Solutions: Homework 8
Prepared by Chien-Chung Huang

This algorithm for SAT proposes only one solution with exponential complexity. However, we don’t
know whether any other solution with lower complexity exsits or not. If there is (so far we are not
sure), then P = NP. If we want the above claim about P # NP to be true, we have to show that
this solution is the only one and it is implssible to solve SAT in any other way.

To show that DOUBLESAT is NP-complete, We have to show (1) DOUBLESAT is in NP (2) every
A in NP is polynomail time reducible to DOUBLESAT.

To show DOUBLESAT is in NP, we first construct a non-deterministic Turing machine NT M to
solve DOUBLESAT.
NTM:
“On input < ¢ >

(0) Set the counter value to 0.

(1) Nondeterministically decide a set of truth values for z1, z2...z, which appear in < ¢ >.

(2) Decide whether this set of truth values can satisfy the boolean equation.

If yes, increment the counter.

(3) If the value of the counter is larger or equal to 2, ACCEPT, else REJECT. ”

NTM obviously can execute in polynomial time.

We now try to show that 3SAT is polynomail time reducible to CLIQUE.
Let ¢ be a formula with k clauses such as

¢p= (a1 UbyUcy)N(agUbyUca)N...N (ar Ubg Ucy)

We build another boolean equation ¢’ such that

¢’ = (a1Ub1Uc1Ud; )N (a1UbiUcyUdy)N(a1UbiUciUds )N (a1UbyUciUds)...(a,UbgUckUdy, )N (a,Ub,Uc,Udy, )

We claim that ¢ is satisfiable iff ¢’ has more than two set of truth values that satisfy it.

If ¢ is satisfiable, every clause (a; Ub; U ¢;) must be 1. Thus, (a; Ub; Uc; Ud;) and (a; Ub; Uc; Ud;)
must both be 1 too, no matter d; be 0 or 1. We conclude that ¢’ must have at least two set of
assigments.

If, on the other hand, ¢ is satisfiable, then (a; Ub; U ¢; Ud;) and (a; Ub; U ¢; U d;) must both be 1.
Since one of d; and d; must be 0, it means it is not possible that all a;, b;, ¢; are Os, otherwise, ¢’ is
not satisfiable. If not all a;, b;, ¢; are Os, then the i’s clause in ¢ must be 1. As a result, ¢ must be
satisfiable.

3.1 Here is an easy example. We set V=100, W = 1.5. w; = 1,wy = 1, w3 = 0.7,wy = 0.7,01 =
99, vy = 80,v3 = 51,v4 = 51. Using this algorithm, we only pick up object 1 and then will give up.
However, we can achieve the goal by picking up object 3 and 4.



3.2 KNAPSACK problem belongs to NP, as we can nondeterministically choose a set of objects
and veriry whether this set fulfill the requirement » ,cqw; <W N ,cqv; > V.

We try to reduce SUBSET-SUM problem into KNAPSACK. SUBSET-SUM states that
{< S,t>|S ={x1,...,z} and for some {y1,...y;} C {z1,...x1}, we have Y y; =t}.

We create another KNAPSACK problem as follows:

{< 2k, xy... 2k, T1, ...k, t, t > S C {1,...2k} (Zml < tﬂle > t)}

€S (sh

We claim that if we know the solution of the SUBSET-SUM problem we also can solve the created
KNAPSACK problem and vice versa. The reason is that the above KNAPSACK problem can only
be solved wehn > ;g x; = t.

Problem 7.22a For any clause in a #-assignment, we know two literals of them, say, xi, x2
have different values, i.e., 0 and 1. The negation of this #-assignment will make this very clause
TIUZ2UT3 =1U0UZT3. T3 can only be 1 or 0. Thus the negation of the #-assignment is also an
#-assignment.

Problem 7.22b To show 3SAT is polynomial time reducible to #-SAT, we have to show that
there exists a polynomial time computable funtion f : ¥* — 3* exists which for every w, w € A &
f(w) € B.

Such a function is already provided, i.e., by transforming each clause (y; Uy2 Uys) into two clauses
(y1 Uya U z;) N (Z; Uys Ub). This transformation obviously can be done in polynomial time. What
we need to prove then is to show that (y; Uya Uys) =1 iff (y; Uya U z) =1 and (Z;Uyz Ub) = 1.
and at least two out of the literals have different values.

We can prove this by showing exhaustively all possible combination of truth values.

yi | y2 | ys | 2 | D

1 1 1 0 1]0

T [1]0 [0 ]o0/1
0 [1 |1 [1]0/1
1[0 |1 |1 |0/
0 [0 |1 |1 ]0/T
110 [0 |0 |o0/T
0 [1]0 [0 [0/

Based on the above table, we know the truth values of a 3-SAT problem, we also can use it solve
#SAT, and vice versa.

Problem 7.22c to show that #SAT is NP, we construct the following nondeterministic machine.
NTM:
“On input < ¢ >
(1) Nondeterministically decide a set of truth values for x1, zo...z, which appear in < ¢ >.
(2) Test whehter this set of truth values satisfies ¢.
(3) If yes, ACCEPT, else REJECT. ”
NTM obviously can execute in polynomial time.



From (b), we know that 3-SAT, which is known to be NP, can be reduced to #SAT. Thus, we
conclude that #SAT is NP-complete.

Problem 7.23 MAX-CUT is NP. We can nondeterministically choose a set of k (or more) edges
and decide whether all the nodes can be divided into disjoint sets by the chosen edges.

We now try to reduce #SAT into MAX-CUT. Given ¢, for each variable z, we create a collection
of 3k nodes labelled with x and another 3k nodes labeled with Z, where k is number of clauses in
¢. All nodes labelled x are connected with all nodes labeled Z.

Besides, we connect three nodes lableded with the literals appearing in the same clause in ¢. When
connecting the nodes appearing in the same clause, we have to make sure that the same node is
used at most once.

We now claim that if ¢ has a solution iff we know the maximum number of edges that can be cut
from this graph.

We first show if we know the solution of ¢, we can decide the maximum number of cuts.

For each clause, we know there are at three literals (corresponding to three nodes in the graph).
One literal have a different value from the other two. We cut the two edges connecting the node
with the different value. Besides, we also cut all edges linking the nodes with its complement nodes.

We claim that every edge that is cut connects two nodes, one assigned vaue 0 and the other 1.
There are two cases to consider:

(1) The edge connecting a node z and its complment Z, which obviousy are assigned different values.
(2) The edge connects two nodes appearinging in the same clause. We have explicitly choose those
edges connecting different values. So this is obviously true.

On the other direction, we claim that if we know the max number of edges to be cut, we know how
to assign the values to the problem #SAT. Using the strategy when we choose the edges to be cut
in reverse order, we assign the same value to the edge that is not cut in an triangle (three literals
in the same clause) and different values to those which are cut.



