
CS 39
Fall 2005
Theory of Computation

Final Exam
December 2005

Attach this sheet to your submission

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

I started this exam at time on date .

I am submitting this exam at time on date .

I pledge my honor that the times and dates I have reported above are accurate to the
best of my knowledge.

Your signature: AA
A

Your name: AA
A

Important Points to Note

• This exam is due 48 hours from when you first look at it, or on December 6, at 6:00pm
sharp, whichever comes earlier. Submit it into Chakrabarti’s mailbox.

• There are 6 sections for a total of 100 points.

• Start each problem (or part thereof) on a fresh page. Use at most ten pages (that’s five
sheets, letter or A4 size) for the entire exam. You will be held to this limit, strictly.

• The exam is open book and open notes. You may use, without proof, any results proved in
class or in Sipser’s book, provided you state clearly what result(s) you are using.

• You may not discuss this exam in any detail whatsoever with anyone, even after you have
submitted it. If you have questions on the course’s material, please ask the professor or the
TA; we are willing to help you to any extent with understanding of the material.

• If you are completely stuck on a problem, you may ask for a hint which will be provided
via email. Your score for that problem will then be halved. Please note that the hints
have been prepared in advance and cannot be customized. To ask for a hint, send email to
Amit Chakrabarti (ac@cs) as well as Khanh Do Ba (kdb@cs) saying something like “I’d like
the hint for Problem 6.1 and Problem 2.” We will try to get back to you ASAP but please
remember that we are humans too and we must sleep.

• Good luck!

Section Points Score

1 15

2 10

3 20

4 10

5 20

6 25

Total 100

Page 1 of 2



CS 39
Fall 2005
Theory of Computation

Final Exam
December 2005

Attach this sheet to your submission

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

1. For a string x ∈ {0, 1}∗, let β(x) denote the value of x when interpreted as a binary number.
Thus, β(1) = 1, β(100) = 4, β(001011) = 11, and so on. Prove or disprove that the language
{x ∈ {0, 1}∗ : β(x) is a perfect square} is regular.

[15 points]

2. For a string x ∈ {0, 1}∗, let N0(x) and N1(x) denote the number of 0’s and 1’s (respectively)
in the string x. Prove or disprove that the language {x ∈ {0, 1}∗ : x does not have a substring
y such that |N0(y) − N1(y)| = 3} is regular.

[10 points]

3. You are given a black box that decides membership in a certain language L ⊆ Σ∗ (for some
alphabet Σ) as follows: you can feed it a query string x ∈ Σ∗ and ask it “Is x ∈ L?” The black
box replies with either “Yes” or “No.” Since it is a black box, you have no way of finding out
how the device works. Your task is to decide whether or not L = ∅ by using a finite sequence
of queries to this black box.

As stated, the problem cannot be solved, because for any integer r, if you ask r queries
and receive only “No” answers from the black box, you are unable to decide whether or not
L = ∅: you haven’t yet found an element in L, but perhaps the very next query would have
yielded a “Yes” answer? However, suppose a little birdie tells you that L is generated by a
Chomsky Normal Form CFG with n variables, but doesn’t tell you what the CFG is. Prove that
you can now solve the problem by asking no more than r(n) queries, for a certain integer
r(n), depending on n. In your solution, give an explicit formula for whatever r(n) you use.

[20 points]

4. Let E1 and E2 be enumerator Turing machines (not necessarily lexicographical) over the
same alphabet Σ. Give a direct construction of an enumerator for the language L(E1) ∩
L(E2). By “direct,” we mean that you are not allowed to use the theorems connecting enu-
merators with recognizers.

[10 points]

5. A context-free grammar over an alphabet Σ is said to generate “almost all strings” if it
generates all but a finite number of strings in Σ∗ (this finite number may be zero). Consider
the computational problem of determining whether a given CFG generates almost all strings.
Either describe an algorithm to solve the problem or prove, via undecidability, that no such
algorithm exists.

[20 points]

6. Let HALFCLIQUE = {〈G〉 : G is an undirected (2n)-vertex graph and has a clique of size n}.

6.1. Prove that HALFCLIQUE is NP-complete.
[15 points]

6.2. Suppose you are given a magic black box that somehow decides HALFCLIQUE in polyno-
mial time. Prove that, using this black box, you can solve the following computational
problem in polynomial time: given an undirected (2n)-vertex graph G, output a subset
of n vertices of G that form a clique, or else report that no such subset exists.

[10 points]

Page 2 of 2


