
Solutions: Homework 7
Prepared by Chien-Chung Huang

1.

Answer: Let L be an infinite Turing recognizable languages. Let E be an enumerator
for L (since L is Turing recognizable, E exists). In the following, we prove the problem
statement by specifying an enumerator E′ that enumerates a subset of L in canonical
order. Informally, E′ runs E and, instead of outputting every string that E outputs, E′

outputs only some of the strings output by E. Specifically, E′ uses the following rule:
each time E outputs a string s, E′ includes s in its output if and only if s is bigger than
the strings that E′ has already included in its output. The following is a more precise
specification of the enumerator E′:

E′ = “(1) LastStringOutput = none
(2) Run E until it outputs a string s.
(3) if (LastStringOutput = none) or (s > LastStringOutput) then

output s
LastStringOutput = s

(4) Go to step (2) to resume the running of enumerator E.”

We make the following observations:

a) L(E′) is a subset of L(E) (because every string output by E′ is output also by E).

b) E′ enumerates strings in canonical order (because of the condition in Step 3).

c) L(E′) is infinite (because, since L(E) is infinite, E eventually outputs a string bigger than
every string that it has output thus far).

The statement of Problem 2 follows from the above three observations.

2.1

We create a decider to show that this UDFA is decidable. The basic idea to mark the states
which can be reached by the transition functions step by step. Eventually, if all states are
marked, then we reject, otherwise, we accept.

Decider for UDFA: “On input < D >, where D is a description of DFA
(1) If < D > does not describe a DFA, reject.
(2) Mark the start state of D.
(3) Mark any state that has a transition into it from a marked state.

(3.1) Repeat Step 3 until no further state can be marked.
If any state is unmarked, ACCEPT, else, REJECT”.

2.2

The idea is to utilize the machine EPDA to prove UPDA’s decidability. Specifically, we can
transform the PDA into a set of PDAs and uses the EPDA to decide whether this PDA



contains a useless state.

Decider for UPDA “On input < P >, where P is a description of PDA.
(1) If < P > does not describe a PDA, reject.
(2) For all q ∈ Q

(2.1) Set F = q and creates a new description of PDA < P ′ >
(2.2) Run EPDA on < P ′ >.
(2.3) If EPDA accepts, ACCEPT.

(3) REJECT.”

2.3

The basic idea is to try to reduce UTM to ETM , which we know is a decider, to prove the
undecidability of UTM .

If a Turing Machine accepts empty language, then its accept state must be useless. More
precisely, given a Turing Machine N , we can first use the decider M of UTM (if such a
machine exists) to decide which states in N are useful and which are not. If the accept
state is useful, then this N is not describing an empty lanuage, otherwise, it is. In this
manner, we create a decider for ETM , which we know can not exist.

Decider for ETM “On input < N >, where N is a description of some Turing Ma-
chine.

(1) Let Q be the set of states in N .
(2) If M rejects < N >, then REJECT.
(3) for each Q′ ⊂ Q

(3.1) If M rejects < NQ′ >
(3.1.1) If ∀q 6∈ Q′, M accepts < NQ′∪q >

(3.1.1.1) If qaccept ∈ Q′, then REJECT, else ACCEPT.”

3.1

a) {< M >| M is a TM and M accepts at least two strings }

Answer: A is Turing recognizable, but not decidable.

To prove that A is Turing recognizable, we specify the following recognizer R for A:

R = “On input < M >, where M is a TM,
(1) Convert M into an equivalent enumerator E.
(2) Run E.
(3) If E ever outputs two different strings, accept.”

For a proof of undecidability of A, we note that the property “ languages contains at least
two strings” is a nontrivial property (because some Turing recognizable languages contain
at least two strings and some Turing recognizable languages don’t). Therefore, by Rice’s
theorem, A is undecidable.

Here is an alternative direct proof of undecidability of A. We present a reduction from
ATM to A:



“On input < M, w >, where M is a TM and w is a string:
(1) Construct Turing machine N that works as follows:

N = “On input u:
(a) Run M on w.
(b) If M halts and accepts w, then accept.
If M halts and rejects w, then reject. ”

(2) Output N . ”

Observe that L(N) = Σ∗ if M accepts w
= φ if M does not accept w.

