for unique integers q1 and q2,

i = (i mod n) + q1n and j = (j mod n) + q2n.

Then adding these two equations together mod n, and using Lemma 2.2, we obtain

(i + j) mod n = [(i mod n) + q1n + (j mod n) + q2n)] mod n

= [(i mod n) + (j mod n) + n(q1 + q2)] mod n

= [(i mod n) + (j mod n)] mod n.

We now introduce a convenient notation for performing modular arithmetic. We will use the
notation Zn to represent the integers 0, 1, . . . , n−1 together with a redefinition of addition, which
we denote by +n, and a redefinition of multiplication, which we denote ·n. The redefinitions are:

i +n j = (i + j) mod n (2.6)
i ·n j = (i · j) mod n (2.7)

We will use the expression “x ∈ Zn” to mean that x is a variable that can take on any of
the integral values between 0 and n − 1. In addition, x ∈ Zn is a signal that if we do algebraic
operations with x, we are will use +n and ·n rather than the usual addition and multiplication.
In ordinary algebra it is traditional to use letters near the beginning of the alphabet to stand
for constants; that is, numbers that are fixed throughout our problem and would be known in
advance in any one instance of that problem. This allows us to describe the solution to many
different variations of a problem all at once. Thus we might say “For all integers a and b, there
is one and only one integer x that is a solution to the equation a + x = b, namely x = b − a.”
We adopt the same system for Zn. When we say “Let a be a member of Zn,” we mean the same
thing as “Let a be an integer between 0 and n − 1,” but we are also signaling that in equations
involving a, we will use +n and ·n.

We call these new operations addition mod n and multiplication mod n. We must now
verify that all the “usual” rules of arithmetic that normally apply to addition and multiplication
still apply with +n and ·n. In particular, we wish to verify the commutative, associative and
distributive laws.

Theorem 2.4 Addition and multiplication mod n satisfy the commutative and associative laws,
and multiplication distributes over addition.

Proof: Commutativity follows immediately from the definition and the commutativity of
ordinary addition and multiplication. We prove the associative law for addition in the following
equations; the other laws follow similarly.

a +n (b +n c) = (a + (b +n c)) mod n (Equation 2.6)
= (a + ((b + c) mod n)) mod n (Equation 2.6)

46 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

= (a + (b + c)) mod n (Lemma 2.3)
= ((a + b) + c) mod n (Associative law for ordinary sums)
= ((a + b) mod n + c) mod n (Lemma 2.3)
= ((a +n b) + c) mod n (Equation 2.6)
= (a +n b) +n c (Equation 2.6).

Notice that 0 +n i = i, 1 ·n i = i, (these equations are called the additive identity properties
and the multiplicative identity properties) and 0 ·n i = 0, so we can use 0 and 1 in algebraic
expressions in Zn (which we may also refer to as agebraic expressions mod n) as we use them in
ordinary algebraic expressions. We use a −n b to stand for a +n (−b).

We conclude this section by observing that repeated applications of Lemma 2.3 and Theorem
2.4 are useful when computing sums or products mod n in which the numbers are large. For
example, suppose you had m integers x1, . . . , xm and you wanted to compute (

∑m
j=1 xi) mod n.

One natural way to do so would be to compute the sum, and take the result modulo n. However,
it is possible that, on the computer that you are using, even though (

∑m
j=1 xi) mod n is a number

that can be stored in an integer, and each xi can be stored in an integer,
∑m

j=1 xi might be too
large to be stored in an integer. (Recall that integers are typically stored as 4 or 8 bytes, and
thus have a maximum value of roughly 2 × 109 or 9 × 1018.) Lemma 2.3 tells us that if we are
computing a result mod n, we may do all our calculations in Zn using +n and ·n, and thus never
computing an integer that has significantly more digits than any of the numbers we are working
with.

Cryptography using addition mod n

One natural way to use addition of a number a mod n in encryption is first to convert the
message to a sequence of digits—say concatenating all the ASCII codes for all the symbols
in the message—and then simply add a to the message mod n. Thus P (M) = M +n a and
S(C) = C +n (−a) = C−n a. If n happens to be larger than the message in numerical value, then
it is simple for someone who knows a to decode the encrypted message. However an adversary
who sees the encrypted message has no special knowledge and so unless a was ill chosen (for
example having all or most of the digits be zero would be a silly choice) the adversary who knows
what system you are using, even including the value of n, but does not know a, is essentially
reduced to trying all possible a values. (In effect adding a appears to the adversary much like
changing digits at random.) Because you use a only once, there is virtually no way for the
adversary to collect any data that will aid in guessing a. Thus, if only you and your intended
recipient know a, this kind of encryption is quite secure: guessing a is just as hard as guessing
the message.

It is possible that once n has been chosen, you will find you have a message which translates
to a larger number than n. Normally you would then break the message into segments, each with
no more digits than n, and send the segments individually. It might seem that as long as you
were not sending a large number of segments, it would still be quite difficult for your adversary
to guess a by observing the encrypted information. However if your adversary knew n but not
a and knew you were adding a mod n, he or she could take two messages and subtract them
in Zn, thus getting the difference of two unencrypted messages. (In Problem 13 we ask you to
explain why, even if your adversary didn’t know n, but just believed you were adding some secret

2.1. CRYPTOGRAPHY AND MODULAR ARITHMETIC 47

number a mod some other secret number n, she or he could use three encoded messages to find
three differences in the integers, instead of Zn, one of which was the difference of two messages.)
This difference could contain valuable information for your adversary.3 And if your adversary
could trick you into sending just one message z that he or she knows, intercepting the message
and subtracting z would give your adversary a. Thus adding a mod n is not an encoding method
you would want to use more than once.

Cryptography using multiplication mod n

We will now explore whether multiplication is a good method for encryption. In particular, we
could encrypt by multiplying a message (mod n) by a prechosen value a. We would then expect
to decrypt by “dividing” by a. What exactly does division mod a mean? Informally, we think of
division as the “inverse” of multiplication, that is, if we take a number x, multiply by a and then
divide by a, we should get back x. Clearly, with normal arithmetic, this is the case. However,
with modular arithmetic, division is trickier.

Exercise 2.1-6 One possibility for encryption is to take a message x and compute a ·n x,
for some value a, that the sender and receiver both know. You could then decrypt by
doing division by a in Zn if you knew how to divide in Zn. How well does this work?
In particular, consider the following three cases. First, consider n = 12 and a = 4
and x = 3. Second, consider n = 12 and a = 3 and x = 6. Third, consider n = 12
and a = 5 and x = 7. In each case, ask if your recipient, knowing a, could figure out
what the message x is.

When we encoded a message by adding a in Zn, we could decode the message simply by
subtracting a in Zn. However, this method had significant disadvantages, even if our adversary
did not know n. Suppose that instead of encoding by adding a mod n, we encoded by multiplying
by a mod n. (This doesn’t give us a great secret key cryptosystem, but it illustrates some key
points.) By analogy, if we encode by multiplying by a in Zn, we would expect to decode by
dividing by a in Zn. However, Exercise 2.1-6 shows that division in Zn doesn’t always make very
much sense. Suppose your value of n was 12 and the value of a was 4. You send the message 3
as 4 ·12 3 = 0. Thus you send the encoded message 0. Now your recipient sees 0, and says the
message might have been 0; after all, 4 ·12 0 = 0. On the other hand, 4 ·12 3 = 0, 4 ·12 6 = 0, and
4 ·12 9 = 0 as well. Thus your recipient has four different choices for the original message, which
is almost as bad as having to guess the original message itself!

It might appear that special problems arose because the encoded message was 0, so the next
question in Exercise 2.1-6 gives us an encoded message that is not 0. Suppose that a = 3 and
n = 12. Now we encode the message 6 by computing 3 ·12 6 = 6. Straightforward calculation
shows that 3 ·12 2 = 6, 3 ·12 6 = 6, and 3 ·12 10 = 6. Thus, the message 6 can be decoded in three
possible ways, as 2, 6, or 10.

The final question in Exercise 2.1-6 provides some hope. Let a = 5 and n = 12. The message
is 7 is encoded as 5 ·12 7 = 11. Simple checking of 5 ·12 1, 5 ·12 2, 5 ·12 3, and so on shows that 7 is

3If each segement of a message were equally likely to be any number between 0 and n, and if any second (or
third, etc.) segment were equally likely to follow any first segement, then knowing the difference between two
segments would yield no information about the two segments. However, because language is structured and most
information is structured, these two conditions are highly unlikely to hold, in which case your adversary could
apply structural knowledge to deduce information about your two messages from their difference.

48 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

the unique solution in Z12 to the equation 5 ·12 x = 11. Thus in this case we can correctly decode
the message.

One key point that this example shows is that our system of encrypting messages must be
one-to-one. That is, each unencrypted message must correspond to a different encrypted message.

As we shall see in the next section, the kinds of problems we had in Exercise 2.1-6 happen
only when a and n have a common divisor that is greater than 1. Thus, when a and n have no
common factors greater than one, all our receiver needs to know is how to divide by a in Zn, and
she can decrypt our message. If you don’t now know how to divide by a in Zn, then you can
begin to understand the idea of public key cryptography. The message is there for anyone who
knows how to divide by a to find, but if nobody but our receiver can divide by a, we can tell
everyone what a and n are and our messages will still be secret. That is the second point our
system illustrates. If we have some knowledge that nobody else has, such as how to divide by a
mod n, then we have a possible public key cryptosystem. As we shall soon see, dividing by a is
not particularly difficult, so a better trick is needed for public key cryptography to work.

Important Concepts, Formulas, and Theorems

1. Cryptography is the study of methods to send and receive secret messages.

(a) The sender wants to send a message to a receiver.
(b) The adversary wants to steal the message.
(c) In private key cryptography, the sender and receiver agree in advance on a secret code,

and then send messages using that code.
(d) In public key cryptography, the encoding method can be published. Each person has

a public key used to encrypt messages and a secret key used to encrypt an encrypted
message.

(e) The original message is called the plaintext.
(f) The encoded text is called the ciphertext.
(g) A Caesar cipher is one in which each letter of the alphabet is shifted by a fixed amount.

2. Euclid’s Division Theorem. For every integer m and positive integer n, there exist unique
integers q and r such that m = nq + r and 0 ≤ r < n. By definition, r is equal to m mod n.

3. Adding multiples of n does not change values mod n. That is, i mod n = (i + kn) mod n
for any integer k.

4. Mods (by n) can be taken anywhere in calculation, so long as we take the final result mod
n.

(i + j) mod n = [i + (j mod n)] mod n

= [(i mod n) + j] mod n

= [(i mod n) + (j mod n)] mod n

(i · j) mod n = [i · (j mod n)] mod n

= [(i mod n) · j] mod n

= [(i mod n) · (j mod n)] mod n

2.1. CRYPTOGRAPHY AND MODULAR ARITHMETIC 49

5. Commutative, associative and distributive laws. Addition and multiplication mod n satisfy
the commutative and associative laws, and multiplication distributes over addition.

