
CS 39
Fall 2005
Theory of Computation

Homework 4 Solutions

Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

1. (Designing PDAs)

1.1. The PDA uses its stack to keep track of how many more 0’s than 1’s it has seen (by having
N0 − N1 0’s in the stack) or how many more 1’s than 0’s it has seen (by having N1 − N0 1’s
in the stack).

ε, ε → $

0, $ → 0$
0, 0 → 00
0, 1 → ε

1, $ → 1$
1, 1 → 11
1, 0 → ε

ε, 0 → ε

1.2. After pushing the standard “rock”, the PDA splits itself into two incarnations at every step:
one believing that the next input symbol is the middle 0, the other believing that it has not
reached the middle symbol yet. If either incarnation finds its belief to be wrong, it dies.

ε, ε → $

0, ε → #
1, ε → #

0, ε → ε

0,# → ε
1,# → ε

ε, $ → ε

1.3. This PDA has two parts, each of which is similar to the PDA from 1.1. One checks if N0(x) =
N1(x), ignoring 2’s, while the other checks if N1(x) = N2(x), ignoring 0’s.

ε, ε → $

ε, ε → ε

ε, ε → ε

0, $ → 0$
0, 0 → 00
0, 1 → ε
1, $ → 1$
1, 1 → 11
1, 0 → ε
2, ε → ε

ε, $ → ε

1, $ → 1$
1, 1 → 11
1, 2 → ε
2, $ → 2$
2, 2 → 22
2, 1 → ε
0, ε → ε

ε, $ → ε

Page 1 of 4



CS 39
Fall 2005
Theory of Computation

Homework 4 Solutions

Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

2. (An alternate approach to regular languages)

2.1. To prove that “≡A” in an equivalence relation, we need to show that it possesses the following
three properties.

1. Reflexivity:

∀w ∈ Σ∗(xw ∈ A ⇐⇒ xw ∈ A) =⇒ x ≡A x.

2. Symmetry:

x ≡A y =⇒ ∀w ∈ Σ∗(xw ∈ A ⇐⇒ yw ∈ A)

=⇒ ∀w ∈ Σ∗(yw ∈ A ⇐⇒ xw ∈ A)

=⇒ y ≡A x.

3. Transitivity:

(x ≡A y) ∧ (y ≡A z) =⇒ ∀w′ ∈ Σ∗(xw′ ∈ A ⇐⇒ yw′ ∈ A) ∧ (1)

∀w′′ ∈ Σ∗(yw′′ ∈ A ⇐⇒ zw′′ ∈ A)

=⇒ ∀w ∈ Σ∗





(xw ∈ A ⇐⇒ yw ∈ A)
∧

(yw ∈ A ⇐⇒ zw ∈ A)



 (2)

=⇒ ∀w ∈ Σ∗(xw ∈ A ⇐⇒ zw ∈ A)

=⇒ x ≡A z.

Hence “≡A” is an equivalence relation.
Note. Pay particular attention to the step (1) =⇒ (2). For any w ∈ Σ∗, applying each of
the two statements from (1) gives us (xw ∈ A ⇐⇒ yw ∈ A) and (yw ∈ A ⇐⇒ zw ∈ A),
respectively. Hence, (2).
For illustration, suppose the definition of x ≡A y had instead been ∃w ∈ Σ∗(xw ∈ A ⇐⇒
yw ∈ A). This step would then fail because taking an arbitrary w ∈ Σ∗ may fail to satisfy
one or both of the clauses in (1) if w 6= w′ or w 6= w′′.

2.2. C1 = {ε}
C2 = {a, b}
C3 = {aa, ba}
C4 = {aaa, baa}
C5 = (C1 ∪ C2 ∪ C3 ∪ C4)
Note that C5 is the infinite class alluded to. Any string x ∈ C5 satisfies ∀w ∈ Σ∗(xw /∈ A). In
particular, for any two strings x, y ∈ C5, ∀w ∈ Σ∗(xw /∈ A ∧ yw /∈ A), so that it is trivially
true that ∀w ∈ Σ∗(xw ∈ A ⇐⇒ yw ∈ A).

2.3. C1 = a∗

C2 = a∗b+

C3 = a∗b∗c+

C4 = (C1 ∪ C2 ∪ C3)

2.4. C1 = (ab ∪ ba)∗

C2 = (ab ∪ ba)∗a
C3 = (ab ∪ ba)∗b
C4 = (C1 ∪ C2 ∪ C3)

Page 2 of 4



CS 39
Fall 2005
Theory of Computation

Homework 4 Solutions

Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

2.5. The left equivalence classes of {0n1n : n ≥ 0} fall into three types. The first type consists of
an infinite number of singleton sets:
C1

0 = {ε}
C1

1 = {0}
C1

2 = {00}
. . .
C1

k
= {0k}

. . .
The second type consists of an infinite number of infinite sets:
C2

0 = {0n1n : n > 0}
C2

1 = {0n1n−1 : n > 1}
C2

2 = {0n1n−2 : n > 2}
. . .
C2

k
= {0n1n−k : n > k}

. . .
Finally, the third type consists of just one class, which contains everything else:

C3 =
(
⋃

∞

k=0
C1

k

)

∪
(
⋃

∞

k=0
C2

k

)

.

