Solutions: Homework 3

Prepared by Chien-Chung Huang

1

$$\begin{split} &1.16(a) \quad \underline{\text{Answere:}} \\ &R_{11}^{0} = \varepsilon \cup a, \, R_{22}^{0} = \varepsilon \cup a, \, R_{12}^{0} = b, \, R_{11}^{0} = b. \\ &R_{12}^{1} = R_{12}^{0} \cup R_{11}^{0}(R_{11}^{0})^{*}R_{12}^{0} = a^{*}b \\ &R_{22}^{1} = R_{22}^{0} \cup R_{21}^{0}(R_{11}^{0})^{*}R_{12}^{0} = (\varepsilon \cup a) \cup ba^{*}b \\ &L = R_{12}^{2} = R_{12}^{1} \cup R_{12}^{1}(R_{22}^{1})^{*}R_{12}^{1} = a^{*}b((a \cup \varepsilon)ba^{*}b)^{*} \\ \hline \\ &1.16(b) \quad R_{11}^{0} = \varepsilon, \, R_{22}^{0} = a \cup \varepsilon, \, R_{33}^{0} = \epsilon, \, R_{12}^{0} = (a \cup b), \, R_{23}^{0} = b, \, R_{13}^{0} = \phi, \, R_{21}^{0} = \phi, \, R_{32}^{0} = b, \\ &R_{31}^{1} = a. \\ &R_{11}^{1} = R_{11}^{0} \cup R_{11}^{0}(R_{11}^{0})^{*}R_{12}^{0} = a \cup \varepsilon, \\ &R_{33}^{1} = R_{33}^{0} \cup R_{31}^{0}(R_{11}^{0})^{*}R_{12}^{0} = a \cup \varepsilon, \\ &R_{13}^{1} = R_{33}^{0} \cup R_{31}^{0}(R_{11}^{0})^{*}R_{13}^{0} = \varepsilon, \\ &R_{13}^{1} = R_{33}^{0} \cup R_{31}^{0}(R_{11}^{0})^{*}R_{13}^{0} = b, \\ &R_{12}^{1} = R_{12}^{0} \cup R_{21}^{0}(R_{11}^{0})^{*}R_{13}^{0} = b, \\ &R_{13}^{1} = R_{13}^{0} \cup R_{21}^{0}(R_{11}^{0})^{*}R_{13}^{0} = b, \\ &R_{13}^{1} = R_{13}^{0} \cup R_{21}^{0}(R_{11}^{0})^{*}R_{13}^{0} = b, \\ &R_{13}^{1} = R_{13}^{0} \cup R_{21}^{0}(R_{11}^{0})^{*}R_{13}^{0} = b \cup a(a \cup b), \\ &R_{13}^{1} = R_{21}^{0} \cup R_{21}^{0}(R_{11}^{0})^{*}R_{13}^{0} = b \cup a(a \cup b), \\ &R_{13}^{1} = R_{10}^{0} \cup R_{31}^{0}(R_{11}^{0})^{*}R_{13}^{1} = c, \\ &R_{13}^{2} = R_{13}^{1} \cup R_{12}^{1}(R_{22}^{0})^{*}R_{13}^{1} = c, \\ &R_{13}^{2} = R_{13}^{1} \cup R_{12}^{1}(R_{22}^{0})^{*}R_{13}^{1} = c, \\ &R_{13}^{2} = R_{13}^{1} \cup R_{12}^{1}(R_{22}^{0})^{*}R_{13}^{1} = c, \\ &R_{23}^{2} = R_{13}^{1} \cup R_{12}^{1}(R_{22}^{0})^{*}R_{13}^{1} = \phi, \\ &R_{23}^{2} = R_{13}^{1} \cup R_{12}^{1}(R_{22}^{0})^{*}R_{13}^{1} = \phi, \\ &R_{23}^{2} = R_{13}^{1} \cup R_{12}^{1}(R_{22}^{0})^{*}R_{13}^{1} = a, \\ &R_{22}^{2} = R_{12}^{1} \cup R_{12}^{1}(R_{22}^{0})^{*}R_{12}^{1} = a, \\ &R_{22}^{2} = R_{12}^{1} \cup R_{12}^{$$

