
CS 39

Fall 2004

Theory of Computation

Solutions to Mid-Term Exam
Written by Amit Chakrabarti

Prof. Amit Chakrabarti

Computer Science Department

Dartmouth College

Discussion

It always pleases me when students come up with elegant solutions and insights that had not

occurred to me when I created the exam. I experienced this pleasure several times while grading
your work. Here are the most notable examples.

• Several students solved #5 without having to write out an example string in either (L∗
1L

∗
2)

∗

or (L1 ∪ L2)
∗ but instead working purely with sets. Marco Adelfio, Justin Bush and Paul

Rosania had especially elegant solutions of this form.

• For #6.4, Marco Adelfio and Ben Minkowsky made the brilliant observation that SELECT(L) =

PERMUTE(L), which leads to a very clean solution based on the solution to #6.3. I like this

a lot better than my “direct” solution which appears below, which uses much the same idea
(of complements) but hides this cool observation.

• Almost everyone who solved #7 correctly did so by constructing a CFG for the language and

then turning it into a PDA using the standard algorithm. The resulting solution is easier to
understand than my direct PDA construction below.

• Anne Loomis produced a PDA directly for #7 and came up with a lovely 4-state solution.

• Ben Minkowsky was the only one to solve #4 using a regular expression approach, rather
than the automaton approach I describe below. Ben’s idea is that every regular language L
has a regular expression which can be systematically “reversed” by following some simple
rules to get a regular expression for LR; the correctness of these rules can then be proven

by induction.

Unfortunately, there are also a few negative observations to be made. If any of the following
describes your work, I urge you to make sure you understand why you went wrong and what you

should have done instead. Read my solutions below and, if you like, ask your classmates to explain
theirs to you. The more you talk about the material in the course, the better your understanding

will be.

• Many of you will see the comment “NRE” next to some of your answers. This stands for “Not

Rigorous Enough.”

• A small number of solutions lost a little credit thanks to being overly verbose or overly

convoluted. While you are not required to come up with ultra-elegant solutions, you are

required to think a little about simplification.

• It appears that a lot of you were stumped by #6.3 and #6.4 in the sense that you didn’t

quite know what you were expected to do. The statements in these two problems are both

false, so if you tried to prove that they were true then of course you were bound to fail. If
you did suspect that they were false, you should have realized that a proof of #6.3 (say)

would require coming up with a language L such that PERMUTE(L) is not regular. To prove

the “not regular” part of this statement you clearly had to use the pumping lemma, as that
is the only technique we have studied for proving non-regularity. However, very few of you

even wrote the magic words “pumping lemma” in your solution to #6.3.

• Please note that you don’t get credit for a correct but justificationless answer on TRUE/FALSE

questions.

Page 1 of 6

CS 39

Fall 2004

Theory of Computation

Solutions to Mid-Term Exam
Written by Amit Chakrabarti

Prof. Amit Chakrabarti

Computer Science Department

Dartmouth College

The Solutions

1. Write a regular expression for the language generated by the following grammar:

S −→ AT

T −→ AAT | BBT | AA

A −→ 0

B −→ 1

A single line answer will do; you don’t have to justify or show any steps. Your regular
expression should be as simple as possible.

Solution: The grammar generates 0(00 ∪ 11)∗00.

2. Draw a DFA for the language

{x ∈ {0, 1}∗ : x contains an equal number of occurrences of the substrings 01 and 10} .

For example, 101 and 0000 are in the language, but 1010 is not.

Solution: The idea is to handle strings beginning with a 1 and strings beginning with a 0
separately. The following DFA does the job:

q0

q1 q2

q3 q4

0

1

0

0 1

1
0

1
1 0

3. Suppose M1 = (Q1, Σ, δ1, q1, F1) and M2 = (Q2, Σ, δ2, q2, F2) are two DFAs over the same

alphabet Σ. Consider the DFA M = (Q1 × Q2, Σ, δ, (q1, q2), Q1 × Q2 − F1 × F2), where δ is

given by
∀q ∈ Q1, q

′ ∈ Q2, a ∈ Σ : δ((q, q′), a) = (δ1(q, a), δ2(q
′, a)) .