6. Zn. We use the notation Zn to represent the integers 0, 1, . . . , n − 1 together with a redef-
inition of addition, which we denote by +n, and a redefinition of multiplication, which we
denote ·n. The redefinitions are:

i +n j = (i + j) mod n

i ·n j = (i · j) mod n

We use the expression “x ∈ Zn” to mean that x is a variable that can take on any of the
integral values between 0 and n − 1, and that in algebraic expressions involving x we will
use +n and ·n. We use the expression a ∈ Zn to mean that a is a constant between 0 and
n − 1, and in algebraic expressions involving a we will use +n and ·n.

Problems

1. What is 14 mod 9? What is −1 mod 9? What is −11 mod 9?

2. Encrypt the message HERE IS A MESSAGE using a Caeser cipher in which each letter is
shifted three places to the right.

3. Encrypt the message HERE IS A MESSAGE using a Caeser cipher in which each letter is
shifted three places to the left.

4. How many places has each letter been shifted in the Caesar cipher used to encode the
message XNQQD RJXXFLJ?

5. What is 16 +23 18? What is 16 ·23 18?

6. A short message has been encoded by converting it to an integer by replacing each “a” by
1, each “b” by 2, and so on, and concatenating the integers. The result had six or fewer
digits. An unknown number a was added to the message mod 913,647, giving 618,232.
Without the knowledge of a, what can you say about the message? With the knowledge of
a, what could you say about the message?

7. What would it mean to say there is an integer x equal to 1
4 mod 9? If it is meaningful to

say there is such an integer, what is it? Is there an integer equal to 1
3 mod 9? If so, what

is it?

8. By multiplying a number x times 487 in Z30031 we obtain 13008. If you know how to find
the number x, do so. If not, explain why the problem seems difficult to do by hand.

9. Write down the addition table for +7 addition. Why is the table symmetric? Why does
every number appear in every row?

10. It is straightforward to solve, for x, any equation of the form

x +n a = b

50 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

in Zn, and to see that the result will be a unique value of x. On the other hand, we saw
that 0, 3, 6, and 9 are all solutions to the equation

4 ·12 x = 0.

a) Are there any integral values of a and b, with 1 ≤ a, b < 12, for which the equation
a ·12 x = b does not have any solutions in Z12? If there are, give one set of values for
a and b. If there are not, explain how you know this.

b) Are there any integers a, with 1 < a < 12 such that for every integral value of b,
1 ≤ b < 12, the equation a ·12 x = b has a solution? If so, give one and explain why it
works. If not, explain how you know this.

11. Does every equation of the form a ·n x = b, with a, b ∈ Zn have a solution in Z5? in Z7? in
Z9? in Z11?

12. Recall that if a prime number divides a product of two integers, then it divides one of the
factors.

a) Use this to show that as b runs though the integers from 0 to p− 1, with p prime, the
products a ·p b are all different (for each fixed choice of a between 1 and p − 1).

b) Explain why every integer greater than 0 and less than p has a unique multiplicative
inverse in Zp, if p is prime.

13. Explain why, if you were encoding messages x1, x2, and x3 to obtain y1, y2 and y3 by adding
a mod n, your adversary would know that at least one of the differences y1 − y2, y1 − y3 or
y2−y3 taken in the integers, not in Zn, would be the difference of two unencoded messages.
(Note: we are not saying that your adversary would know which of the three was such a
difference.)

14. Modular arithmetic is used in generating pseudo-random numbers. One basic algorithm
(still widely used) is linear congruential random number generation. The following piece of
code generates a sequence of numbers that may appear random to the unaware user.

(1) set seed to a random value
(2) x = seed
(3) Repeat
(4) x = (ax + b) mod n
(5) print x
(6) Until x = seed

Execute the loop by hand for a = 3, b = 7, n = 11 and seed = 0. How “random” are these
random numbers?

15. Write down the ·7 multiplication table for Z7.

16. Prove the equalities for multiplication in Lemma 2.3.

17. State and prove the associative law for ·n multiplication.

2.1. CRYPTOGRAPHY AND MODULAR ARITHMETIC 51

18. State and prove the distributive law for ·n multiplication over +n addition.

19. Write pseudocode to take m integers x1, x2, . . . , xm, and an integer n, and return Πm
i xi mod

n. Be careful about overflow; in this context, being careful about overflow means that at
no point should you ever compute a value that is greater than n2.

20. Write pseudocode to decode a message that has been encoded using the algorithm

• take three consecutive letters,

• reverse their order,

• interpret each as a base 26 integer (with A=0; B=1, etc.),

• multiply that number by 37,

• add 95 and then

• convert that number to base 8.

Continue this processing with each block of three consecutive letters. Append the blocks,
using either an 8 or a 9 to separate the blocks. Finally, reverse the number, and replace
each digit 5 by two 5’s.

52 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

2.2 Inverses and GCDs

Solutions to Equations and Inverses mod n

In the last section we explored multiplication in Zn. We saw in the special case with n = 12 and
a = 4 that if we used multiplication by a in Zn to encrypt a message, then our receiver would
need to be able to solve, for x, the equation 4 ·n x = b in order to decode a received message b.
We saw that if the encrypted message was 0, then there were four possible values for x. More
generally, Exercise 2.1-6 and some of the problems in the last section show that for certain values
of n, a, and b, equations of the form a ·n x = b have a unique solution, while for other values of
n, a, and b, the equation could have no solutions, or more than one solution.

To decide whether an equation of the form a ·n x = b has a unique solution in Zn, it helps
know whether a has a multiplicative inverse in Zn, that is, whether there is another number a′
such that a′ ·n a = 1. For example, in Z9, the inverse of 2 is 5 because 2 ·9 5 = 1. On the other
hand, 3 does not have an inverse in Z9, because the equation 3 ·9 x = 1 does not have a solution.
(This can be verified by checking the 9 possible values for x.) If a does have an inverse a′, then
we can find a solution to the equation

a ·n x = b .

To do so, we multiply both sides of the equation by a′, obtaining

a′ ·n (a ·n x) = a′ ·n b.

By the associative law, this gives us

(a′ ·n a) ·n x = a′ ·n b.

But a′ ·n a = 1 by definition so we have that

x = a′ ·n b .

Since this computation is valid for any x that satisfies the equation, we conclude that the only x
that satisfies the equation is a′ ·n b. We summarize this discussion in the following lemma.

Lemma 2.5 Suppose a has a multiplicative inverse a′ in Zn. Then for any b ∈ Zn, the equation

a ·n x = b

has the unique solution
x = a′ ·n b .

Note that this lemma holds for any value of b ∈ Zn.

This lemma tells us that whether or not a number has an inverse mod n is important for the
solution of modular equations. We therefore wish to understand exactly when a member of Zn

has an inverse.

2.2. INVERSES AND GCDS 53

Inverses mod n

We will consider some of the examples related to Problem 11 of the last section.

Exercise 2.2-1 Determine whether every element a of Zn has an inverse for n= 5, 6, 7, 8,
and 9.

Exercise 2.2-2 If an element of Zn has a multiplicative inverse, can it have two different
multiplicative inverses?

For Z5, we can determine by multiplying each pair of nonzero members of Z5 that the following
table gives multiplicative inverses for each element a of Z5. For example, the products 2 ·5 1 = 2,
2 ·5 2 = 4, 2 ·5 3 = 1, and 2 ·5 4 = 3 tell us that 3 is the unique multiplicative inverse for 2 in Z5.
This is the reason we put 3 below 2 in the table. One can make the same kinds of computations
with 3 or 4 instead of 2 on the left side of the products to get the rest of the table.

a 1 2 3 4
a′ 1 3 2 4

For Z7, we have similarly the table

a 1 2 3 4 5 6
a′ 1 4 5 2 3 6 .

For Z9, we have already said that 3 ·9 x = 1 does not have a solution, so by Lemma 2.5, 3
does not have an inverse. (Notice how we are using the Lemma. The Lemma says that if 3 had
an inverse, then the equation 3 ·9 x = 1 would have a solution, and this would contradict the fact
that 3 ·9 x = 1 does not have a solution. Thus assuming that 3 had an inverse would lead us to
a contradiction. Therefore 3 has no multiplicative inverse.)

This computation is a special case of the following corollary4 to Lemma 2.5.

Corollary 2.6 Suppose there is a b in Zn such that the equation

a ·n x = b

does not have a solution. Then a does not have a multiplicative inverse in Zn.

Proof: Suppose that a ·n x = b has no solution. Suppose further that a does have a multi-
plicative inverse a′ in Zn. Then by Lemma 2.5, x = a′b is a solution to the equation a ·n x = b.
This contradicts the hypothesis given in the corollary that the equation does not have a solution.
Thus some supposition we made above must be incorrect. One of the assumptions, namely that
a ·n x = b has no solution was the hypothesis given to us in the statement of the corollary. The
only other supposition we made was that a has an inverse a′ in Zn. Thus this supposition must
be incorrect as it led to the contradiction. Therefore, it must be case that a does not have a
multiplicative inverse in Zn.

Our proof of the corollary is a classical example of the use of contradiction in a proof. The
principle of proof by contradiction is the following.

4In the next section we shall see that this corollary is actually equivalent to Lemma to Lemma 2.5.

54 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

Principle 2.1 (Proof by contradiction) If by assuming a statement we want to prove is false,
we are lead to a contradiction, then the statement we are trying to prove must be true.

We can actually give more information than Exercise 1 asks for. You can check that the table
below shows an X for the elements of Z9 that do not have inverses and gives an inverse for each
element that has one

a 1 2 3 4 5 6 7 8
a′ 1 5 X 7 2 X 4 8 .

In Z6, 1 has an inverse, namely 1, but the equations

2 ·6 1 = 2, 2 ·6 2 = 4, 2 ·6 3 = 0, 2 ·6 4 = 2, 2 ·6 5 = 4

tell us that 2 does not have an inverse. Less directly, but with less work, we see that the equation
2 ·6 x = 3 has no solution because 2x will always be even, so 2x mod 6 will always be even. Then
Corollary 2.6 tells us that 2 has no inverse. Once again, we give a table that shows exactly which
elements of Z6 have inverses.

a 1 2 3 4 5
a′ 1 X X X 5

A similar set of equations shows that 2 does not have an inverse in Z8. The following table
shows which elements of Z8 have inverses.

a 1 2 3 4 5 6 7
a′ 1 X 3 X 5 X 7 .

We see that every nonzero element in Z5 and Z7 does have a multiplicative inverse, but in Z6,
Z8, and Z9, some elements do not have a multiplicative inverse. Notice that 5 and 7 are prime,
while 6, 8, and 9 are not. Further notice that the elements in Zn that do not have a multiplicative
inverse are exactly those that share a common factor with n.

