
CS 39
Fall 2006
Theory of Computation

Homework 7 Solutions
Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

1. (Infinite recognizable languages contain infinite decidable ones)

Proof. Recall that a language is recognizable if and only if there is an enumerator for it, and a
language is decidable if and only if there is a enumerator for it which enumerates all strings in
canonical order. We use these two facts to prove our claim.

Let L be any infinite recognizable language, and let E be an enumerator of L. We construct an
enumerator E′ which enumerates an infinite subset of L in canonical order, as follows.

Run E.1

On first string w0 output by E, OUTPUT w0.2

for each string w output by E do3

if w > last string output (by E′) then OUTPUT w.4

5

Clearly, E′ enumerates a subset L′ of L in canonical order, so it remains to show that L′ is in fact
infinite. Suppose, to get a contradiction, that it is finite. Then let wmax be the greatest string in
L′, and hence the last one output by it. But L is infinite, and there are only finitely many strings
< wmax, so E must eventually output a string > wmax, at which point E′ would have output it as
well. This contradicts the definition of wmax, completing our proof.

2. (Detectability of useless states)

2.1. Proof. The following is a decider for UDFA.

On input DFA M = (Q,Σ, δ, q0, F ). . .
Mark q0.1

while there is an unmarked state q ∈ Q that is reachable from a marked state do2

Mark q.3

if there exists an unmarked state then ACCEPT else REJECT.4

This is simply a search (either breadth-first or depth-first will do) of the underlying digraph
of the DFA, at the end of which every state reachable from q0 is marked. Hence, a simple
traversal through all the states suffices to check if any state remaines unmarked.

2.2. Proof. We know that EPDA = {〈M〉 : M is a PDA and L(M) = ∅} is decidable, so let D be a
decider for it. We will use D as a subroutine to decide UPDA as follows.

On input PDA M = (Q,Σ,Γ, δ, q0, F ). . .
for each q ∈ Q do1

Run D on the PDA (Q,Σ,Γ, δ, q0, {q}).2

if D accepts then ACCEPT.3

REJECT.4

Since PDAs have stacks, it is not enough to only consider the underlying digraph as in the case
of DFAs, since although there may be a path in this graph, that path might not be realizable
because of requirements on the stack values. Our strategy, however, guarantees that we detect
all unreachable states, since by making each state the only final state, the language captured
is nonempty if and only if that final state is reachable.

Page 1 of 5



CS 39
Fall 2006
Theory of Computation

Homework 7 Solutions
Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

2.3. Proof. Suppose, to get a contradiction, that UTM is decidable, with decider D. We then use it
as a subroutine to nondeterministically decide ETM, which we know to be undecidable, giving
us the desired contradiction.

On input TM M = (Q,Σ,Γ, δ, q0, qaccept, qreject). . .

if q0 = qaccept then ACCEPT.1

Guess a subset S of Q− {q0, qaccept, qreject}, possibly empty.2

Let δ′ be the restriction of δ to Q− S.3

Run D on the TM (Q− S, Σ,Γ, δ′, q0, qaccept, qreject).4

if D rejects then ACCEPT else REJECT.5

Note that wherever δ maps to a state not in Q − S, δ′ simply maps to qreject. Now, to see
that this is a correct decider for ETM, first observe that if q0 = qaccept, then M would certainly
accept ε, so our decider correctly accepts. If this is not the case, it remains to check whether
or not qaccept is a useless state. The key observation here is that if it is a useless state, then
no matter how many other states we trim away, it will still be useless. On the other hand, if
it is not useless, than some other states might be useless, but some incarnation of our decider
will guess exactly this set of useless states to be S. As a result, the restricted TM would have
no useless states, so that D would reject and our decider accept.

3. (Recognizability vs. decidability)

3.1. A = {〈M〉 : M is a TM and M accepts at least two strings} is recognizable, but not decidable.

Proof. Below is a simple recognizer for A.

On input TM M . . .
Convert M into an equivalent enumerator E.1

Run E.2

if E ever outputs two strings then ACCEPT.3

Now, suppose, to get a contradiction, that A is decidable. Let D be a decider for A, which we
will use to decide ATM, giving us the desired contradiction.

First, let us defined a TM NM,w, which depends on another TM M and a string w, as follows.