Importantly, whether or not L(N) contains at least two strings depends on whether M
accepts w. Hence, < N > is in A if and only if < M, w > is in ATM . Therefore, the above
algorithm is a reduction from ATM to A, and hence A is undecidable.

3.2) {< M >| M is a TM and M accepts exactly two strings }

Answer: B is not Turing recognizable. For a proof, we reduce the complement of ATM to
B:

“On input < M, w >, where M is a TM and w is a string:
(1) Construct Turing machine N that works as follows:

N = “On input u:
(a) Accept if u is either 0 or 00.
(b) Run M on w.
(c) If M halts and accepts w, then accept.
If M halts and rejects w, then reject. ”

(2) Output N . ”

Observe that L(N) = {0, 00} if M does not accept w
= Σ∗ if M accepts w.

Importantly, L(N) contains exactly two strings if and only if M does not accept w. Hence,
< N > is in B if and only if < M, w > is in the complement of ATM . Therefore, the above
algorithm is a reduction from the complement of ATM to B, and hence B is not Turing
recognizable.

3.3) {< M >| M is a TM and M halts when it runs on a tape that is initially empty }
(This is the same languages as {< M >| M is a TM and M halts on input ε}.)

Answer: C is Turing recognizable, but not decidable.

To prove that C is Turing recognizable, we specify the following recognizer R for C:

R = “On input < M >, where M is a TM,
(1) Run M on ε.
(2) If M ever enters accept state, accept.”



For a proof of undecidability of C, we reduce ATM to C:

“On input < M, w >, where M is a TM and w is a string:
(1) Construct Turing machine N that works as follows:

N = “On input u:
(a) Run M on w.
(b) If M halts and rejects w, then

run forever in an infinite loop.
If M halts and accepts w, then
halt and accept. ”

(2) Output N . ”

Observe that N halts on any input if and only if M accepts w. In particular, N halts on
ε if and only if M accept w. Hence, < N > is in C if and only if < M,w > is in ATM .
Therefore, the above algorithm is a reduction from ATM to C, and hence C is not decidable.

3.4) {< M1,M2 >| M1 and M2 are TMs over the input alphabet {0, 1} and L(M1) is the
complement of L(M2) }

Answer: D is not Turing recognizable. For a proof, we reduce the complement of ATM to
D:

“On input < M, w >, where M is a TM and w is a string:
(1) Construct Turing machine N such that L(N) = Σ∗.
(2) Construct Turing machine N ′ that works as follows:

N ′ = “On input u:
(a) Run M on w.
(b) If M halts and accepts w, then accept.
If M halts and rejects w, then reject. ”

(2) Output < N, N ′ >. ”

Observe that L(N ′) = φ if M does not accept w
= Σ∗ if M accepts w

Importantly, L(N ′) is the complement of L(N) if and only if M does not accept w. Hence,
< N,N ′ > is in D if and only if < M, w > is in the complement of ATM . Therefore, the
above algorithm is a reduction from the complement of ATM to D, and hence D is not
Turing recognizable.

4. (12 pts) Prove that EQcfg = {< G1, G2 >| G1 and G2 are CFGs and L(G1) = L(G2)} is
co-Turing-recognizable (i.e., prove that the complement of EQcfg is Turing recognizable).

Answer: The following algorithm R is a recognizer for the complement of EQcfg, given by
{< G1, G2 >| G1 and G2 are CFGs and L(G1) 6= L(G2)}
(below, s1, s2, s3, ... denote the strings from Σ∗ in canonical order):



R = “On input < G1, G2 >, where G1 and G2 are CFGs:
for i = 1 to ∞

Determine whether or not G1 generates si

Determine whether or not G2 generates si

if one of G1 and G2 generates si and the other does not then accept and halt.”

Clearly, R is recognizer for the complement of EQcfg. Therefore, EQcfg is co-Turing-
recognizable.