3.1. What can you say about L(M), the language recognized by M? State your answer as a

mathematical expression and keep it as simple as possible.

Solution: L(M) = Σ∗ −L(M1) ∩ L(M2).

3.2. Prove that your answer above is correct.

Solution: First we prove that L(M) ⊆ Σ∗ −L(M1) ∩ L(M2).

Suppose x = a1a2 . . . an ∈ L(M), where each ai ∈ Σ. Then there exists a sequence of

states (r0, s0), (r1, s1) . . . , (rn, sn) of states of M such that

Page 2 of 6

CS 39

Fall 2004

Theory of Computation

Solutions to Mid-Term Exam
Written by Amit Chakrabarti

Prof. Amit Chakrabarti

Computer Science Department

Dartmouth College

i. (r0, s0) = (q1, q2),

ii. (ri, si) = δ((ri−1, si−1), ai) = (δ1(ri−1, ai), δ2(si−1, ai)), for 1 ≤ i ≤ n, and

iii. (rn, sn) ∈ Q1 × Q2 − F1 × F2.

The properties of the sequence r0, r1, . . . , rn imply that δ̂1(q1, x) = rn. Likewise, the

properties of the sequence s0, s1, . . . , sn imply that δ̂2(q2, x) = sn. Since (rn, sn) /∈
F1 × F2, either rn /∈ F1 or sn /∈ F2. In the former case, x /∈ L(M1), and in the latter

case, x /∈ L(M2). Therefore, x ∈ (Σ∗−L(M1))∪ (Σ∗−L(M2)) = Σ∗−L(M1)∩L(M2).

To prove the other direction, Σ∗−L(M1)∩L(M2) ⊆ L(M), we simply reverse the steps

of the above reasoning (in brief, pick an x ∈ Σ∗−L(M1)∩L(M2), construct appropriate
sequences r0, . . . , rn and s0, . . . , sn from the two machines and then zip them together

into a sequence (r0, s0), . . . , (rn, sn) for the machine M). We omit the details.

4. Recall that xR denotes the reverse of the string x. For a language L, let LR = {xR : x ∈ L}.

Prove that if L is regular, so is LR.

Solution: The idea is to start with a DFA for the regular language L and “reverse all the

arrows” in this DFA, make its start state an accept state of the resulting machine, and make
all its accept states start states (or rather, since only one start state is allowed, to introduce

ε-transitions from a new start state to all the former accept states). This procedure clearly
gives us an NFA, because, for instance, if there are five different states of the initial DFA that

all lead into a state q on reading input symbol a, then after the conversion, q will lead to

these five different states on input a. Now we give a formal proof.

Suppose L is a regular language. Let M = (Q, Σ, δ, q0, F) be a DFA recognizing L. Let us
construct an NFA M ′ = (Q ∪ {qnew}, Σ, δ′, qnew, {q0}) where δ′ is given by

δ′(qnew, ε) = F ,

δ′(qnew, a) = ∅ , ∀ a ∈ Σ ,

δ′(q, ε) = ∅ , ∀ q ∈ Q ,

δ′(q, a) = {r ∈ Q : δ(r, a) = q} , ∀ q ∈ Q, a ∈ Σ .

We claim that L(M ′) = LR, which would prove that LR is regular. To prove our claim, we
need to argue that (1) L(M ′) ⊆ LR and that (2) LR ⊆ L(M ′).

To prove (1), consider an x ∈ L(M ′). By definition, this means that we can write x =
a1a2 . . . an with each ai ∈ Σε and find a sequence r0, r1, . . . , rn of states of M ′ such that

• r0 = qnew, the start state of M ′,

• ri ∈ δ′(ri−1, ai), for 1 ≤ i ≤ n, and

• rn ∈ {q0}, the set of final states of M ′.