We showed that 2 has exactly one inverse in Z5 by checking each multiple of 2 in Z5 and
showing that exactly one multiple of 2 equals 1. In fact, for any element that has an inverse
in Z5, Z6, Z7, Z8, and Z9, you can check in the same way that it has exactly one inverse. We
explain why in a theorem.

Theorem 2.7 If an element of Zn has a multiplicative inverse, then it has exactly one inverse.

Proof: Suppose that an element a of Zn has an inverse a′. Suppose that a∗ is also an inverse
of a. Then a′ is a solution to a ·n x = 1 and a∗ is a solution to a ·n x = 1. But by Lemma 2.5, the
equation a ·n x = 1 has a unique solution. Therefore a′ = a∗.

Just as we use a−1 to denote the inverse of a in the real numbers, we use a−1 to denote the
unique inverse of a in Zn when a has an inverse. Now we can say precisely what we mean by
division in Zn. We will define what we mean by dividing a member of Zn by a only in the case
that a has an inverse a−1 mod n. In this case dividing b by a mod n is defined to be same as
multiplying b by a−1 mod n. We were led to our discussion of inverses because of their role in
solving equations. We observed that in our examples, an element of Zn that has an inverse mod
n has no factors greater than 1 in common with n. This is a statement about a and n as integers
with ordinary multiplication rather than multiplication mod n. Thus to prove that a has an
inverse mod n if and only if a and n have no common factors other than 1 and -1, we have to
convert the equation a ·n x = 1 into an equation involving ordinary multiplication.

2.2. INVERSES AND GCDS 55

Converting Modular Equations to Normal Equations

We can re-express the equation
a ·n x = 1

as
ax mod n = 1.

But the definition of ax mod n is that it is the remainder r we get when we write ax = qn+r,
with 0 ≤ r < n. This means that ax mod n = 1 if and only if there is an integer q with
ax = qn + 1, or

ax − qn = 1. (2.8)

Thus we have shown

Lemma 2.8 The equation
a ·n x = 1

has a solution in Zn if and only if there exist integers x and y such that

ax + ny = 1.

Proof: We simply take y = −q.

We make the change from −q to y for two reasons. First, if you read a number theory book,
you are more likely to see the equation with y in this context. Second, to solve this equation,
we must find both x and y, and so using a letter near the end of the alphabet in place of −q
emphasizes that this is a variable for which we need to solve.

It appears that we have made our work harder, not easier, as we have converted the problem
of solving (in Zn) the equation a ·n x = 1, an equation with just one variable x (that could only
have n−1 different values), to a problem of solving Equation 2.8, which has two variables, x and
y. Further, in this second equation, x and y can take on any integer values, even negative values.

However, this equation will prove to be exactly what we need to prove that a has an inverse
mod n if and only if a and n have no common factors larger than one.

Greatest Common Divisors (GCD)

Exercise 2.2-3 Suppose that a and n are integers such that ax+ny = 1, for some integers
x and y. What does that tell us about being able to find a (multiplicative) inverse
for a (mod n)? In this situation, if a has an inverse in Zn, what is it?

Exercise 2.2-4 If ax+ny = 1 for integers x and y, can a and n have any common divisors
other than 1 and -1?

In Exercise 2.2-3, since by Lemma 2.8, the equation a ·n x = 1 has a solution in Zn if and
only if there exist integers x and y such that ax + ny = 1, we can can conclude that

Theorem 2.9 A number a has a multiplicative inverse in Zn if and only if there are integers x
and y such that ax + ny = 1.

56 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

We answer the rest of Exercise 2.2-3 with a corollary.

Corollary 2.10 If a ∈ Zn and x and y are integers such that ax+ny = 1, then the multiplicative
inverse of a in Zn is x mod n.

Proof: Since n ·n y = 0 in Zn, we have a ·n x = 1 in Zn and therefore x is the inverse of a in
Zn.

Now let’s consider Exercise 2.2-4. If a and n have a common divisor k, then there must exist
integers s and q such that

a = sk

and
n = qk .

Substituting these into ax + ny = 1, we obtain

1 = ax + ny

= skx + qky

= k(sx + qy).

But then k is a divisor of 1. Since the only integer divisors of 1 are ±1, we must have k = ±1.
Therefore a and n can have no common divisors other than 1 and -1.

In general, the greatest common divisor of two numbers j and k is the largest number d
that is a factor of both j and k.5 We denote the greatest common divisor of j and k by gcd(j, k).

We can now restate Exercise 2.2-4 as follows:

Lemma 2.11 Given a and n, if there exist integers x and y such that ax + ny = 1 then
gcd(a, n) = 1.

If we combine Theorem 2.9 and Lemma 2.11, we see that that if a has a multiplicative inverse
mod n, then gcd(a, n) = 1. It is natural to ask whether the statement that “if gcd a, n = 1, then
a has a multiplicative inverse” is true as well.6 If so, this would give us a way to test whether a
has a multiplicative inverse mod n by computing the greatest common divisor of a and n. For
this purpose we would need an algorithm to find gcd(a, n). It turns out that there is such an
algorithm, and a byproduct of the algorithm is a proof of our conjectured converse statement!
When two integers j and k have gcd(j, k) = 1, we say that j and k are relatively prime.

Euclid’s Division Theorem

One of the important tools in understanding greatest common divisors is Euclid’s Division The-
orem, a result which has already been important to us in defining what we mean by m mod n.
While it appears obvious, as do some other theorems in number theory, it follows from simpler
principles of number theory, and the proof helps us understand how the greatest common divisor

5There is one common factor of j and k for sure, namely 1. No common factor can be larger than the smaller
of j and k in absolute value, and so there must be a largest common factor.

6Notice that this statement is not equivalent to the statement in the lemma. This statement is what is called
the “converse” of the lemma; we will explain the idea of converse statements more in Chapter 3.

2.2. INVERSES AND GCDS 57

algorithm works. Thus we restate it and present a proof here. Our proof uses the method of
proof by contradiction, which you first saw in Corollary 2.6. Notice that we are assuming m
is nonnegative which we didn’t assume in our earlier statement of Euclid’s Division Theorem,
Theorem 2.1. In Problem 16 we will explore how we can remove this additional assumption.

Theorem 2.12 (Euclid’s Division Theorem, restricted version) For every nonnegative in-
teger m and positive integer n, there exist unique integers q and r such that m = nq + r and
0 ≤ r < n. By definition, r is equal to m mod n.

Proof: To prove this theorem, assume instead, for purposes of contradiction, that it is false.
Among all pairs (m, n) that make it false, choose the smallest m that makes it false. We cannot
have m < n because then the statement would be true with q = 0 and r = m, and we cannot
have m = n because then the statement is true with q = 1 and r = 0. This means m − n is
a positive number smaller than m. We assumed that m was the smallest value that made the
theorem false, and so the theorem must be true for the pair (m − n, n). Therefore, there must
exist a q′ and r′ such that

m − n = q′n + r′, with 0 ≤ r′ < n.

Thus m = (q′+1)n+r′. Now, by setting q = q′+1 and r = r′, we can satisfy the theorem for the
pair (m, n), contradicting the assumption that the statement is false. Thus the only possibility
is that the statement is true.

The proof technique used here is a special case of proof by contradiction. We call the technique
proof by smallest counterexample. In this method, we assume, as in all proofs by contradiction,
that the theorem is false. This implies that there must be a counterexample which does not
satisfy the conditions of the theorem. In this case that counterexample would consist of numbers
m and n such that no integers q and r exist which satisfy m = qn + r. Further, if there are
counterexamples, then there must be one having the smallest m. We assume we have chosen
a counter example with such a smallest m. the we reason that if such an m exists, then every
example wit a smaller m satisfies the conclusion of the theorem. If we can then use a smaller
true example to show that our supposedly false example is true as well, we have created a
contradiction. The only thing this can contradict is our assumption that the theorem was false.
Therefore this assumption has to be invalid, and the theorem has to be true. As we will see in
Chapter 4.1, this method is closely related to a proof method called proof by induction and to
recursive algorithms. In essence, the proof of Theorem 2.1 describes a recursive program to find
q and r in the theorem above so that 0 ≤ r < n.

Exercise 2.2-5 Suppose that k = jq + r as in Euclid’s Division Theorem. Is there a
relationship between gcd(j, k) and gcd(r, j)?

In this exercise, if r = 0, then gcd(r, j) is j, because any number is a divisor of zero. But this
is the GCD of k and j as well since in this case k = jq. The answer to the remainder of Exercise
2.2-5 appears in the following lemma.

Lemma 2.13 If j, k, q, and r are positive integers such that k = jq + r then

gcd(j, k) = gcd(r, j). (2.9)

58 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

Proof: In order to prove that both sides of Equation 2.9 are equal, we will show that they have
exactly the same set of factors. That is, we will first show that if d is a factor of the left-hand
side, then it is a factor of the right-hand side. Second, we will show that if d is a factor of the
right-hand side, then it is a factor of the left-hand side.

If d is a factor of gcd(j, k) then it is a factor of both j and k. There must be integers i1 and
i2 so that k = i1d and j = i2d. Thus d is also a factor of

r = k − jq

= i1d − i2dq

= (i1 − i2q)d .

Since d is a factor of j (by supposition) and r (by the equation above), it must be a factor of
gcd(r, j).

Similarly, if d is a factor of gcd(r, j), it is a factor of j and r, and we can write j = i3d and
r = i4d. Therefore,

k = jq + r

= i3dq + i4d

= (i3q + i4)d ,

and d is a factor of k and therefore of gcd(j, k).

Since gcd(j, k) has the same factors as gcd(r, j) they must be equal.

While we did not need to assume r < j in order to prove the lemma, Theorem 2.1 tells us
we may assume r < j. The assumption in the lemma that j, q and r are positive implies that
j < k. Thus this lemma reduces our problem of finding gcd(j, k) to the simpler (in a recursive
sense) problem of finding gcd(r, j).

The GCD Algorithm

Exercise 2.2-6 Using Lemma 2.13, write a recursive algorithm to find gcd(j, k), given that
j ≤ k. Use it (by hand) to find the GCD of 24 and 14 and the GCD of 252 and 189.

Our algorithm for Exercise 2.2-6 is based on Lemma 2.13 and the observation that if k = jq,
for any q, then j = gcd(j, k). We first write k = jq + r in the usual way. If r = 0, then we
return j as the greatest common divisor. Otherwise, we apply our algorithm to find the greatest
common divisor of j and r. Finally, we return the result as the greatest common divisor of j
and k.

To find
gcd(14, 24)

we write
24 = 14(1) + 10.

In this case k = 24, j = 14, q = 1 and r = 10. Thus we can apply Lemma 2.13 and conclude that

gcd(14, 24) = gcd(10, 14).

2.2. INVERSES AND GCDS 59

We therefore continue our computation of gcd(10, 14), by writing 14 = 10 · 1 + 4, and have that

gcd(10, 14) = gcd(4, 10).