2.6. The problem can be mathematically formulated as the following claim.

Claim. ∀x, y ∈ Σ∗,∀a ∈ Σ([x]A = [y]A =⇒ [xa]A − [ya]A).

Proof. Given [x]A = [y]A, we know by definition that

x ≡A y

=⇒ ∀w ∈ Σ∗(xw ∈ A ⇐⇒ yw ∈ A)

=⇒ ∀w ∈ Σ∗(xaw ∈ A ⇐⇒ yaw ∈ A)

=⇒ xa ≡A ya

from which it follows again by definition that [xa]A = [ya]A.

2.7. We will design a DFA for A. The key idea is to create a state for each equivalence class of A.
This also gives us a very natural definition of the transition function δ, where we transition
from state [x]A to state [xa]A upon reading the symbol a, so we can define our DFA as follows.

Let M = (Q,Σ, δ, q0, F ), where

Q = {[x1]A, [x2]A, . . . , [xn]A}

δ([x]A, a) = [xa]A for every [x]A ∈ Q and every a ∈ Σ.

q0 = [ε]A

F = {[x]A : x ∈ A}

The first question is why δ is well-defined, that is, why it can take us to only one unique
state, even had we chosen a different representative y of [x]A. Fortunately, this is precisely the
guarantee of 2.6, so that M is a correctly defined DFA.

The second question is why our definition of F , which certainly guarantees that every string
in A is accepted, does not allow M to accept some string y /∈ A. But such a y would have to
be ≡A to some x ∈ A, that is, ∀w ∈ Σ∗(yw ∈ A ⇐⇒ xw ∈ A). In particular, we can choose
w = ε, so that y ∈ A ⇐⇒ x ∈ A, contradicting the facts that y /∈ A and x ∈ A. It follows
that L(M) = A, and hence that A is regular.

Page 3 of 4



CS 39
Fall 2005
Theory of Computation

Homework 4 Solutions

Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

2.8. This solution was written by Amit Chakrabarti

Informal description: If A is a regular language over the alphabet Σ, we can build a DFA
M to recognize it. We will map strings in Σ∗ to states of M in a natural way and show that

if two strings x and y map to the same state, then x ≡A y.

In other words, if two strings are not equivalent, they will map to distinct states of M . If A in
fact has infinitely many left equivalence classes, then we can find infinitely many strings (one
from each class) such that no two are equivalent, so they would have to map into an infinite
number of different states. However, being a DFA, M only has a finite number of states, giving
us a contradiction.

Formal proof:

Given a regular language A, we can first build M(A) = (Q,Σ, δ, q0, F ). Recall the function
δ̂ : Q × Σ∗ → Q from class (and the Oct 10 lecture notes): δ̂(q, x) tells us the state M(A)
ends up in when it is started in state q and fed input x. For each string x ∈ Σ∗, define
q(x) = δ̂(q0, x). This is the state that we’re going to map x to.

We claim that if q(x) = q(y), then x ≡A y. As explained in the informal description, this
would complete the proof.

Suppose q(x) = q(y). We must show that ∀w (xw ∈ A ⇐⇒ yw ∈ A). Suppose w is a
string such that xw ∈ A. Then, the machine M(A) must accept xw, so q(xw) ∈ F . But
q(xw) = δ̂(q(x), w) = δ̂(q(y), w) = q(yw); thus q(yw) ∈ F as well. So M(A) accepts yw, i.e.,
yw ∈ A. We have shown that xw ∈ A =⇒ yw ∈ A. Clearly, a very similar proof shows that
xw ∈ A ⇐= yw ∈ A, and we are done.

2.9. We know from 2.5 that the language {0n1n : n ≥ 0} has infinitely many left equivalences
classes. It follows immediately from 2.8 that it cannot be regular.

2.10. Let A = {x ∈ {0, 1}∗ : x is a palindrome}. Now, consider another infinite set of strings over
the same alphabet given by {0n1 : n ≥ 0} = {1, 01, 001, 0001, . . . }. Then for any m,n ≥ 0,
m 6= n, 0n10n is a palindrome (i.e., ∈ A) whereas 0m10n is not (i.e., /∈ A), so by definition
0n1 6≡A 0m1 (for w = 0n). We therefore have infinitely many strings no two of which belong
to the same left equivalence class of A, so by the Pigeonhole Principle A must have infinitely
many left equivalence classes. It follows from 2.8 that A is nonregular.

Page 4 of 4