By construction, a1 must be ε, because otherwise the set δ′(r0, a1) = δ′(qnew, a1) would be

empty. Also, the states ri−1 for 2 ≤ i ≤ n must all be different from qnew, and so, every ai for

2 ≤ i ≤ n must be different from ε (i.e., in the set Σ). Therefore, by construction, δ′(ri−1, ai)
for 2 ≤ i ≤ n is the set of all r such that δ(r, a) = ri−1. Since, by the second bullet above,

ri is in this set, it follows that δ(ri, ai) = ri−1. Finally, the state r1 must lie in F , because it

must lie in δ′(r0, a1) = δ′(qnew, ε) = F . Thus, we have

• rn = q0, the start state of M ,

• ri−1 = δ(ri, ai), for n ≥ i ≥ 2, and

• r1 ∈ F , the set of final states of M .

Page 3 of 6

CS 39

Fall 2004

Theory of Computation

Solutions to Mid-Term Exam
Written by Amit Chakrabarti

Prof. Amit Chakrabarti

Computer Science Department

Dartmouth College

Thus we have a sequence rn, rn−1, . . . , r1 of states of M which satisfies the above three
bullets; this ensures that anan−1 . . . a2 ∈ L(M) = L, i.e., that xR ∈ L, i.e., that x ∈ LR.

The proof of (2) is very similar, so we only sketch it here. We start with an x ∈ LR. This

means xR ∈ L = L(M). Therefore xR takes M through a sequence r0, r1, . . . , rn of steps
with r0 = q0 and rn ∈ F . Arguing just as above, we can show that x can take M ′ through

the sequence of states qnew, rn, rn−1, . . . , r0 and since qnew is the start state of M ′ and r0 is

an accept state of M ′, we see that M ′ accepts x. So x ∈ L(M ′).

5. Let L1, L2 be two languages over the same alphabet Σ. Prove that (L∗
1L

∗
2)

∗ = (L1∪L2)
∗. Re-

member that to prove A = B for sets A and B you must separately prove the two statements

A ⊆ B and B ⊆ A.

Solution: Suppose x ∈ (L∗
1L

∗
2)

∗. By definition of Kleene star, x is a concatenation of zero or

more strings, each in L∗
1L

∗
2, i.e. x = x1x2 . . . xn with each xi ∈ L∗

1L
∗
2. Again, by definition,

each xi = yi1yi2 . . . yisi
zi1zi2 . . . ziti

with each yij ∈ L1 and each zij ∈ L2. Putting it all

together:
x = y11 . . . y1s1

z11 . . . z1t1y21 . . . y2s2
z21 . . . z2t2 zntn

.

Since each yij and each zij is in L1 ∪L2, it follows that x ∈ (L1 ∪L2)
∗. We have shown that

(L∗
1L

∗
2)

∗ ⊆ (L1 ∪ L2)
∗.

Now, suppose x ∈ (L1 ∪ L2)
∗. Then x = x1x2 . . . xn where each xi ∈ L1 ∪ L2. If an xi ∈ L1,

we can write xi = xiε which puts it in L∗
1L

∗
2. If an xi ∈ L2, we can similarly write xi = εxi

which puts it in L∗
1L

∗
2. Therefore, each xi ∈ L∗

1L
∗
2, whence x ∈ (L∗

1L
∗
2)

∗. We have shown

that (L1 ∪ L2)
∗ ⊆ (L∗

1L
∗
2)

∗.

This completes the proof.

6. A permutation of a string x is any string that can be obtained by rearranging the characters
of x. Thus, for example, the string abc has exactly six permutations:

abc, acb, bac, bca, cab, cba .

Clearly, if y is a permutation of x, then |y| = |x|. For a language L over alphabet Σ, define

PERMUTE(L) = {x ∈ Σ∗ : x is a permutation of some string in L} ,

SELECT(L) = {x ∈ Σ∗ : every permutation of x is in L} .

Classify each of the following statements as TRUE or FALSE, and give proofs justifying your

classifications.

6.1. If L1 = 1∗0, then PERMUTE(L1) is regular.

Solution: TRUE. In this case PERMUTE(L1) = {x ∈ {0, 1}∗ : x contains exactly one
0} = 1∗01∗, which is clearly regular.

