
CS 39
Fall 2005
Theory of Computation

Homework 2 Solutions

Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

1. (Regular expression → NFA → DFA)

1.1. Below is a four-state NFA for (ab ∪ aab ∪ aba)∗.

1

2 34

a

a

b

b

ba

1.2. For clarity we will only draw transitions leaving reachable states.

∅

{1}

{2}

{3}

{4}

{1, 2}

{1, 3}

{1, 4}

{2, 3}

{2, 4}

{3, 4}

{1, 2, 3}

{1, 2, 4}

{1, 3, 4}

{2, 3, 4}

{1, 2, 3, 4}

a, b

ab

a

b

a

b

a

b

a

b

a

b

1.3. Obvious from 1.2.

1.4. States {2} and {2, 3} both go to {3} on a and to {1, 4} on b, so we can combine them as {2}.

Page 1 of 5

CS 39
Fall 2005
Theory of Computation

Homework 2 Solutions

Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

∅

{1}

{2}

{3}

{1, 2}

{1, 4}

a, b
a

b

a
b

a

b
b a

b

2. (Regular expression → NFA)

2.1. In the following NFA, the states q0, q1, q2 and q3 correspond to the regular expressions ǫ,
(0 ∪ 11)0∗, 1 and 10 ∪ (0 ∪ 11)0∗1, respectively.

q0

q1

q2

q3

0

1

0

1

0

1

2.2. The clearest way to construct this NFA is as two separate NFAs connected by ǫ-transitions
from a common start state.

ǫ

0 mod 2 1 mod 2

0 mod 3 1 mod 3 2 mod 3

ǫ

ǫ

0, 1

0, 1

0, 1 0, 1

0, 1

3. (Regular language → regular expression)

3.1. (0 ∪ 1)∗(000 ∪ 111)(0 ∪ 1)∗

A string in this language must contain either a 000 or a 111 (or both) somewhere, preceded
and followed by anything (or possibly nothing).

3.2. ((0 ∪ 1)∗000(0 ∪ 1)∗111(0 ∪ 1)∗) ∪ ((0 ∪ 1)∗111(0 ∪ 1)∗000(0 ∪ 1)∗)
Since a string in this language must contain both a 000 and a 111, either of two possibilities

Page 2 of 5

CS 39
Fall 2005
Theory of Computation

Homework 2 Solutions

Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

must occur (or both, if these substrings appear multiple times): 000 precedes 111, or 111
precedes 000, corresponding to the two pieces of the above regular expression.

3.3. (01 ∪ 10)∗

First observe that the requirement that “no prefix has two more 0’s than 1’s nor two more 1’s
than 0’s” implies that any even-length prefix must have the same number of 0’s as 1’s. Now,
take any string in the language and consider its first two symbols. By the previous claim,
they must be either 01 or 10. The next two symbols, by the same reasoning, must again be
from (01∪ 10), and so on. Hence the equivalence of the above simple regular expression to the
described language.

3.4. (0 ∪ X(X ∪ 0)∗).(0 ∪ (X ∪ 0)∗X)
where X := (1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9).

4. (NFA = Single-accept NFA)

Informally, the trick is to add a new final state qf , which all existing final states can reach by an
ǫ-transition, and out of which there are no transitions. The old final states are then made non-final.

Formally, given an NFA N = (Q,Σ, δ, q0, F), design a new NFA N ′ = (Q′,Σ, δ′, q0, F
′), where

Q′ = Q ∪ {qf}, where qf /∈ Q

F ′ = {qf}

δ′(q, a) =

∅ if q = qf

δ(q, a) ∪ {qf} if q ∈ F, a = ǫ
δ(q, a) otherwise

5. (L regular ⇒ Half(L) regular)

This solution was written by Amit Chakrabarti.

This is a difficult but truly beautiful problem, so let us give two different proofs of the result.

Approach 1, informal: Since L is regular it must be recognized by a DFA M = (Q,Σ, δ, q0, F).
We will construct an NFA M ′ for Half(L), proving that Half(L) is also regular. The idea is that
as M ′ reads an input x it tries to guess a string y that would ensure xy ∈ L and it checks whether
or not xy ∈ L by clevery running both strings x and y through M simultaneously. M ′ begins by
guessing a magic state: the state M will end up in after reading all of x. Each time M ′ reads the
next character of x, it

1. keeps track of what state M would be in if it were reading x,

2. guesses the next character of y, and

3. keeps track of what state M would be in if it were reading y, starting from the magic state
guessed earlier.

