
Solutions: Homework 4

Prepared by Chien-Chung Huang
1

1.1 Answer:

Answer: First, the PDA pushes a “rock” on the stack. From then on, at each point, the PDA
splits itself into two incarnations: one inarnation believes that the next input symbol is the middle
symbol and the second incarnation believes that the middle symbol is still some distance away in
the input. The latter incarnation simply pushes the input symbol on its stack. The former throws
out the input symbol, and from then on pops one stack symbol for every input symbol that it reads;
when it sees the rock on the stack, it enters the accept state and stops consuming further input.

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

��
��

- - - - -
L

LL �
�� A

A
A �

�
��

0, ε→ a

1, ε→ a

ε, ε→ $ ε, ε→ ε 0, ε→ ε

0, a→ ε

1, a→ ε

ε, $→ ε

1.2 Answer: The PDA begins by pushing a rock on the stack. If the top symbol of the stack is either
the rock or the same as the input symbol, then the PDA pushes the input symbol on the stack.
If the input symbol and the stack symbol are different, the PDA consumes the input symbol and
pops the top stack symbol. By these rules, at any point, the stack contains only 0’s or only 1’s,
whichever occured more in the input consumed so far. So, the PDA enters accept state whenever
the top stack symbol is 1.

&%
'$

&%
'$

&%
'$

��
��c

cc �
�	

- - -ε, ε→ $

1, $→ 1$

0, $→ 0$

1, 1→ 11

0, 0→ 00

1, 0→ ε

0, 1→ ε

ε, 1→ ε

1.3 The PDA begins by first pushing a rock on the stack. It then splits itself into two incarnations,
each of which respectivly handles the possiblity of equal number of 1’s and 0’s, 1’s and 2’s. The
PDA is shown below (notice that e is used to replace ε).

e,e-> $

1,e->1

e,e->e

e,e->e

e,$->e

e,$->e

0,e->e

2,e->2
1,e->1

2,1->e
1,2->e

1,0->e
0,1->e
2,e->e

0,e->0

2

2.1 Answer:

Reflexive: ∀w ∈ Σ∗(xw ∈ A ⇐⇒ xw ∈ A) −→ x ≡A x

Symmetric: x ≡A y =⇒ ∀w ∈ Σ∗(xw ∈ A ⇐⇒ yw ∈ A) =⇒ ∀w ∈ Σ∗(yw ∈ A ⇐⇒ xw ∈ A) =⇒
y ≡A x

Transitive

x ≡A y =⇒ ∀w ∈ Σ∗(xw ∈ A ⇐⇒ yw ∈ A)

y ≡A z =⇒ ∀w ∈ Σ∗(yw ∈ A ⇐⇒ zw ∈ A)

=⇒ ∀w ∈ Σ∗(xw ∈ A ⇐⇒ yw ∈ A ⇐⇒ zw ∈ A) =⇒ x ≡A z

Because ≡ fulfills the three above requirements, it is an equivalence relation.

2.2 Answer:

C1 = {a, b}

C2 = {aa, ba}

C3 = {aaa, baa}

C4 = {ε}

C5 = Σ − (C1 ∪ C2 ∪ C3 ∪ C4)

Note: C5 is the infinite class the question alludes to. Any string not found in the first four classes
are related to one another in the following way,

6 ∃w ∈ Σ∗(xw ∈ A ∩ yw ∈ A),

i.e., x ≡A y holds vacuously.

2.3 Answer:

C1 = {a∗}

C2 = {a∗bb∗}

C3 = {a∗b∗cc∗}

C4 = Σ − (C1 ∪ C2 ∪ C3)

2.4 Answer:

C1 = {(ab ∪ ba)∗}

C2 = {(ab ∪ ba)∗a}

C3 = {(ab ∪ ba)∗b}

C4 = Σ − (C1 ∪ C2 ∪ C3)

2.5 Answer:

C0 = {0n1n : n ≥ 0}

C1 = {0n1n−1 : n ≥ 1}

C2 = {0n1n−2 : n ≥ 2}

...

