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1.16(a) Answer:

R0
11 = ε ∪ a, R0

22 = ε ∪ a, R0
12 = b, R0

11 = b.

R1
12 = R0

12 ∪ R0
11(R

0
11)

∗R0
12 = a∗b

R1
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22 ∪ R0
21(R

0
11)

∗R0
12 = (ε ∪ a) ∪ ba∗b

L = R2
12 = R1

12 ∪ R1
12(R
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∗R1
22 = a∗b((a ∪ ε)ba∗b)∗

1.16(b) R0
11 = ε, R0

22 = a ∪ ε, R0
33 = ε, R0

12 = (a ∪ b), R0
23 = b, R0

13 = φ, R0
21 = φ, R0

32 = b,
R0
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0
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∗R0
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13 = R0
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0
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21(R

0
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32 ∪ R0
31(R

0
11)

∗R0
12 = b ∪ a(a ∪ b),

R1
31 = R0

31 ∪ R0
31(R

0
11)

∗R0
11 = a.

R2
11 = R1

11 ∪ R1
12(R

1
22)

∗R1
21 = ε,

R2
13 = R1

13 ∪ R1
12(R

1
22)

∗R1
23 = (a ∪ b)a∗b,

R2
33 = R1

33 ∪ R1
32(R

1
22)

∗R1
23 = ε ∪ (b ∪ a(a ∪ b))a∗b,

R2
12 = R1

12 ∪ R1
12(R

1
22)

∗R1
22 = (a ∪ b)a∗,

R2
21 = R1

21 ∪ R1
22(R

1
22)

∗R1
21 = φ,

R2
31 = R1

31 ∪ R1
32(R

1
22)

∗R1
21 = a,

R2
22 = R1

22 ∪ R1
22(R

1
22)

∗R1
21 = a∗,

R2
32 = R1

32 ∪ R1
32(R

1
22)

∗R1
22 = (b ∪ a(a ∪ b))a∗,

R3
11 = ε ∪ (a ∪ b)a∗b((b ∪ a(a ∪ b))a∗b)∗a.

R3
13 = (a ∪ b)a∗b((b ∪ a(a ∪ b))a∗b)∗.

L = R3
11 ∪ R3

13.
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2.1 Answer: False. For a counterexample, let L be any non-regular language such as
{0n1n | n > 0}. Since L is non-regular, L(the complement of L) is also nonregular.
Yet, L ∪ L = Σ∗ is regular.

2.2 Answer: False. For a counterexample, let L be any non-regular language such as
{0n1n | n > 0}. Since L is non-regular, L (the complement of L) is also nonregular.
Yet, L ∩ L = Φ is regular.

2.3 Answer: True. We proved in class that if a language is regular, so is its complement.
This implies the above statement.

2.4 Answer: False. For a counterexample, let Ak = {0k1k}. Clearly, for all k > 0, since
Ak is a finite language, it is regular. However, A1 ∪ A2 ∪ A3 ∪ ... is {0k1k | k > 0},
which is nonregular.

2.5 (Note: A string w is in the intersection if and only if it is in every Ai.)

Answer: False. For a counterexample, let S = {0p | p is a prime }. Define Ak as
0∗− {0x | x is the kth nonprime }. Clearly, each Ak is regular, yet A1∩A2∩A3∩ ...

is S, which is nonregular.
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Answer: Here is the intuition for how to construct a machine M ′ for MAX(L): If qf is a
final state of M and there is a non-empty string that drives M from qf to a final state
(possibly qf itself), then qf should not be a final state in M ′. This ensures that M ′ does
not accept a string in L if there is a way of extending it to be another string in L.

Formally, let DFA M ′ = (Q′, Σ, δ′, q′0, F ′), where:
Q′ = Q

q′0 = q0

δ′ = δ

F ′ = {q | q ∈ F and for all non-empty strings y, δ̂(q, y) 6∈ F}
Clearly M ′ recognizes MAX(L).
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Answer: We observe that a string w is in CYCLE(L) if and only if there is a way of
dividing w into two parts x1 and x2 and there is a state q of the original machine such
that a marble starting off in state q ends up in a final state of M upon consuming x1

and a marble starting off in the initial state of M ends up in q upon consuming x2. This
suggests that the marble should keep track of three things: (i) the state of M where it
started, (ii) which state of M it currently is, and (iii) whether it is still consuming the



first part(x1) of the input or the second part (x2). Accordingly, each state of M ′ will be
of the form [p, q, i] where p, q are elements of Q and i is one of 1 or 2.