Now,
10 = 4 · 2 + 2,

and so
gcd(4, 10) = gcd(2, 4).

Now
4 = 2 · 2 + 0,

so that now k = 4, j = 2, q = 2, and r = 0. In this case our algorithm tells us that our current
value of j is the GCD of the original j and k. This step is the base case of our recursive algorithm.
Thus we have that

gcd(14, 24) = gcd(2, 4) = 2.

While the numbers are larger, it turns out to be even easier to find the GCD of 252 and 189.
We write

252 = 189 · 1 + 63,

so that gcd(189, 252) = gcd(63, 189), and

189 = 63 · 3 + 0.

This tells us that gcd(189, 252) = gcd(189, 63) = 63.

Extended GCD algorithm

By analyzing our process in a bit more detail, we will be able to return not only the greatest
common divisor, but also numbers x and y such that gcd(j, k) = jx + ky. This will solve the
problem we have been working on, because it will prove that if gcd(a, n) = 1, then there are
integers x and y such that ax + ny = 1. Further it will tell us how to find x, and therefore the
multiplicative inverse of a.

In the case that k = jq and we want to return j as our greatest common divisor, we also want
to return 1 for the value of x and 0 for the value of y. Suppose we are now in the case that that
k = jq + r with 0 < r < j (that is, the case that k != jq). Then we recursively compute gcd(r, j)
and in the process get an x′ and a y′ such that gcd(r, j) = rx′ + jy′. Since r = k − jq, we get by
substitution that

gcd(r, j) = (k − jq)x′ + jy′ = kx′ + j(y′ − qx′).

Thus when we return gcd(r, j) as gcd(j, k), we want to return the value of x′ as y and and the
value of y′ − qx′ as x.

We will refer to the process we just described as “Euclid’s extended GCD algorithm.”

Exercise 2.2-7 Apply Euclid’s extended GCD algorithm to find numbers x and y such
that the GCD of 14 and 24 is 14x + 24y.

60 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

For our discussion of Exercise 2.2-7 we give pseudocode for the extended GCD algorithm.
While we expressed the algorithm more concisely earlier by using recursion, we will give an
iterative version that is longer but can make the computational process clearer. Instead of using
the variables q, j, k, r, x and y, we will use six arrays, where q[i] is the value of q computed on the
ith iteration, and so forth. We will use the index zero for the input values, that is j[0] and k[0]
will be the numbers whose gcd we wish to compute. Eventually x[0] and y[0] will become the x
and y we want.

(In Line 0 we are using the notation !x" to stand for the floor of x, the largest integer less
than or equal to x.)

gcd(j, k)
// assume that j < k
(1) i = 0; k[i] = k; j[i] = j
(2) Repeat
(3) q[i] = !k[i]/j[i]"
(4) r[i] = k[i] − q[i]j[i]
(5) k[i + 1] = j[i]; j[i + 1] = r[i]
(6) i = i + 1
(7) Until (r[i − 1] = 0)
// we have found the value of the gcd, now we compute the x and y
(8) i = i − 1
(9) gcd = j[i]
(10) y[i] = 0;x[i] = 1
(11) i = i − 1
(12) While (i ≥ 0)
(13) y[i] = x[i + 1]
(14) x[i] = y[i + 1] − q[i]x[i + 1]
(15) i = i − 1
(16) Return gcd
(17) Return x
(18) Return y

We show the details of how this algorithm applies to gcd(24, 14) in Table 2.1. In a row, the
q[i] and r[i] values are computed from the j[i] and k[i] values. Then the j[i] and r[i] are passed
down to the next row as k[i + 1] and j[i + 1] respectively. This process continues until we finally
reach a case where k[i] = q[i]j[i] and we can answer j[i] for the gcd. We can then begin computing
x[i] and y[i]. In the row with i = 3, we have that x[i] = 0 and y[i] = 1. Then, as i decreases, we
compute x[i] and y[i] for a row by setting y[i] to x[i + 1] and x[i] to y[i + 1] − q[i]x[i + 1]. We
note that in every row, we have the property that j[i]x[i] + k[i]y[i] = gcd(j, k).

We summarize Euclid’s extended GCD algorithm in the following theorem:

Theorem 2.14 Given two integers j and k, Euclid’s extended GCD algorithm computes gcd(j, k)
and two integers x and y such that gcd(j, k) = jx + ky .

We now use Eculid’s extended GCD algorithm to extend Lemma 2.11.

2.2. INVERSES AND GCDS 61

i j[i] k[i] q[i] r[i] x[i] y[i]
0 14 24 1 10
1 10 14 1 4
2 4 10 2 2
3 2 4 2 0 1 0
2 4 10 2 2 −2 1
1 10 14 1 4 3 −2
0 14 24 1 10 −5 3
gcd = 2
x = −5
y = 3

Table 2.1: The computation of gcd(14, 24) by algorithm gcd(j, k).

Theorem 2.15 Two positive integers j and k have greatest common divisor 1 (and thus are
relatively prime) if and only if there are integers x and y such that jx + ky=1.

Proof: The statement that if there are integers x and y such that jx+ky = 1, then gcd(j, k) =
1 is proved in Lemma 2.11. In other words, gcd(j, k) = 1 if there are integers x and y such that
jx + ky = 1.

On the other hand, we just showed, by Euclid’s extended GCD algorithm, that given positive
integers j and k, there are integers x and y such that gcd(j, k) = jx+ky. Therefore, gcd(j, k) = 1
only if there are integers x and y such that jx + ky = 1.

Combining Lemma 2.8 and Theorem 2.15, we obtain:

Corollary 2.16 For any positive integer n, an element a of Zn has a multiplicative inverse if
and only if gcd(a, n) = 1.

Using the fact that if n is prime, gcd(a, n) = 1 for all non-zero a ∈ Zn, we obtain

Corollary 2.17 For any prime p, every non-zero element a of Zp has an inverse.

Computing Inverses

Not only does Euclid’s extended GCD algorithm tell us if an inverse exists, but, just as we saw
in Exercise 2.2-3 it computes it for us. Combining Exercise 2.2-3 with Theorem 2.15, we get

Corollary 2.18 If an element a of Zn has an inverse, we can compute it by running Euclid’s
extended GCD algorithm to determine integers x and y so that ax + ny = 1. Then the inverse of
a in Zn is x mod n.

For completeness, we now give pseudocode which determines whether an element a in Zn has an
inverse and computes the inverse if it exists:

62 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

inverse(a, n)
(1) Run procedure gcd(a, n) to obtain gcd(a, n), x and y
(2) if gcd(a, n) = 1
(3) return x
(4) else
(5) print ‘‘no inverse exists’’

The correctness of the algorithm follows immediately from the fact that gcd(a, n) = ax + ny,
so if gcd(a, n) = 1, ax mod n must be equal to 1.

Important Concepts, Formulas, and Theorems

1. Multiplicative inverse. a′ is a multiplicative inverse of a in Zn if a ·n a′ = 1. If a has a
multiplicative inverse, then it has a unique multiplicative inverse which we denote by a−1.

2. An important way to solve modular equations. Suppose a has a multiplicative inverse mod
n, and this inverse is a−1. Then for any b ∈ Zn, the unique solution to the equation

a ·n x = b

is
x = a−1 ·n b .

3. Converting modular to regular equations. The equation

a ·n x = 1

has a solution in Zn if and only if there exist integers x and y such that

ax + ny = 1 .

4. When do inverses exist in Zn? A number a has a multiplicative inverse in Zn if and only
if there are integers x and y such that ax + ny = 1.

5. Greatest common divisor (GCD). The greatest common divisor of two numbers j and k is
the largest number d that is a factor of both j and k.

6. Relatively prime. When two numbers, j and k have gcd(j, k) = 1, we say that j and k are
relatively prime.

7. Connecting inverses to GCD. Given a and n, if there exist integers x and y such that
ax + ny = 1 then gcd(a, n) = 1.

8. GCD recursion lemma. If j, k, q, and r are positive integers such that k = jq + r then
gcd(j, k) = gcd(r, j).

9. Euclid’s GCD algorithm. Given two numbers j and k, this algorithm returns gcd(j, k).

10. Euclid’s extended GCD algorithm. Given two numbers j and k, this algorithm returns
gcd(j, k), and two integers x and y such that gcd(j, k) = jx + ky.

2.2. INVERSES AND GCDS 63

11. Relating GCD of 1 to Euclid’s extended GCD algorithm. Two positive integers j and k have
greatest common divisor 1 if and only if there are integers x and y such that jx + ky=1.
One of the integers x and y could be negative.

12. Restatement for Zn. gcd(a, n) = 1 if and only if there are integers x and y such that
ax + ny = 1.

13. Condition for multiplicative inverse in Zn For any positive integer n, an element a of Zn

has an inverse if and only if gcd(a, n) = 1.

14. Multiplicative inverses in Zp, p prime For any prime p, every non-zero element a of Zp has
a multiplicative inverse.

15. A way to solve some modular equations a ·n x = b. Use Euclid’s extended GCD algorithm
to compute a−1 (if it exists), and multiply both sides of the equation by a−1. (If a has no
inverse, the equation might or might not have a solution.)

Problems

1. If a · 133−m · 277 = 1, does this guarantee that a has an inverse mod m? If so, what is it?
If not, why not?

2. If a · 133 − 2m · 277 = 1, does this guarantee that a has an inverse mod m? If so, what is
it? If not, why not?

3. Determine whether every nonzero element of Zn has a multiplicative inverse for n = 10 and
n = 11.

4. How many elements a are there such that a ·31 22 = 1? How many elements a are there
such that a ·10 2 = 1?

5. Given an element b in Zn, what can you say in general about the possible number of
elements a such that a ·n b = 1 in Zn?

6. If a · 133−m · 277 = 1, what can you say about all possible common divisors of a and m?

7. Compute the GCD of 210 and 126 by using Euclid’s GCD algorithm.

8. If k = jq + r as in Euclid’s Division Theorem, is there a relationship between gcd(q, k) and
gcd(r, q). If so, what is it?

9. Bob and Alice want to choose a key they can use for cryptography, but all they have to
communicate is a bugged phone line. Bob proposes that they each choose a secret number,
a for Alice and b for Bob. They also choose, over the phone, a prime number p with more
digits than any key they want to use, and one more number q. Bob will send Alice bq mod
p, and Alice will send Bob aq mod p. Their key (which they will keep secret) will then be
abq mod p. (Here we don’t worry about the details of how they use their key, only with
how they choose it.) As Bob explains, their wire tapper will know p, q, aq mod p, and bq
mod p, but will not know a or b, so their key should be safe.

Is this scheme safe, that is can the wiretapper compute abq mod p? If so, how does she do
it?