On input u

Run M on w.1

if M ever accepts then ACCEPT.2

if M ever rejects then REJECT.3

Observe that

L(NM,w) =
{

Σ∗ if M accepts w
∅ otherwise

We can then decide ATM as follows.

Page 2 of 5



CS 39
Fall 2006
Theory of Computation

Homework 7 Solutions
Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

On input TM M and string w. . .
Run D on 〈NM,w〉.1

if D accepts then ACCEPT else REJECT.2

Now, by our construction of NM,w,

M accepts w ⇐⇒ L(NM,w) = Σ∗

⇐⇒ NM,w accepts at least two strings
⇐⇒ D accepts NM,w

⇐⇒ the above TM accepts 〈M,w〉

completing our proof.

3.2. A = {〈M〉 : M is a TM and M accepts exactly two strings} is unrecognizable.

Proof. We use a trick similar to the one above to reduce ATM to A. First, suppose, to get a
contradiction, that R is a TM that recognizes A. We define a TM N(M,w) as follows,

On input u. . .
if u = 0 or 00 then ACCEPT.1

Run M on w.2

if M ever accepts then ACCEPT.3

if M ever rejects then REJECT.4

We then have

L(NM,w) =
{

Σ∗ if M accepts w
{0, 00} otherwise

We can then recognize ATM by the following TM.

On input TM M and string w. . .
Run R on NM,w.1

if R accepts then ACCEPT.2

To see that this TM would correctly recognize ATM, observe that

M does not accept w ⇐⇒ L(NM,w) = {0, 00}
⇐⇒ NM,w accepts exactly two strings
⇐⇒ R accepts NM,w

⇐⇒ the above TM accepts 〈M,w〉

which completes our proof.

3.3. A = {〈M〉 : M is a TM and M halts on input ε} is recognizable but not decidable.

Proof. Below is a simple recognizer for A.

Page 3 of 5



CS 39
Fall 2006
Theory of Computation

Homework 7 Solutions
Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

On input TM M . . .
Run M on ε.1

if M ever accepts then ACCEPT.2

if M ever rejects then ACCEPT.3

To prove undecidability, we present a reduction from ATM. For concision, we will omit the
standard procedure to use the reduction as a subroutine to decide ATM.
Define a TM NM,w, which depends on another TM M and a string w, as follows.

On input u. . .
Run M on w.1

if M ever accepts then ACCEPT.2

if M ever rejects then keep running in an infinite loop.3

Note that L(NM,w) is either Σ∗ or ∅. Our reduction is then as follows.

On input 〈M,w〉. . .
Output NM,w.1

This is a correct reduction since

M accepts w =⇒ L(NM,w) = Σ∗

=⇒ NM,w accepts (and halts on) ε

and

M does not accept w =⇒ NM,w loops on all inputs
=⇒ NM,w loops on ε

completing our proof.

3.4. A = {〈M1,M2〉 : M1,M2 are TMs over {0, 1} and L(M1) = L(M2)} is unrecognizable.

Proof. We reduce ATM to A as follows. First, define NM,w as follows.

On input u. . .
Run M on w.1

if M accepts then ACCEPT.2

if M rejects then REJECT.3

Note that

L(NM,w) =
{

∅ if 〈M,w〉 ∈ ATM

Σ∗ otherwise

Our reduction is then as follows.

Page 4 of 5



CS 39
Fall 2006
Theory of Computation

Homework 7 Solutions
Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

On input 〈M,w〉. . .
Construct a TM N such that L(N) = Σ∗.1

Output 〈N,NM,w〉.2

Observe that 〈M,w〉 ∈ ATM ⇐⇒ L(NM,w) = ∅ = L(N), thus this is a correct reduction.

4. (EQCFG is co-recognizable)

Proof. Recall that ACFG is decidable, so let D be a decider for it. We will use D to decide EQCFG

as follows.

On input 〈G1, G2〉. . .
for each string w ∈ Σ∗ in canonical order do1

Run D on 〈G1, w〉.2

Run D on 〈G2, w〉.3

if D accepts one and rejects the other then ACCEPT.4

5

If L(G1) 6= L(G2), then there must be a string w at which they differ, so that our TM will detect
this after finite time and accept. On the other hand, if L(G1) = L(G2), then our TM will loop
forever. Hence, it correctly recognizes EQCFG.

Page 5 of 5


