
CS 239
Fall 2011
Computation Complexity

Homework 2
Due Fri Nov 4, 5:00pm

Prof. Amit Chakrabarti
Department of Computer Science

Dartmouth College

General Instructions. Each problem has a fairly short solution; if you find yourself writing more than a page of proof, you
have probably not found the best solution; you might want to rethink your approach. Each problem is worth 10 points.

Honor Prinicple. You are allowed to discuss the problems and exchange solution ideas with your classmates. But when you
write up any solutions for submission, you must work alone. You may refer to any textbook you like, including online ones.
However, you may not refer to published or online solutions to the specific problems on the homework. If in doubt, ask the
professor for clarification!

This homework is very enjoyable and also fairly challenging. Start early!

6. By suitably generalizing the function in the figure below, construct a family of functions fn : {0,1}n → {0,1} such that,
for infinitely many n, we have D(fn) = Θ(n) whereas C(fn) = Θ(

p
n).

x x x x x x x x x x x x x x x x1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Make sure you define fn for all integers n, even if you happen to start with a definition for certain special values of n.

7. Let G be a group of permutations of [n] (not necessarily the group of all permutations). Let α ∈ {0, 1,?}n be a partial
assignment. For π ∈ G, define π◦α to be the partial assignment obtained by applying the permutation π to α. We define
a function Fα,G : {0,1}n→ {0, 1} as follows:

∀ x ∈ {0, 1}n : Fα,G(x) =

¨

1, if ∃π ∈ G : x matches π ◦α
0, otherwise.

7.1. Prove that C1(Fα,G) = Ex(α). Recall that Ex(α) denotes the number of exposed bits in α.

7.2. Prove that s(Fα,G)≥ Ex(α)/2.

8. For a Boolean function f : {0, 1}n → {0, 1}, let Rε(f) denote its ε-error (two-sided) randomized query complexity. That
is, we are considering distributions over decision trees with a worst case bound on the number of queries made, but we
allow the trees to make errors. Formally, for a probability distribution τ on n-input binary decision trees, let depth(τ)
denote the maximum depth of a tree in the support of τ. Let T (x) denote the output of the decision tree T on the input
x . Then

Rε(f) = min {depth(τ) : ∀x ∈ {0, 1}n Pr
T∼τ
[T (x) 6= f (x)]≤ ε} .

Page 1 of 3

CS 239
Fall 2011
Computation Complexity

Homework 2
Due Fri Nov 4, 5:00pm

Prof. Amit Chakrabarti
Department of Computer Science

Dartmouth College

Let R(f) denote the zero-error version of randomized query complexity, familiar from class (i.e., the “Las Vegas” version):

R(f) = min
τ

max
x∈{0,1}n

ET∼τ[cost(T, x)] ,

where the min is over all distributions over trees that always correctly compute f (x).

This problem walks you through some general theorems about randomized query complexity, and its relation to other
measures.

8.1. Show that Rε(f)≤ ε−1 R(f). In particular, R1/3(f) = O(R(f)). There is an easy proof via Markov’s inequality.

8.2. Prove that Rε(f)≥ (1−2ε)bs(f). For this, consider a distribution τ that achieves the minimum in the definition of
Rε and then consider the probability that a random tree from τ queries each sensitive block of an input.

8.3. Let gdegε(f) denote the ε-approximate degree of f , i.e.,

gdegε(f) = min {deg(p) : p multilinear polynomial and ∀ x ∈ {0, 1}n we have |p(x)− f (x)| ≤ ε} .

Let T ∼ τ, where τ is a distribution over depth-d decision trees. Let x ∈ {0,1}n. Show that PrT [T (x) = 1] can be
expressed as a degree-d polynomial in x1, . . . , xn. Using this, prove that gdegε(f)≤ Rε(f) for ε ∈ (0, 1

3
).

8.4. Prove that bs(f) ≤ 6gdeg1/3(f)
2. Generalize the argument from class (using Markov’s inequality) relating bs(f) to

deg(f). Conclude that bs(f) and R1/3(f) are polynomially related.