64 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

Alice says “You know, the scheme sounds good, but wouldn’t it be more complicated for
the wire tapper if I send you qa mod p, you send me qb (mod p) and we use qab mod p as
our key?” In this case can you think of a way for the wire tapper to compute qab mod p?
If so, how can you do it? If not, what is the stumbling block? (It is fine for the stumbling
block to be that you don’t know how to compute something; you don’t need to prove that
you can’t compute it.)

10. Write pseudocode for a recursive version of the extended GCD algorithm.

11. Run Euclid’s extended GCD algorithm to compute gcd(576, 486). Show all the steps.

12. Use Euclid’s extended GCD algorithm to compute the multiplicative inverse of 16 modulo
103.

13. Solve the equation 16 ·103 x = 21 in Z103.

14. Which elements of Z35 do not have multiplicative inverses in Z35?

15. If k = jq + r as in Euclid’s Division Theorem, is there a relationship between gcd(j, k) and
gcd(r, k). If so, what is it?

16. Notice that if m is negative, then −m is positive, so that by Theorem 2.12 −m = qn + r,
where 0 ≤ r < n. This gives us m = −qn− r. If r = 0, then we have written m = q′n + r′,
where 0 ≤ r′ ≤ n and q′ = −q. However if r > 0, we cannot take r′ = −r and have
0 ≤ r′ < n. Notice, though, that since since we have already finished the case r = 0 we may
assume that 0 ≤ n − r < n. This suggests that if we were to take r′ to be n − r, we might
be able to find a q′ so that m = q′n + r′ with 0 ≤ r′ ≤ n, which would let us conclude that
Euclid’s Division Theorem is valid for negative values m as well as nonnegative values m.
Find a q′ that works and explain how you have extended Euclid’s Division Theorem from
the version in Theorem 2.12 to the version in Theorem 2.1.

17. The Fibonacci numbers Fi are defined as follows:

Fi =
{

1 if i is 1 or 2
Fi−1 + Fi−2 otherwise.

What happens when you run Euclid’s extended GCD algorithm on Fi and Fi−1? (We are
asking about the execution of the algorithm, not just the answer.)

18. Write (and run on several different inputs) a program to implement Euclid’s extended GCD
algorithm. Be sure to return x and y in addition to the GCD. About how many times does
your program have to make a recursive call to itself? What does that say about how long we
should expect it to run as we increase the size of the j and k whose GCD we are computing?

19. The least common multiple of two positive integers x and y is the smallest positive integer
z such that z is an integer multiple of both x and y. Give a formula for the least common
multiple that involves the GCD.

20. Write pseudocode that given integers a, b and n in Zn, either computes an x such that
a ·n x = b or concludes that no such x exists.

21. Give an example of an equation of the form a ·n x = b that has a solution even though a
and n are not relatively prime, or show that no such equation exists.

2.2. INVERSES AND GCDS 65

22. Either find an equation of the form a ·n x = b in Zn that has a unique solution even though
a and n are not relatively prime, or prove that no such equation exists. In other words,
you are either to prove the statement that if a ·n x = b has a unique solution in Zn, then a
and n are relatively prime or to find a counter example.

66 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

2.3 The RSA Cryptosystem

Exponentiation mod n

In the previous sections, we have considered encryption using modular addition and multiplica-
tion, and have seen the shortcomings of both. In this section, we will consider using exponentia-
tion for encryption, and will show that it provides a much greater level of security.

The idea behind RSA encryption is exponentiation in Zn. By Lemma 2.3, if a ∈ Zn,

aj mod n = a ·n a ·n · · · ·n a︸ ︷︷ ︸
j factors

. (2.10)

In other words aj mod n is the product in Zn of j factors, each equal to a.

The Rules of Exponents

Lemma 2.3 and the rules of exponents for the integers tell us that

Lemma 2.19 For any a ∈ Zn, and any nonnegative integers i and j,

(ai mod n) ·n (aj mod n) = ai+j mod n (2.11)

and
(ai mod n)j mod n = aij mod n. (2.12)

Exercise 2.3-1 Compute the powers of 2 mod 7. What do you observe? Now compute
the powers of 3 mod 7. What do you observe?

Exercise 2.3-2 Compute the sixth powers of the nonzero elements of Z7. What do you
observe?

Exercise 2.3-3 Compute the numbers 1 ·7 2, 2 ·7 2, 3 ·7 2, 4 ·7 2, 5 ·7 2, and 6 ·7 2. What
do you observe? Now compute the numbers 1 ·7 3, 2 ·7 3, 3 ·7 3, 4 ·7 3, 5 ·7 3, and
6 ·7 3. What do you observe?

Exercise 2.3-4 Suppose we choose an arbitrary nonzero number a between 1 and 6. Are
the numbers 1 ·7 a, 2 ·7 a, 3 ·7 a, 4 ·7 a, 5 ·7 a, and 6 ·7 a all different? Why or why
not?

In Exercise 2.3-1, we have that

20 mod 7 = 1
21 mod 7 = 2
22 mod 7 = 4
23 mod 7 = 1
24 mod 7 = 2
25 mod 7 = 4
26 mod 7 = 1
27 mod 7 = 2
28 mod 7 = 4.

2.3. THE RSA CRYPTOSYSTEM 67

Continuing, we see that the powers of 2 will cycle through the list of three values 1, 2, 4 again
and again. Performing the same computation for 3, we have

30 mod 7 = 1
31 mod 7 = 3
32 mod 7 = 2
33 mod 7 = 6
34 mod 7 = 4
35 mod 7 = 5
36 mod 7 = 1
37 mod 7 = 3
38 mod 7 = 2.

In this case, we will cycle through the list of six values 1, 3, 2, 6, 4, 5 again and again.

Now observe that in Z7, 26 = 1 and 36 = 1. This suggests an answer to Exercise 2.3-2. Is it
the case that a6 mod 7 = 1 for all a ∈ Z7? We can compute that 16 mod 7 = 1, and

46 mod 7 = (2 ·7 2)6 mod 7
= (26 ·7 26) mod 7
= (1 ·7 1) mod 7
= 1.

What about 56? Notice that 35 = 5 in Z7 by the computations we made above. Using Equation
2.12 twice, this gives us

56 mod 7 = (35)6 mod 7
= 35·6 mod 7
= 36·5 mod 7
= (36)5 = 15 = 1

in Z7. Finally, since −1 mod 7 = 6, Lemma 2.3 tells us that 66 mod 7 = (−1)6 mod 7 = 1. Thus
the sixth power of each element of Z7 is 1.

In Exercise 2.3-3 we see that

1 ·7 2 = 1 · 2 mod 7 = 2
2 ·7 2 = 2 · 2 mod 7 = 4
3 ·7 2 = 3 · 2 mod 7 = 6
4 ·7 2 = 4 · 2 mod 7 = 1
5 ·7 2 = 5 · 2 mod 7 = 3
6 ·7 2 = 6 · 2 mod 7 = 5.

Thus these numbers are a permutation of the set {1, 2, 3, 4, 5, 6}. Similarly,

1 ·7 3 = 1 · 3 mod 7 = 3
2 ·7 3 = 2 · 3 mod 7 = 6

68 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

3 ·7 3 = 3 · 3 mod 7 = 2
4 ·7 3 = 4 · 3 mod 7 = 5
5 ·7 3 = 5 · 3 mod 7 = 1
6 ·7 3 = 6 · 3 mod 7 = 4.

Again we get a permutation of {1, 2, 3, 4, 5, 6}.
In Exercise 2.3-4 we are asked whether this is always the case. Notice that since 7 is a prime,

by Corollary 2.17, each nonzero number between 1 and 6 has a mod 7 multiplicative inverse a−1.
Thus if i and j were integers in Z7 with i ·7 a = j ·7 a, we multiply mod 7 on the right by a−1 to
get

(i ·7 a) ·7 a−1 = (j ·7 a) ·7 a−1.

After using the associative law we get

i ·7 (a ·7 a−1) = j ·7 (a ·7 a−1). (2.13)

Since a ·7 a−1 = 1, Equation 2.13 simply becomes i = j. Thus, we have shown that the only way
for i ·7 a to equal j ·7 a is for i to equal j. Therefore, all the values i ·7 a for i = 1, 2, 3, 4, 5, 6 must
be different. Since we have six different values, all between 1 and 6, we have that the values ia
for i = 1, 2, 3, 4, 5, 6 are a permutation of {1, 2, 3, 4, 5, 6}.

As you can see, the only fact we used in our analysis of Exercise 2.3-4 is that if p is a prime,
then any number between 1 and p−1 has a multiplicative inverse in Zp. In other words, we have
really proved the following lemma.

Lemma 2.20 Let p be a prime number. For any fixed nonzero number a in Zp, the numbers
(1 · a) mod p, (2 · a) mod p, . . . , ((p− 1) · a) mod p, are a permutation of the set {1, 2, · · · , p− 1}.

With this lemma in hand, we can prove a famous theorem that explains the phenomenon we
saw in Exercise 2.3-2.

Fermat’s Little Theorem

Theorem 2.21 (Fermat’s Little Theorem). Let p be a prime number. Then ap−1 mod p = 1 in
Zp for each nonzero a in Zp.

Proof: Since p is a prime, Lemma 2.20 tells us that the numbers 1 ·p a, 2 ·p a, . . . , (p− 1) ·p a,
are a permutation of the set {1, 2, · · · , p − 1}. But then

1 ·p 2 ·p · · · ·p (p − 1) = (1 ·p a) ·p (2 ·p a) ·p · · · ·p ((p − 1) ·p a).

Using the commutative and associative laws for multiplication in Zp and Equation 2.10, we get

1 ·p 2 ·p · · · ·p (p − 1) = 1 ·p 2 ·p · · · ·p (p − 1) ·p (ap−1 mod p).

Now we multiply both sides of the equation by the multiplicative inverses in Zp of 2, 3, . . . , p− 1
and the left hand side of our equation becomes 1 and the right hand side becomes ap−1 mod p.
But this is exactly the conclusion of our theorem.

2.3. THE RSA CRYPTOSYSTEM 69

Corollary 2.22 (Fermat’s Little Theorem, version 2) For every positive integer a, and prime p,
if a is not a multiple of p,

ap−1 mod p = 1.

Proof: This is a direct application of Lemma 2.3, because if we replace a by a mod p, then
Theorem 2.21 applies.

The RSA Cryptosystem

Fermat’s Little Theorem is at the heart of the RSA cryptosystem, a system that allows Bob to
tell the world a way that they can encode a message to send to him so that he and only he can
read it. In other words, even though he tells everyone how to encode the message, nobody except
Bob has a significant chance of figuring out what the message is from looking at the encoded
message. What Bob is giving out is called a “one-way function.” This is a function f that has
an inverse f−1, but even though y = f(x) is reasonably easy to compute, nobody but Bob (who
has some extra information that he keeps secret) can compute f−1(y). Thus when Alice wants to
send a message x to Bob, she computes f(x) and sends it to Bob, who uses his secret information
to compute f−1(f(x)) = x.