Having read x, M ′ accepts if both of the following happen:

1. M does end up in the initially guessed magic state after reading x, and

2. M ends up in an accept state after reading y, starting from the magic state.

Thus, we see that at any point of time, M ′ needs to keep track of three pieces of information: the
magic state, the state reached by reading the current prefix of x, and the state reached by reading
the current prefix of y. With this intuition we are ready to describe M ′ formally.

Page 3 of 5

CS 39
Fall 2005
Theory of Computation

Homework 2 Solutions

Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

Approach 1, formal: Let M ′ = ({qstart} ∪Q×Q×Q,Σ, δ′, qstart, F
′), where δ′ and F are given

by

δ′(qstart, ǫ) = {(q, q0, q) : q ∈ Q} ,

δ′(qstart, a) = ∅, ∀ a ∈ Σ ,

δ′((qmagic, qx, qy), ǫ) = ∅, ∀ qmagic, qx, qy ∈ Q ,

δ′((qmagic, qx, qy), a) = {(qmagic, δ(qx, a), δ(qy , b)) : b ∈ Σ}, ∀ a ∈ Σ; qmagic, qx, qy ∈ Q ,

F ′ = {(q, q, qf) : q ∈ Q and qf ∈ F} .

Then, by the discussion in the informal section, L(M ′) = Half(L).

Approach 2, informal: Again, we start with a DFA M = (Q,Σ, δ, q0, F) for the language L. If
x is a string in Half(L), and y is a string such that |x| = |y| and xy ∈ L, then the string xy must
trace a path π through M from q0 to some state in F , say qn. Imagine tracing two paths through
M simultaneously, using your left and right index fingers:

1. Start by placing your left finger at q0 and your right finger at qn.

2. Read x from left to right and, simultaneously, y from right to left.

3. After reading each pair of characters, one from x and one from y, move your left finger one
step forward along the path π and your right finger one step backward.

Since |x| = |y|, it is clear that you will finish reading x and y at exactly the same time and at that
point your two fingers will meet at the midpoint of the path π. Now, we turn this observation into
a machine that will accept x (and will accept nothing spurious). First of all, observe that as we
read x we can’t quite know what path the right index finger will trace, because (1) we don’t know
y and (2) even if we did know y, there could be two or more transitions leading in to a state of
q ∈ Q on alphabet symbol a ∈ Σ. In other words, reversing of the arrows of a DFA might make it
nondeterministic. In order to make the right hand movement deterministic, we will borrow an idea
from the subset construction we studied in class and actually keep track of all possible states that
the right index finger could be in.

Approach 2, formal: Let us define a function δ−1 : 2Q → 2Q as follows: for any set S ⊆ Q,

δ−1(S) = {q ∈ Q : ∃ a ∈ Σ (δ(q, a) ∈ S)} .

In words, δ−1(S) is the set of states of M that we can get to by following one arrow backwards from
some state in S. Now, define M ′′ = (Q × 2Q,Σ, δ′′, (q0, F), F ′′), where δ′′ and F ′′ are given by

δ′′((q, S), a) = (δ(q), δ−1(S)), ∀ q ∈ Q,S ⊆ Q, a ∈ Σ ,

F ′′ = {(q, S) ∈ Q × 2Q : q ∈ S} .

Then, by the discussion in the informal section, L(M ′′) = Half(L).

Approach 21

2
: Actually it’s possible to follow Approach 2 and end up with an NFA instead of

a DFA by noting that we don’t have to make the movement of the right finger deterministic. Of
course we will now have to add a special start state and use ǫ-transitions from it to put the right

Page 4 of 5

CS 39
Fall 2005
Theory of Computation

Homework 2 Solutions

Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

finger on one of the final states of M . So, based on M , we could build an NFA M1 instead of the
DFA M ′′ we just built: M1 = ({qstart} ∪ Q × Q,Σ, δ1, qstart, F1), where

δ1(qstart, ǫ) = {(q0, qf) : qf ∈ F} ,

δ1(qstart, a) = ∅ , ∀ a ∈ Σ ,

δ1((q, q
′), ǫ) = ∅ , ∀ q, q′ ∈ Q ,

δ1((q, q
′), a) = {(δ(q), q′′) : ∃ b ∈ Σ such that δ(q′′, b) = q′} , ∀ q, q′ ∈ Q, a ∈ Σ ,

F1 = {(q, q) : q ∈ Q} .

Page 5 of 5

