
CS 39
Fall 2003
Theory of Computation

Homework 5
Due Nov 10, 2004

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

Please think carefully about how you are going to organise your answers before you begin writing. Make sure your answers
are complete, clean, concise and rigorous.

1. Design a context-free grammar that generates the language

{x ∈ {0, 1}∗ : x is not of the form ww for any w ∈ {0, 1}∗} .

[6 points]

2. For each of the following languages, say whether or not it is a CFL and prove your answer, either by designing an
appropriate CFG or PDA or by using the pumping lemma. If designing a CFG/PDA, please explain your construction
in brief so the grader can understand your design.

2.1. {anbncm : n ≤ m ≤ 2n}. [8 points]

2.2. {anbn2
: n ≥ 0}. [8 points]

2.3. {x1#x2# · · ·#xk : k ≥ 1, each xi ∈ {a, b}∗, and for some i and j (possibly equal), xi = xRj }.
[8 points]

2.4. {bi#bi+1 ∈ {0, 1,#}∗ : i ≥ 1}, where bi is the binary representation of the integer i with no leading 0’s (e.g.
b5 = 101, b18 = 10010). [10 points]

2.5. (a ∪ b)∗ − {(anbn)n : n ≥ 1}. [10 points]

3. Do problem 2.14 from your textbook (Sipser). [10 points]

4. Define the length of a rule in a CFG to be the number of characters required to write down the rule. Thus, if
G = (V,Σ, R, S) is a CFG and “A → w” is a rule in R with w ∈ (V ∪ Σ)∗, then the length of this rule is 2 + |w| if
w 6= ε and 3 if w = ε (because we do have to write one character to represent ε, even though |ε| = 0). Define the
complexity of a CFG to be the sum of the lengths of all the rules in the CFG.

Note that things like “A → w | x | y” are not rules; they are convenient notation for, in this case, three separate
rules “A → w”, “A → x”, and “A → y”, so the lengths of these three rules must be figured separately and added up.

4.1. Suppose the CFG G = (V,Σ, R, S) is converted into an equivalent CFG G′ in Chomsky normal form, using the
procedure in Sipser’s Theorem 2.6. Give the best possible asymptotic upper bound on the complexity of G′,
in terms of |V |, |R| and the complexity of G. Assume |Σ| is a constant; think Σ = {0, 1} if you like. Assume
nothing about G: your upper bound must always hold.
By “asymptotic” I mean that you don’t need to give an exact bound, and should use big-O notation to simplify,
where possible. You don’t have to prove that your upper bound is best, but you should prove (at least infor-
mally) why your bound always holds. [5 points]

Page 1 of 2

CS 39
Fall 2003
Theory of Computation

Homework 5
Due Nov 10, 2004

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

4.2. Suppose the PDA M = (Q,Σ,Γ, δ, q0, F) is in normal form as discussed in class (i.e., each move is either a one-
character push or a pop, but not both; there is only one accept state; and the stack is empty upon acceptance).
Suppose we use the procedure of Sipser’s Lemma 2.15 to convert it into a CFG G. Give the best possible
asymptotic upper bound on the complexity of G, in terms of |Q|. Assume |Σ| and |Γ| are constants.
Again, assume nothing about M : your upper bound must hold even for the most outlandish of PDAs.

[5 points]

4.3. We proved that every regular language is context-free as follows: a regular language is recognized by a DFA,
which is automatically a PDA (that ignores its stack), which is equivalent to some CFG. However, having solved
the previous problem, you know that if we start with a DFA with n states, the complexity of the CFG that results
by following this proof may be huge (in terms of n, assuming a constant-sized alphabet).
Come to the rescue by proving that any n-state DFA (over a constant-sized alphabet) can be converted into an
equivalent CFG whose complexity is only O(n).
Hint: Prove that any DFA can be converted into a CFG where every rule is either of the form “A → aB”, or of
the form “A → ε”, where A,B are variables and a is a terminal. What would be a natural choice for the set of
variables? [15 points]

5. Do problem 2.21 from your textbook (Sipser).

Note: It’s not very easy! Start thinking right away. [15 points]

Challenge Problems

CP5: A deterministic pushdown automaton (DPDA) is just like a PDA, except that its transition function must be deter-
ministic. Thus, it is a 6-tuple (Q,Σ,Γ, δ, q0, F) where Q,Σ,Γ, q0 and F have exactly the same roles as in a PDA, but δ is a
function of the form

δ : Q× Σ× Γε → Q× Γε

instead of the PDA-like δ : Q×Σε×Γε → 2Q×Γε . Unlike in the finite automaton case, where nondeterminism did not add
extra power, nondeterminism provably adds power to pushdown automata. Your challenge is to prove this. The language
that will help you do so is {0n1n : n ≥ 0} ∪ {0n12n : n ≥ 0}: prove that this language is context-free but cannot be
recognized by a DPDA.

Page 2 of 2