In the RSA cryptosystem Bob chooses two prime numbers p and q (which in practice each
have at least a hundred digits) and computes the number n = pq. He also chooses a number e != 1
which need not have a large number of digits but is relatively prime to (p − 1)(q − 1), so that it
has an inverse d in Z(p−1)(q−1), and he computes d = e−1 mod (p − 1)(q − 1). Bob publishes e
and n. The number e is called his public key. The number d is called his private key.

To summarize what we just said, here is a pseudocode outline of what Bob does:

Bob’s RSA key choice algorithm
(1) Choose 2 large prime numbers p and q
(2) n = pq
(3) Choose e != 1 so that e is relatively prime to (p − 1)(q − 1)
(4) Compute d = e−1 mod (p − 1)(q − 1).
(5) Publish e and n.
(6) Keep d secret.

People who want to send a message x to Bob compute y = xe mod n and send that to him
instead. (We assume x has fewer digits than n so that it is in Zn. If not, the sender has to
break the message into blocks of size less than the number of digits of n and send each block
individually.)

To decode the message, Bob will compute z = yd mod n.

We summarize this process in pseudocode below:

Alice-send-message-to-Bob(x)
Alice does:
(1) Read the public directory for Bob’s keys e and n.
(2) Compute y = xe mod n

70 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

(3) Send y to Bob
Bob does:
(4) Receive y from Alice
(5) Compute z = yd mod n, using secret key d
(6) Read z

Each step in these algorithms can be computed using methods from this chapter. In Section
2.4, we will deal with computational issues in more detail.

In order to show that the RSA cryptosystem works, that is, that it allows us to encode
and then correctly decode messages, we must show that z = x. In other words, we must show
that, when Bob decodes, he gets back the original message. In order to show that the RSA
cryptosystem is secure, we must argue that an eavesdropper, who knows n, e, and y, but does
not know p, q or d, can not easily compute x.

Exercise 2.3-5 To show that the RSA cryptosystem works, we will first show a simpler
fact. Why is

yd mod p = x mod p?

Does this tell us what x is?

Plugging in the value of y, we have

yd mod p = xed mod p. (2.14)

But, in Line 4 we chose e and d so that e ·m d = 1, where m = (p − 1)(q − 1). In other words,

ed mod (p − 1)(q − 1) = 1.

Therefore, for some integer k,
ed = k(p − 1)(q − 1) + 1.

Plugging this into Equation (2.14), we obtain

xed mod p = xk(p−1)(q−1)+1 mod p

= x(k(q−1))(p−1)x mod p. (2.15)

But for any number a which is not a multiple of p, ap−1 mod p = 1 by Fermat’s Little Theorem
(Theorem 2.22). We could simplify equation 2.15 by applying Fermat’s Little Theorem to xk(q−1),
as you will see below. However we can only do this when xk(q−1) is not a multiple of p. This
gives us two cases, the case in which xk(q−1) is not a multiple of p (we’ll call this case 1) and the
case in which xk(q−1) is a multiple of p (we’ll call this case 2). In case 1, we apply Equation 2.12
and Fermat’s Little Theorem with a equal to xk(q−1), and we have that

x(k(q−1))(p−1) mod p =
(
xk(q−1)

)(p−1)
mod p (2.16)

= 1.

Combining equations 2.14, 2.15 and 2.17, we have that

yd mod p = xk(q−1)(p−1)x mod p = 1 · x mod p = x mod p,

2.3. THE RSA CRYPTOSYSTEM 71

and hence yd mod p = x mod p.

We still have to deal with case 2, the case in which xk(q−1) is a multiple of p. In this case
x is a multiple of p as well since x is an integer and p is prime. Thus x mod p = 0. Combining
Equations 2.14 and 2.15 with Lemma 2.3, we get

yd mod p = (xk(q−1)(p−1) mod p)(x mod p) = 0 = x mod p.

Hence in this case as well, we have yd mod p = x mod p.

While this will turn out to be useful information, it does not tell us what x is, however,
because x may or may not equal x mod p.

The same reasoning shows us that yd mod q = x mod q. What remains is to show what these
two facts tell us about yd mod pq = y mod n, which is what Bob computes.

Notice that by Lemma 2.3 we have proved that

(yd − x) mod p = 0 (2.17)

and
(yd − x) mod q = 0. (2.18)

Exercise 2.3-6 Write down an equation using only integers and addition, subtraction and
multiplication in the integers, but perhaps more letters, that is equivalent to Equation
2.17, which says that (yd − x) mod p = 0. (Do not use mods.)

Exercise 2.3-7 Write down an equation using only integers and addition, subtraction and
multiplication in the integers, but perhaps more letters, that is equivalent to Equation
2.18, which says that (yd − x) mod q = 0. (Do not use mods.)

Exercise 2.3-8 If a number is a multiple of a prime p and a different prime q, then what
else is it a multiple of? What does this tell us about yd and x?

The statement that yd−x mod p = 0 is equivalent to the statement that yd−x = ip for some
integer i. The statement that yd−x mod q = 0 is equivalent to the statement that yd−x = jq for
some integer j. If something is a multiple of the prime p and the prime q, then it is a multiple of pq.
Thus (yd−x) mod pq = 0. Lemma 2.3 tells us that (yd−x) mod pq = (yd mod pq−x) mod pq = 0.
But x and yd mod pq are both integers between 0 and pq − 1, so their difference is between
−(pq − 1) and pq − 1. The only integer between these two values that is 0 mod pq is zero itself.
Thus (yd mod pq) − x = 0. In other words,

x = yd mod pq

= yd mod n ,

which means that Bob will in fact get the correct answer.

Theorem 2.23 (Rivest, Shamir, and Adleman) The RSA procedure for encoding and decoding
messages works correctly.

Proof: Proved above.

One might ask, given that Bob published e and n, and messages are encrypted by computing
xe mod n, why can’t any adversary who learns xe mod n just compute eth roots mod n and
break the code? At present, nobody knows a quick scheme for computing eth roots mod n, for
an arbitrary n. Someone who does not know p and q cannot duplicate Bob’s work and discover
x. Thus, as far as we know, modular exponentiation is an example of a one-way function.

72 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

The Chinese Remainder Theorem

The method we used to do the last step of the proof of Theorem 2.23 also proves a theorem
known as the “Chinese Remainder Theorem.”

Exercise 2.3-9 For each number in x ∈ Z15, write down x mod 3 and x mod 5. Is x
uniquely determined by these values? Can you explain why?

x x mod 3 x mod 5
0 0 0
1 1 1
2 2 2
3 0 3
4 1 4
5 2 0
6 0 1
7 1 2
8 2 3
9 0 4
10 1 0
11 2 1
12 0 2
13 1 3
14 2 4

Table 2.2: The values of x mod 3 and x mod 5 for each x between zero and 14.

As we see from Table 2.2, each of the 3 · 5 = 15 pairs (i, j) of integers i, j with 0 ≤ i ≤ 2 and
0 ≤ j ≤ 4 occurs exactly once as x ranges through the fifteen integers from 0 to 14. Thus the
function f given by f(x) = (x mod 3, x mod 5) is a one-to-one function from a fifteen element
set to a fifteen element set, so each x is uniquely determined by its pair of remainders.

The Chinese Remainder Theorem tells us that this observation always holds.

Theorem 2.24 (Chinese Remainder Theorem) If m and n are relatively prime integers and
a ∈ Zm and b ∈ Zn, then the equations

x mod m = a (2.19)
x mod n = b (2.20)

have one and only one solution for an integer x between 0 and mn − 1.

Proof: If we show that as x ranges over the integers from 0 to mn − 1, then the ordered
pairs (x mod m, x mod n) are all different, then we will have shown that the function given by
f(x) = (x mod m, x mod n) is a one to one function from an mn element set to an mn element

2.3. THE RSA CRYPTOSYSTEM 73

set, so it is onto as well.7 In other words, we will have shown that each pair of equations 2.19
and 2.20 has one and only one solution.

In order to show that f is one-to-one, we must show that if x and y are different numbers
between 0 and mn − 1, then f(x) and f(y) are different. To do so, assume instead that we have
an x and y with f(x) = f(y). Then x mod m = y mod m and x mod n = y mod n, so that
(x−y) mod m = 0 and (x−y) mod n = 0. That is, x−y is a multiple of both m and n. Then as
we show in Problem 11 in the problems at the end of this section, x− y is a multiple of mn; that
is, x− y = dmn for some integer d. Since we assumed x and y were different, this means x and y
cannot both be between 0 and mn − 1 because their difference is mn or more. This contradicts
our hypothesis that x and y were different numbers between 0 and mn − 1, so our assumption
must be incorrect; that is f must be one-to-one. This completes the proof of the theorem.

Important Concepts, Formulas, and Theorems

1. Exponentiation in Zn. For a ∈ Zn, and a positive integer j:

aj mod n = a ·n a ·n · · · ·n a︸ ︷︷ ︸
j factors

.

2. Rules of exponents. For any a ∈ Zn, and any nonnegative integers i and j,

(ai mod n) ·n (aj mod n) = ai+j mod n

and
(ai mod n)j mod n = aij mod n.

3. Multiplication by a fixed nonzero a in Zp is a permutation. Let p be a prime number. For any
fixed nonzero number a in Zp, the numbers (1·a) mod p, (2·a) mod p, . . . , ((p−1)·a) mod p,
are a permutation of the set {1, 2, · · · , p − 1}.

4. Fermat’s Little Theorem. Let p be a prime number. Then ap−1 mod p = 1 for each nonzero
a in Zp.

5. Fermat’s Little Theorem, version 2. For every positive integer a and prime p, if a is not a
multiple of p, then

ap−1 mod p = 1.

6. RSA cryptosystem. (The first implementation of a public-key cryptosystem) In the RSA
cryptosystem Bob chooses two prime numbers p and q (which in practice each have at least
a hundred digits) and computes the number n = pq. He also chooses a number e #= 1 which
need not have a large number of digits but is relatively prime to (p − 1)(q − 1), so that it
has an inverse d, and he computes d = e−1 mod (p − 1)(q − 1). Bob publishes e and n. To
send a message x to Bob, Alice sends y = xe mod n. Bob decodes by computing yd mod n.

7If the function weren’t onto, then because the number of pairs is the same as the number of possible x-values,
two x values would have to map to the same pair, so the function wouldn’t be one-to-one after all.

74 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

7. Chinese Remainder Theorem. If m and n are relatively prime integers and a ∈ Zm and
b ∈ Zn, then the equations

x mod m = a

x mod n = b

have one and only one solution for an integer x between 0 and mn − 1.

Problems

1. Compute the powers of 4 in Z7. Compute the powers of 4 in Z10. What is the most striking
similarity? What is the most striking difference?