9. Treating an n-bit vector ~x as a string (so that the ordering of the variables is important) we can define a Boolean function
As

n : {0, 1}n→ {0, 1} as follows: As
n(~x) = 1 iff ~x contains s as a substring. Here s is a fixed string.

9.1. Show that A111
5 and A111

6 are not evasive, i.e., it is possible to compute these functions without ever having to look
at every input bit.

9.2. Show that A111
3 and A111

4 are evasive.

9.3. Prove that A111
n is evasive iff n ≡ 0 or 3 (mod 4). Hint: For the “if” direction, use a recurrence for the number of

strings of length n that satisfy A111
n , and prove that sometimes just looking at this number tells you that the function

is evasive. For the “only if” direction, use the ideas from your solution to #9.1, plus induction.

9.4. Find all integers n for which A100
n is evasive. Hint: Consider n mod 3.

10. Even while working on lower bounds one often has to prove upper bounds, if only to provide counterexamples for
plausible but false lower bound conjectures. In the early 1970s it was conjectured that any nontrivial graph property
fn on n-vertex graphs has D(fn) = Ω(n2). The Rivest-Vuillemin theorem proves this for monotone fn, but what about
non-monotone properties?

Call an n-vertex graph a scorpion if it has the structure shown in the following figure.

Page 2 of 3

CS 239
Fall 2011
Computation Complexity

Homework 2
Due Fri Nov 4, 5:00pm

Prof. Amit Chakrabarti
Department of Computer Science

Dartmouth College

Feet (Arbitrary subgraph
on these n-3 vertices)

Torso

Neck

Head (degree 1)

(degree 2)

(degree n-2)

Let fn be the property of being a scorpion.

10.1. Argue that fn is not monotone.

10.2. Design an algorithm that computes fn while querying at most 6n of the
�n

2

�

Boolean variables representing the
possible edges of the n-vertex graph. This shows that far from having an Ω(n2) lower bound, we have an upper
bound: D(fn)≤ 6n= O(n).

Hint: If an input graph is indeed a scorpion, it is easy to verify this if an oracle tells you which vertex is the torso.

11. In class, we almost finished the proof of the Rivest-Vuillemin theorem. We proved that if f : {0,1}N → {0,1} is a
nonconstant monotone Boolean function invariant under a transitive group of permutations of the variables, then:

(a) If N is a power of 2, then f is evasive.

(b) If f is an n-vertex graph property (and so, N =
�n

2

�

) and n is a power of 2, then D(f)≥ n2/4.

This problem walks you through the last bit of the proof, where we handle n-vertex graph properties f for arbitrary
n ≥ 2. Let k = blog2 nc, so that 2k ≤ n < 2k+1. The basic idea is to identify a suitable subfunction g of f , note that
D(f)≥ D(g) and lower bound D(g) either directly, using one of facts (a) or (b) above, or indirectly, through an induction
hypothesis.

11.1. Let the variables of f be named x i j , with 1 ≤ i < j ≤ n. Consider the two possible subfunctions of f obtained by
setting x1 j = b for all possible j, where b ∈ {0, 1}. Show that if either of these subfunctions is nonconstant, then
you can “make progress,” according to the above plan.

11.2. Give an example of a natural (and very common) nonconstant graph property that causes both the above subfunc-
tions to be constant.

11.3. Now suppose both the above subfunctions are constant. Partition the vertex set [n] into disjoint parts A, B, C with
A< B < C ,1 |A|= |B|= 2k−1 and |C |= n− 2k. Consider the subfunction of f obtained by setting

x i j =

¨

0 , if i ∈ A and j ∈ A∪ C ,

1 , if i, j ∈ B ∪ C .

Prove that this subfunction is nonconstant. Identify a transitive permutation group under which it is invariant.

11.4. Based on the above observations, conclude that D(f)≥ n2/16, thereby finishing the proof.

1This notation means that we have a < b < c for all a ∈ A, b ∈ B, c ∈ C .

Page 3 of 3