6.2. If L1 = 1∗0, then SELECT(L1) is regular.

Solution: TRUE. Any string in SELECT(L1) must clearly be in L1 (since a string is
always a permutation of itself); however, a string in L1 must end in a 0, so permuting

it will destroy this property unless the string is just a plain 0. Thus, SELECT(L1) = {0},

which is clearly regular.

6.3. Regular languages are closed under the operation PERMUTE.

Solution: FALSE. For a counterexample, consider L = (01)∗. Any string in L contains

an equal number of 0’s and 1’s, so, when we take all permutations of all strings in L, we
get precisely the language {x ∈ {0, 1}∗ : x contains as many 0’s as 1’s}. We have proved

in class, using the pumping lemma, that this language is not regular. Thus PERMUTE(L)
need not be regular even if L is.

Page 4 of 6

CS 39

Fall 2004

Theory of Computation

Solutions to Mid-Term Exam
Written by Amit Chakrabarti

Prof. Amit Chakrabarti

Computer Science Department

Dartmouth College

6.4. Regular languages are closed under the operation SELECT.

Solution: FALSE. For a counterexample, consider L′ = (01)∗, with the complement
being taken with respect to alphabet {0, 1}. Clearly L′ is regular. If a string x has an

unequal number of 0’s and 1’s, then no matter how we permute it we will never land

in the set (01)∗, i.e., every permutation of x is in L′, i.e., x ∈ SELECT(L′). On the
other hand, if a string x has as many 0’s as 1’s, then it can be permuted into the form

(01)∗, so x /∈ SELECT(L′). In short, we have shown that SELECT(L′) = {x ∈ {0, 1}∗ : x
contains an unequal number of 0’s and 1’s}. Thus, SELECT(L′) is the complement of a
non-regular language, whence it is itself non-regular.

7. Draw a PDA for the language {0i1j : i < j < 2i}. For clarity, keep your stack alphabet

disjoint from {0, 1}. Provide a brief justification (no need for a formal proof) that your PDA
works correctly.

Solution: Let L be the given language. First, let us try to build a PDA for a slightly easier

language: L′ = {0i1j : i ≤ j ≤ 2j}. The idea is to push either one or two a’s (choose
nondeterministically) onto our stack as we read the 0’s in the input string, and then pop one

symbol at a time as we read the 1’s. If we empty the stack at the same time as when we
finish reading the input, we may accept.

But for the language L, we must reject strings of the form 0i1i and 0i12i. To do so, observe

that the shortest string in L is 00111 and that any string in L is therefore of the form

000i′1j′

111

for some i′ ≥ 0, j′ ≥ 0, and (i′ + 2) < (j′ + 3) < 2(i′ + 2). Since i′ and j′ are integers, the
latter condition is equivalent to i′ ≤ j′ ≤ 2i′. Thus, strings in L are simply strings in L′ with

two 0’s prepended and three 1’s appended. With this in mind, we build our PDA:

0, ε→$ 0, ε→ε ε, ε→ε

1, $→ε

1, ε→ε1, ε→ε

0, ε→a 0, ε→aa 1, a→ε

8. Design a context-free grammar for the complement of the language {anbn : n ≥ 0} over the

alphabet {a, b}. Give brief explanations for the “meanings” of your variables (i.e. explain
what strings are generated by each of your variable).

Solution: A string in the complement of {anbn : n ≥ 0} is either of the form {aibj : i > j ≥
0} or of the form {aibj : j > i ≥ 0} or not of the form a∗b∗, which means that it contains the
substring ba. In the following grammar, the variable U generates strings of the third type,

Page 5 of 6

CS 39

Fall 2004

Theory of Computation

Solutions to Mid-Term Exam
Written by Amit Chakrabarti

Prof. Amit Chakrabarti

Computer Science Department

Dartmouth College

while T generates strings of the form anbn to which we either prepend a string of one or
more a’s (generated by A) or append a string of one or more b’s (generated by B).

S −→ AT | TB | U

A −→ Aa | a

B −→ Bb | b

T −→ aTb | ε

U −→ V baV

V −→ V a | V b | ε

Page 6 of 6