2. Compute the numbers 1 ·11 5, 2 ·11 5, 3 ·11 5, . . . , 10 ·11 5. Do you get a permutation of the set
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}? Would you get a permutation of the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
if you used another nonzero member of of Z11 in place of 5?

3. Compute the fourth power mod 5 of each element of Z5. What do you observe? What
general principle explains this observation?

4. The numbers 29 and 43 are primes. What is (29− 1)(43− 1)? What is 199 · 1111 in Z1176?
What is (231111)199 in Z29? In Z43? In Z1247?

5. The numbers 29 and 43 are primes. What is (29− 1)(43− 1)? What is 199 · 1111 in Z1176?
What is (1051111)199 in Z29? In Z43? In Z1247? How does this answer the second question
in Exercise 2.3-5?

6. How many solutions with x between 0 and 34 are there to the system of equations

x mod 5 = 4
x mod 7 = 5?

What are these solutions?

7. Compute each of the following. Show or explain your work, and do not use a calculator or
computer.

(a) 1596 in Z97

(b) 6772 in Z73

(c) 6773 in Z73

8. Show that in Zp, with p prime, if ai mod p = 1, then an mod p = an mod i mod p.

9. Show that there are p2 − p elements with multiplicative inverses in Zp2 when p is prime. If
x has a multiplicative inverse in Z2

p , what is xp2−p mod p2? Is the same statement true for
an element without an inverse? (Working out an example might help here.) Can you find
something (interesting) that is true about xp2−p when x does not have an inverse?

10. How many elements have multiplicative inverses in Zpq when p and q are primes?

2.3. THE RSA CRYPTOSYSTEM 75

11. In the paragraph preceding the proof of Theorem 2.23 we said that if a number is a multiple
of the prime p and the prime q, then it is a multiple of pq. We will see how that is proved
here.

(a) What equation in the integers does Euclid’s extended GCD algorithm solve for us
when m and n are relatively prime?

(b) Suppose that m and n are relatively prime and that k is a multiple of each one of
them; that is, k = bm and k = cn for integers b and c. If you multiply both sides
of the equation in part (a) by k, you get an equation expressing k as a sum of two
products. By making appropriate substitutions in these terms, you can show that k
is a multiple of mn. Do so. Does this justify the assertion we made in the paragraph
preceding the proof of Theorem 2.23?

12. The relation of “congruence modulo n” is the relation ≡ defined by x ≡ y mod n if and
only if x mod n = y mod n.

(a) Show that congruence modulo n is an equivalence relation by showing that it defines
a partition of the integers into equivalence classes.

(b) Show that congruence modulo n is an equivalence relation by showing that it is reflex-
ive, symmetric, and transitive.

(c) Express the Chinese Remainder theorem in the notation of congruence modulo n.

13. Write and implement code to do RSA encryption and decryption. Use it to send a message
to someone else in the class. (You may use smaller numbers than are usually used in
implementing the RSA algorithm for the sake of efficiency. In other words, you may choose
your numbers so that your computer can multiply them without overflow.)

14. For some non-zero a ∈ Zp, where p is prime, consider the set

S = {a0 mod p, a1 mod p, a2 mod p, . . . , ap−2 mod p, ap−1 mod p},

and let s = |S|. Show that s is always a factor of p − 1.

15. Show that if xn−1 mod n = 1 for all integers x that are not multiples of n, then n is prime.
(The slightly weaker statement that xn−1 mod n = 1 for all x relatively prime to n, does
not imply that n is prime. There is a famous family of numbers called Carmichael numbers
that are counterexamples.8)

8See, for example, Cormen, Leiserson, Rivest, and Stein, cited earlier.

76 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

2.4 Details of the RSA Cryptosystem

In this section, we deal with some issues related to implementing the RSA cryptosystem: expo-
nentiating large numbers, finding primes, and factoring.

Practical Aspects of Exponentiation mod n

Suppose you are going to raise a 100 digit number a to the 10120th power modulo a 200 digit
integer n. Note that the exponent is a 121 digit number.

Exercise 2.4-1 Propose an algorithm to compute a10120 mod n, where a is a 100 digit
number and n is a 200 digit number.

Exercise 2.4-2 What can we say about how long this algorithm would take on a computer
that can do one infinite precision arithmetic operation in constant time?

Exercise 2.4-3 What can we say about how long this would take on a computer that can
multiply integers in time proportional to the product of the number of digits in the
two numbers, i.e. multiplying an x-digit number by a y-digit number takes roughly
xy time?

Notice that if we form the sequence a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11 we are modeling
the process of forming a11 by successively multiplying by a. If, on the other hand, we form
the sequence a, a2, a4, a8, a16, a32, a64, a128, a256, a512, a1024, we are modeling the process of
successive squaring, and in the same number of multiplications we are able to get a raised to a
four digit number. Each time we square we double the exponent, so every ten steps or so we will
add three to the number of digits of the exponent. Thus in a bit under 400 multiplications, we
will get a10120 . This suggests that our algorithm should be to square a some number of times
until the result is almost a10120 , and then multiply by some smaller powers of a until we get
exactly what we want. More precisely, we square a and continue squaring the result until we get
the largest a2k1 such that 2k1 is less than 10120, then multiply a2k1 by the largest a2k2 such that
2k1 + 2k2 is less than 10120 and so on until we have

10120 = 2k1 + 2k2 + · · · + 2kr

for some integer r. (Can you connect this with the binary representation of 10120?) Then we get

a10120
= a2k1a2k2 · · · a2kr

.

Notice that all these powers of a have been computed in the process of discovering k1. Thus it
makes sense to save them as you compute them.

To be more concrete, let’s see how to compute a43. We may write 43 = 32 + 8 + 2 + 1, and
thus

a43 = a25
a23

a21
a20

. (2.21)

So, we first compute a20
, a21

, a22
, a23

, a24
, a25 , using 5 multiplications. Then we can com-

pute a43, via equation 2.21, using 3 additional multiplications. This saves a large number of
multiplications.

2.4. DETAILS OF THE RSA CRYPTOSYSTEM 77

On a machine that could do infinite precision arithmetic in constant time, we would need
about log2(10120) steps to compute all the powers a2i , and perhaps equally many steps to do the
multiplications of the appropriate powers. At the end we could take the result mod n. Thus
the length of time it would take to do these computations would be more or less 2 log2(10120) =
240 log2 10 times the time needed to do one operation. (Since log2 10 is about 3.33, it will take
at most 800 times the amount of time for one operation to compute a10120 .)

You may not be used to thinking about how large the numbers get when you are doing
computation. Computers hold fairly large numbers (4-byte integers in the range roughly −231

to 231 are typical), and this suffices for most purposes. Because of the way computer hardware
works, as long as numbers fit into one 4-byte integer, the time to do simple arithmetic operations
doesn’t depend on the value of the numbers involved. (A standard way to say this is to say
that the time to do a simple arithmetic operation is constant.) However, when we talk about
numbers that are much larger than 231, we have to take special care to implement our arithmetic
operations correctly, and also we have to be aware that operations are slower.

Since 210 = 1024, we have that 231 is twice as big as 230 = (210)3 = (1024)3 and so is
somewhat more than two billion, or 2 · 109. In particular, it is less than 1010. Since 10120 is a
one followed by 120 zeros, raising a positive integer other than one to the 10120th power takes
us completely out of the realm of the numbers that we are used to making exact computations
with. For example, 10(10120) has 119 more zeros following the 1 in the exponent than does 1010.

It is accurate to assume that when multiplying large numbers, the time it takes is roughly
proportional to the product of the number of digits in each. If we computed our 100 digit number
to the 10120th power, we would be computing a number with more than 10120 digits. We clearly
do not want to be doing computation on such numbers, as our computer cannot even store such
a number!

Fortunately, since the number we are computing will ultimately be taken modulo some 200
digit number, we can make all our computations modulo that number. (See Lemma 2.3.) By
doing so, we ensure that the two numbers we are multiplying together have at most 200 digits,
and so the time needed for the problem proposed in Exercise 2.4-1 would be a proportionality
constant times 40,000 times log2(10120) times the time needed for a basic operation plus the time
needed to figure out which powers of a are multiplied together, which would be quite small in
comparison.

This algorithm, on 200 digit numbers, could be on the order of a million times slower than
on simple integers.9 This is a noticeable effect and if you use or write an encryption program,
you can see this effect when you run it. However, we can still typically do this calculation in less
than a second, a small price to pay for secure communication.

How long does it take to use the RSA Algorithm?

Encoding and decoding messages according to the RSA algorithm requires many calculations.
How long will all this arithmetic take? Let’s assume for now that Bob has already chosen p,
q, e, and d, and so he knows n as well. When Alice wants to send Bob the message x, she

9If we assume that we can multiply four digit integers exactly but not five digit numbers exactly, then effi-
ciently multiplying two 200 digit numbers is like multiplying 50 integers times 50 integers, or 2500 products, and
log2(10

120) ≈ log2((2
10)40 = log2(2

400) = 400, so we would have something like million steps, each equivalent to
multiplying two integers, in executing our algorithm.

78 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

sends xe mod n. By our analyses in Exercise 2.4-2 and Exercise 2.4-3 we see that this amount
of time is more or less proportional to log2 e, which is itself proportional to the number of digits
of e, though the first constant of proportionality depends on the method our computer uses to
multiply numbers. Since e has no more than 200 digits, this should not be too time consuming
for Alice if she has a reasonable computer. (On the other hand, if she wants to send a message
consisting of many segments of 200 digits each, she might want to use the RSA system to send a
key for another simpler (secret key) system, and then use that simpler system for the message.)

It takes Bob a similar amount of time to decode, as he has to take the message to the dth
power, mod n.

We commented already that nobody knows a fast way to find x from xe mod n. In fact,
nobody knows that there isn’t a fast way either, which means that it is possible that the RSA
cryptosystem could be broken some time in the future. We also don’t know whether extracting
eth roots mod n is in the class of #P-complete problems, an important family of problems with
the property that a reasonably fast solution of any one of them will lead to a reasonably fast
solution of any of them. We do know that extracting eth roots is no harder than these problems,
but it may be easier.

However, here someone is not restricted to extracting roots to discover x. Someone who
knows n and knows that Bob is using the RSA system, could presumably factor n, discover p
and q, use the extended GCD algorithm to compute d and then decode all of Bob’s messages.
However, nobody knows how to factor integers quickly either. Again, we don’t know if factoring
is #P-complete, but we do know that it is no harder than the #P-complete problems. Thus
here is a second possible way around the RSA system. However, enough people have worked on
the factoring problem that most compputer scientists are confident that it is in fact difficult, in
which case the RSA system is safe, as long as we use keys that are long enough.

How hard is factoring?

Exercise 2.4-4 Factor 225,413. (The idea is to try to do this without resorting to com-
puters, but if you give up by hand and calculator, using a computer is fine.)