- 2.1 <u>Answer</u>: False. For a counterexample, let L be any non-regular language such as $\{0^n1^n \mid n > 0\}$. Since L is non-regular, \overline{L} (the complement of L) is also nonregular. Yet, $L \cup \overline{L} = \Sigma^*$ is regular.
- 2.2 <u>Answer</u>: False. For a counterexample, let L be any non-regular language such as $\{0^n1^n \mid n > 0\}$. Since L is non-regular, \overline{L} (the complement of L) is also nonregular. Yet, $L \cap \overline{L} = \Phi$ is regular.
- 2.3 <u>Answer</u>: True. We proved in class that if a language is regular, so is its complement. This implies the above statement.
- 2.4 <u>Answer</u>: False. For a counterexample, let $A_k = \{0^k 1^k\}$. Clearly, for all k > 0, since A_k is a finite language, it is regular. However, $A_1 \cup A_2 \cup A_3 \cup \dots$ is $\{0^k 1^k \mid k > 0\}$, which is nonregular.
- 2.5 (Note: A string w is in the intersection if and only if it is in every A_i .)

<u>Answer</u>: False. For a counterexample, let $S = \{0^p \mid p \text{ is a prime }\}$. Define A_k as $0^* - \{0^x \mid x \text{ is the } k \text{th nonprime }\}$. Clearly, each A_k is regular, yet $A_1 \cap A_2 \cap A_3 \cap \ldots$ is S, which is nonregular.

3

<u>Answer</u>: Here is the intuition for how to construct a machine M' for MAX(L): If q_f is a final state of M and there is a non-empty string that drives M from q_f to a final state (possibly q_f itself), then q_f should not be a final state in M'. This ensures that M' does not accept a string in L if there is a way of extending it to be another string in L.

Formally, let DFA $M' = (Q', \Sigma, \delta', q'_0, F')$, where:

 $\begin{array}{l} Q' = Q\\ q'_0 = q_0\\ \delta' = \delta\\ F' = \{q \mid q \in F \text{ and for all non-empty strings } y, \ \hat{\delta}(q, y) \notin F\}\\ \text{Clearly } M' \text{ recognizes MAX}(L). \end{array}$

4

<u>Answer</u>: We observe that a string w is in CYCLE(L) if and only if there is a way of dividing w into two parts x_1 and x_2 and there is a state q of the original machine such that a marble starting off in state q ends up in a final state of M upon consuming x_1 and a marble starting off in the initial state of M ends up in q upon consuming x_2 . This suggests that the marble should keep track of three things: (i) the state of M where it started, (ii) which state of M it currently is, and (iii) whether it is still consuming the

first part (x_1) of the input or the second part (x_2) . Accordingly, each state of M' will be of the form [p, q, i] where p, q are elements of Q and i is one of 1 or 2.

Formally, let NFA $M' = (Q', \Sigma, \delta', q'_0, F')$, where: $Q' = \{q'_0\} \cup \{[p, q, i] \mid p, q \in Q, i \in \{1, 2\}\}$ $F' = \{[q, q, 2] \mid q \in Q\}$ $\delta'(q'_0, \varepsilon) = \{[p, p, 1] \mid p \in Q\}$ For all $p, q \in Q, i \in \{1, 2\}, a \in \Sigma, \delta'([p, q, i], a) = \{[p, \delta(q, a), i]\}$ For all $q \in F, p \in Q, \delta'([p, q, 1], \varepsilon) = \{[p, q_0, 2]\}$

 $\mathbf{5}$

5.1 $L = \{0^m 1^n 0^{m+n} \mid m, n \text{ are any natural numbers } \}$

<u>Answer</u>: *L* is not regular. For a proof, assume *L* is regular. Let $s = 0^{p}1^{p}0^{2p}$, where *p* is the constant mentioned in PL. Clearly *s* is in *L* and $|s| \ge p$. So, by PL, there are *x*, *y*, *z* such that s = xyz, $|xy| \le p, |y| \ge 1, xy^{i}z$ is in *L* for all $i \ge 0$. Since $|xy| \le p, y$ lies entirely in the first sequence of 0's. Hence, $xy^{2}z = 0^{p+|y|}1^{p}0^{2p}$. Since $|y| \ge 1$, it follows that $xy^{2}z$ is not in *L*, contradicting PL. We conclude that *L* is regular.