Ck = {0n1n−k : n ≥ k}

...

There are infinite classes. Also, there is another class C# = {0, 1}∗ −
⋃

i Ci

2.6 Answer:

Given x, y ∈ [x]A, we know that

x ≡A y

=⇒ ∀au ∈ Σ∗(xau ∈ A ⇐⇒ yau ∈ A)

=⇒ ∀u ∈ Σ∗((xa)u ∈ A ⇐⇒ (ya)u ∈ A)

=⇒ xa ≡A ya .

2.7 Answer:

Informal descritpion: To prove a language is regular, one possible way is to create a DFA to
describe it. A very intuitive idea here is to represent these equivalence classes as the states in the
DFA. However, a very obvious question pops up immediately: How can we be sure that all the
strings represented by a single state exhibit the same behavior? Fortunately, 2.6 gives us a strong
hint: the class [xa]A (the new state) is completely determined by the class [x]A (the old state) and
the alphabet symbol a (the input of the transition function). In other words, we can define the
transition function based on the alphabet symbol and the old state.

Proof : Define M = {Q, Σ, δ, q0, F},

Q = {q[x1]A , q[x2]A , ...q[xn]A},

δ(q[xi]A , a) = q[xj]A , if [xj]A = [xia]A,

q0 = q[ε]A ,

F = {q[xi]A : xi ∈ A}.

For the definition of F to make sense, we have to make sure that whether or not xi ∈ A depends
only on the class [xi]A and not the particular representative xi of the class we pick. But this is
easy: if [x]A = [y]A, then x ≡A y, which means xε ∈ A ⇐⇒ yε ∈ A, i.e., x ∈ A ⇐⇒ y ∈ A.

2.8 Answer:

(This answer written by Amit Chakrabarti)

Informal description: If A is a regular language over the alphabet Σ, we know we can build a
DFA M to describe it. We will map strings in Σ∗ to states of M in a natural way and show that

if two strings both map to the same state, then they are equivalent (under “≡A”).

In other words, if two strings are not equivalent, they will map to distinct states of M . If A did in
fact have infinitely many left equivalence classes, then we could have found infinitely many strings
(one from each class) such that no two were equivalent and these strings would have to map into
an infinite number of different states. However, being a DFA, M only has a finite number of states.

Proof :

Given a regular language A, we can first build M(A) = {Q, Σ, δ, q0, F}. Recall the function δ̂ :

Q × Σ∗ → Q from class (and the Oct 11 lecture notes): δ̂(q, x) tells us the state M(A) ends up in

when it is started in state q and fed input x. For each string x ∈ Σ∗, define q(x) = δ̂(q0, x). This
is the state that we’re going to map x to.

We claim that if q(x) = q(y), then x ≡A y. As explained in the informal description, this would
complete the proof.

Suppose q(x) = q(y). We must show that ∀w (xw ∈ A ⇐⇒ yw ∈ A). Suppose w is a string such

that xw ∈ A. Then, the machine M(A) must accept xw, so q(xw) ∈ F . But q(xw) = δ̂(q(x), w) =

δ̂(q(y), w) = q(yw); thus q(yw) ∈ F as well. So M(A) accepts yw, i.e., yw ∈ A. We have shown
that xw ∈ A =⇒ yw ∈ A. Clearly, a very similar proof shows that xw ∈ A ⇐= yw ∈ A, and we are
done.

2.9 Answer:

Proof by contradiction.

Assume L4 is regular, From 2.8 we know that A has only finitely many distinct left equivalence
classes. However, from 2.5 we know that A in fact has infinite left equivalence classes. Thus we
derive a contradiction.

2.10 Answer:

Consider the following collection of strings A = {01, 001, 0001, 00001, ...}. Not any two of strings in
this set belong to the same left equivalence class. Thus, A has infinitely many classes. Since A only
contains a portion of the left equivalence classes, the total classes must be infinite. As in 2.9, we
know that the languages with infinitely many classes cannot be regular.