Formally, let NFA M ′ = (Q′, Σ, δ′, q′0, F ′), where:
Q′ = {q′0} ∪ {[p, q, i] | p, q ∈ Q, i ∈ {1, 2}}
F ′ = {[q, q, 2] | q ∈ Q}
δ′(q′0, ε) = {[p, p, 1] | p ∈ Q}
For all p, q ∈ Q, i ∈ {1, 2}, a ∈ Σ,

δ′([p, q, i], a) = {[p, δ(q, a), i]}
For all q ∈ F, p ∈ Q,

δ′([p, q, 1], ε) = {[p, q0, 2]}
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5.1 L = {0m1n0m+n | m, n are any natural numbers }

Answer: L is not regular. For a proof, assume L is regular. Let s = 0p1p02p, where
p is the constant mentioned in PL. Clearly s is in L and |s| ≥ p. So, by PL, there
are x, y, z such that s = xyz, |xy| ≤ p, |y| ≥ 1, xyiz is in L for all i ≥ 0. Since
|xy| ≤ p, y lies entirely in the first sequence of 0’s. Hence, xy2z = 0p+|y|1p02p. Since
|y| ≥ 1, it follows that xy2z is not in L, contradicting PL. We conclude that L is
regular.

5.2 L = {0m1n | m divides n}

Answer: L is not regular. For a proof, assume L is regular. Let p be the constant
mentioned in PL. Let s = 0q1q, where q is a prime number greater than p + 1.
Clearly s is in L and |s| ≥ p. So, by PL, there are x, y, z such that s = xyz, |xy| ≤
p, |y| ≥ 1, xyiz is in L for all i ≥ 0. Since |xy| ≤ p, y lies entirely in the first
sequence of 0’s. Hence, xy0z = xz = 0q−|y|1q. Since p ≥ |y| ≥ 1 and q ≥ p + 2, it
follows that q − 1 ≥ q − |y| ≥ 2. This, together with the fact that q is a prime,
implies that q − |y| does not divide q. Thus, xz is not in L, contradicting PL. We
conclude that L is not regular.

5.3 {xwxR | x and w are strings in (0 ∪ 1)+}

Answer: This language is regular. To see this, note that a string is in L if and only
if it begins and ends with the same symbol, and has at least three symbols. Thus,
the following regular expression captures L: 0(0 ∪ 1)+0 ∪ 1(0 ∪ 1)+1. Since L has
a regular expression, L is regular.

5.4 {0m | m = 2n for some natural number n}

Answer: L is not regular. For a proof, assume L is regular. Let s = 02p

, where p

is the constant mentioned in PL. Clearly s is in L and |s| ≥ p. So, by Pumping
Lemma, there are x, y, z such that s = xyz, |xy| ≤ p, |y| ≥ 1, xyiz is in L for all
i ≥ 0. We have:

2p < |xy2z| (because |xyz| = 2p and |y| ≥ 1)



≤ 2p + p (because |xyz| = 2p and |xy| ≤ p)

< 2p + 2p (because p < 2p for any p ≥ 1)

= 2p+1

It follows that |xy2z| is not a power of 2, and so xy2z is not in L. This contradicts
PL. We conclude that L is not regular.

5.5 problem 1.28 in the book.

Answer: The language E is not regular. For a proof, assume E is regular. Let p

be the constant mentioned in PL. Consider string s =

[

0
0

]p [

1
1

] [

0
0

]p

. Clearly

s ∈ E and |s| ≥ p, therefore, by PL, there exist x, y, z such that s = xyz, |xy| ≤
p, |y| ≥ 1, and xyiz ∈ E for all i ≥ 0. Since |xy| ≤ p, it follows that y lies entirely

in the first sequence of

[

0
0

]i

. Therefore, we have xy2z =

[

0
0

]p+|y| [

1
1

] [

0
0

]p

.

Since |y| ≥ 1, it follows that xy2z 6∈ E, contradicting PL. Hence, E is not regular.

5.6 {0m1n | m is not equal to n}

Answer: L is not regular. For a proof, let A denote the language {0n1n | n ≥ 0}. We
observe that A = R ∪ L, where R is the complement of 0∗1∗. Since 0∗1∗ is regular,
its complement, namely, R is regular. If L were regular, then since regular languages
are closed under union, R ∪ L would be regular. Since regular languages are closed
under complementation, it follows that R ∪ L, which is A, is regular, contradicting
the well known fact that A is not regular. We conclude that L is not regular.