5.2 $L = \{0^m 1^n \mid m \text{ divides } n\}$

<u>Answer</u>: L is not regular. For a proof, assume L is regular. Let p be the constant mentioned in PL. Let $s = 0^{q}1^{q}$, where q is a prime number greater than p + 1. Clearly s is in L and $|s| \ge p$. So, by PL, there are x, y, z such that s = xyz, $|xy| \le p$, $|y| \ge 1$, $xy^{i}z$ is in L for all $i \ge 0$. Since $|xy| \le p$, y lies entirely in the first sequence of 0's. Hence, $xy^{0}z = xz = 0^{q-|y|}1^{q}$. Since $p \ge |y| \ge 1$ and $q \ge p + 2$, it follows that $q - 1 \ge q - |y| \ge 2$. This, together with the fact that q is a prime, implies that q - |y| does not divide q. Thus, xz is not in L, contradicting PL. We conclude that L is not regular.

5.3 { $xwx^R \mid x \text{ and } w \text{ are strings in } (0 \cup 1)^+$ }

<u>Answer</u>: This language is regular. To see this, note that a string is in L if and only if it begins and ends with the same symbol, and has at least three symbols. Thus, the following regular expression captures L: $0(0 \cup 1)^+0 \cup 1(0 \cup 1)^+1$. Since L has a regular expression, L is regular.

5.4 $\{0^m \mid m = 2^n \text{ for some natural number } n\}$

<u>Answer</u>: *L* is not regular. For a proof, assume *L* is regular. Let $s = 0^{2^p}$, where *p* is the constant mentioned in PL. Clearly *s* is in *L* and $|s| \ge p$. So, by Pumping Lemma, there are x, y, z such that s = xyz, $|xy| \le p$, $|y| \ge 1$, $xy^i z$ is in *L* for all $i \ge 0$. We have:

$$2^p < |xy^2z|$$
 (because $|xyz| = 2^p$ and $|y| \ge 1$)

 $\leq 2^{p} + p \text{ (because } |xyz| = 2^{p} \text{ and } |xy| \leq p)$ $< 2^{p} + 2^{p} \text{ (because } p < 2^{p} \text{ for any } p \geq 1)$ $= 2^{p+1}$

It follows that $|xy^2z|$ is not a power of 2, and so xy^2z is not in L. This contradicts PL. We conclude that L is not regular.

5.5 problem 1.28 in the book.

<u>Answer</u>: The language E is not regular. For a proof, assume E is regular. Let p be the constant mentioned in PL. Consider string $s = \begin{bmatrix} 0 \\ 0 \end{bmatrix}^p \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}^p$. Clearly $s \in E$ and $|s| \ge p$, therefore, by PL, there exist x, y, z such that s = xyz, $|xy| \le p$, $|y| \ge 1$, and $xy^iz \in E$ for all $i \ge 0$. Since $|xy| \le p$, it follows that y lies entirely in the first sequence of $\begin{bmatrix} 0 \\ 0 \end{bmatrix}^i$. Therefore, we have $xy^2z = \begin{bmatrix} 0 \\ 0 \end{bmatrix}^{p+|y|} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}^p$. Since $|y| \ge 1$, it follows that $xy^2z \notin E$, contradicting PL. Hence, E is not regular.

5.6 $\{0^m 1^n \mid m \text{ is not equal to } n\}$

<u>Answer</u>: L is not regular. For a proof, let A denote the language $\{0^n1^n \mid n \ge 0\}$. We observe that $A = \overline{R \cup L}$, where R is the complement of 0^*1^* . Since 0^*1^* is regular, its complement, namely, R is regular. If L were regular, then since regular languages are closed under union, $R \cup L$ would be regular. Since regular languages are closed under complementation, it follows that $\overline{R \cup L}$, which is A, is regular, contradicting the well known fact that A is not regular. We conclude that L is not regular.