With current technology, keys with roughly 100 digits are not that hard to crack. In other
words, people can factor numbers that are roughly 100 digits long, using methods that are a little
more sophisticated than the obvious approach of trying all possible divisors. However, when the
numbers get long, say over 120 digits, they become very hard to factor. The record, as of the year
2000, for factoring is a roughly 155-digit number. To factor this number, thousands of computers
around the world were used, and it took several months. So given the current technology, RSA
with a 200 digit key seems to be very secure.

Finding large primes

There is one more issue to consider in implementing the RSA system for Bob. We said that Bob
chooses two primes of about a hundred digits each. But how does he choose them? It follows
from some celebrated work on the density of prime numbers that if we were to choose a number
m at random, and check about loge(m) numbers around m for primality, we would expect that
one of these numbers was prime. Thus if we have a reasonably quick way to check whether a

2.4. DETAILS OF THE RSA CRYPTOSYSTEM 79

number is prime, we shouldn’t have to guess too many numbers, even with a hundred or so digits,
before we find one we can show is prime.

However, we have just mentioned that nobody knows a quick way to find any or all factors
of a number. The standard way of proving a number is prime is by showing that it and 1 are
its only factors. For the same reasons that factoring is hard, the simple approach to primality
testing, test all possible divisors, is much too slow. If we did not have a faster way to check
whether a number is prime, the RSA system would be useless.

In August of 2002, Agrawal, Kayal and Saxena announced an algorithm for testing whether
an integer n is prime which they can show takes no more than the twelveth power of the number
of digits of n to determine whether n is prime, and in practice seems to take significantly less
time. While the algorithm requires more than the background we are able to provide in this
book, its description and the proof that it works in the specified time uses only results that one
might find in an undergraduate abstract algebra course and an undergraduate number theory
course! The central theme of the algorithm is the use of a variation of Fermat’s Little Theorem.

In 1976 Miller10 was able to use Fermat’s Little Theorem to show that if a conjecture called
the “Extended Reiman Hypothesis” was true, then an algorithm he developed would determine
whether a number n was prime in a time bounded above by a polynomial in the number of digits
of n. In 1980 Rabin11 modified Miller’s method to get one that would determine in polynomial
time whether a number was prime without the extra hypothesis, but with a probability of error
that could be made as small a positive number as one might desire, but not zero. We describe the
general idea behind all of these advances in the context of what people now call the Miller-Rabin
primality test. As of the writing of this book, variations on this kind of algorithm are used to
provide primes for cryptography.

We know, by Fermat’s Little Theorem, that in Zp with p prime, xp−1 mod p = 1 for every x
between 1 and p − 1. What about xm−1, in Zm, when m is not prime?

Exercise 2.4-5 Suppose x is a member of Zm that has no multiplicative inverse. Is it
possible that xn−1 mod n = 1?

We answer the question of the exercise in our next lemma.

Lemma 2.25 Let m be a non-prime, and let x be a number in Zm which has no multiplicative
inverse. Then xm−1 mod m "= 1.

Proof: Assume, for the purpose of contradiction, that

xm−1 mod m = 1.

Then
x · xm−2 mod m = 1.

But then xm−2 mod m is the inverse of x in Zm, which contradicts the fact that x has no
multiplicative inverse. Thus it must be the case that xm−1 mod m "= 1.

10G.L. Miller. “Riemann’s Hypothesis and tests for primality,” J. Computer and Systems Science 13, 1976, pp
300-317.

11M. O. Rabin. “Probabilistic algorithm for testing primality.” Journal of Number Theory, 12, 1980. pp 128-138.

80 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

This distinction between primes and non-primes gives the idea for an algorithm. Suppose we
have some number m, and are not sure whether it is prime or not. We can run the following
algorithm:

(1) PrimeTest(m)
(2) choose a random number x, 2 ≤ x ≤ m − 1.
(3) compute y = xm−1 mod m
(4) if (y = 1)
(5) output ‘‘ m might be prime’’
(6) else
(7) output ‘‘m is definitely not prime’’

Note the asymmetry here. If y #= 1, then m is definitely not prime, and we are done. On
the other hand, if y = 1, then the m might be prime, and we probably want to do some other
calculations. In fact, we can repeat the algorithm Primetest(m) for t times, with a different
random number x each time. If on any of the t runs, the algorithm outputs “m is definitely not
prime”, then the number m is definitely not prime, as we have an x for which xm−1 #= 1. On
the other hand, if on all t runs, the algorithm Primetest(m) outputs “m might be prime”, then,
with reasonable certainty, we can say that the number m is prime. This is actually an example
of a randomized algorithm; we will be studying these in greater detail later in the course. For
now, let’s informally see how likely it is that we make a mistake.

We can see that the chance of making a mistake depends on, for a particular non-prime m,
exactly how many numbers a have the property that am−1 = 1. If the answer is that very few
do, then our algorithm is very likely to give the correct answer. On the other hand, if the answer
is most of them, then we are more likely to give an incorrect answer.

In Exercise 12 at the end of the section, you will show that the number of elements in Zm

without inverses is at least
√

m. In fact, even many numbers that do have inverses will also fail
the test xm−1 = 1. For example, in Z12 only 1 passes the test while in Z15 only 1 and 14 pass the
test. (Z12 really is not typical; can you explain why? See Problem 13 at the end of this section
for a hint.)

In fact, the Miller-Rabin algorithm modifies the test slightly (in a way that we won’t describe
here12) so that for any non-prime m, at least half of the possible values we could choose for x
will fail the modified test and hence will show that m is composite. As we will see when we
learn about probability, this implies that if we repeat the test t times, and assert that an x which
passes these t tests is prime, the probability of being wrong is actually 2−t. So, if we repeat
the test 10 times, we have only about a 1 in a thousand chance of making a mistake, and if we
repeat it 100 times, we have only about a 1 in 2100 (a little less than one in a nonillion) chance
of making a mistake!

Numbers we have chosen by this algorithm are sometimes called pseudoprimes. They are
called this because they are very likely to be prime. In practice, pseudoprimes are used instead
of primes in implementations of the RSA cryptosystem. The worst that can happen when a
pseudoprime is not prime is that a message may be garbled; in this case we know that our
pseudoprime is not really prime, and choose new pseudoprimes and ask our sender to send the

12See, for example, Cormen, Leiserson, Rivest and Stein, Introduction to Algorithms, McGraw Hill/MIT Press,
2002

2.4. DETAILS OF THE RSA CRYPTOSYSTEM 81

message again. (Note that we do not change p and q with each use of the system; unless we were
to receive a garbled message, we would have no reason to change them.)

A number theory theorem called the Prime Number Theorem tells us that if we check about
loge n numbers near n we can expect one of them to be prime. A d digit number is at least 10d−1

and less than 10d, so its natural logarithm is between (d− 1) loge 10 and d loge 10. If we want to
find a d digit prime, we can take any d digit number and test about d loge 10 numbers near it for
primality, and it is reasonable for us to expect that one of them will turn out to be prime. The
number loge 10 is 2.3 to two decimal places. Thus it does not take a really large amount of time
to find two prime numbers with a hundred (or so) digits each.

Important Concepts, Formulas, and Theorems

1. Exponentiation. To perform exponentiation mod n efficiently, we use repeated squaring,
and take mods after each arithmetic operation.

2. Security of RSA. The security of RSA rests on the fact that no one has developed an
efficient algorithm for factoring, or for finding x, given xe mod n.

3. Fermat’s Little Theorem does not hold for composites. Let m b e a non-prime, and let x be
a number in Zn which has no multiplicative inverse. Then xm−1 mod m "= 1.

4. Testing numbers for primality. The randomized Miller-Rabin algorithm will tell you almost
surely if a given number is prime.

5. Finding prime numbers. By applying the randomized Miller-Rabin to d ln 10 (which is
about 2.3d) numbers with d digits, you can expect to find at least one that is prime.

Problems

1. What is 31024 in Z7? (This is a straightforward problem to do by hand.)

2. Suppose we have computed a2, a4, a8, a16 and a32. What is the most efficient way for us
to compute a53?

3. A gigabyte is one billion bytes; a terabyte is one trillion bytes. A byte is eight bits, each
a zero or a 1. Since 210 = 1024, which is about 1000, we can store about three digits
(any number between 0 and 999) in ten bits. About how many decimal digits could we
store in a five gigabytes of memory? About how many decimal digits could we store in five
terabytes of memory? How does this compare to the number 10120? To do this problem it
is reasonable to continue to assume that 1024 is about 1000.

4. Find all numbers a different from 1 and −1 (which is the same as 8) such that a8 mod 9 = 1.

5. Use a spreadsheet, programmable calculator or computer to find all numbers a different from
1 and −1 mod 33 = 32 with a32 mod 33 = 1. (This problem is relatively straightforward to
do with a spreadsheet that can compute mods and will let you “fill in” rows and columns
with formulas. However you do have to know how to use the spreadsheet in this way to
make it strightforward!)

82 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

6. How many digits does the 10120th power of 10100 have?

7. If a is a 100 digit number, is the number of digits of a10120 closer to 10120 or 10240? Is it a
lot closer? Does the answer depend on what a actually is rather than the number of digits
it has?

8. Explain what our outline of the solution to Exercise 2.4-1 has to do with the binary repre-
sentation of 10120.

9. Give careful pseudocode to compute ax mod n. Make your algorithm as efficient as possible.
You may use right shift n in your algorithm.

10. Suppose we want to compute ae1e2···em mod n. Discuss whether it makes sense to reduce
the exponents mod n as we compute their product. In particular, what rule of exponents
would allow us to do this, and do you think this rule of exponents makes sense?

11. Number theorists use ϕ(n) to stand for the number of elements of Zn that have inverses.
Suppose we want to compute ae1e2···em mod n. Would it make sense for us to reduce our
exponents mod ϕ(n) as we compute their product? Why?

12. Show that if m is not prime, then at least
√

m elements of Zm do not have multiplicative
inverses.

13. Show that in Zp+1, where p is prime, only one element passes the primality test xm−1 = 1
(mod m). (In this case, m = p + 1.)

14. Suppose for RSA, p = 11, q = 19, and e = 7. What is the value of d? Show how to encrypt
the message 100, and then show how to decrypt the resulting message.

15. Suppose for applying RSA, p = 11, q = 23, and e = 13. What is the value of d? Show how
to encrypt the message 100 and then how to decrypt the resulting message.

16. A digital signature is a way to securely sign a document. That is, it is a way to put your
“signature” on a document so that anyone reading it knows that it is you who have signed
it, but no one else can “forge” your signature. The document itself may be public; it is
your signature that we are trying to protect. Digital signatures are, in a way, the opposite
of encryption, as if Bob wants to sign a message, he first applies his signature to it (think
of this as encryption) and then the rest of the world can easily read it (think of this as
decryption). Explain, in detail, how to achieve digital signatures, using ideas similar to
those used for RSA. In particular, anyone who has the document and has your signature
of the document (and knows your public key) should be able to determine that you signed
it.

