
CS 39
Fall 2005
Theory of Computation

Homework 8 Solutions
Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

1. (Proof that P 6= NP?)

The error lies in the definition of the “time complexity” of SAT. The time complexity of SAT is
the running time of the best decider for SAT. The given algorithm is just one, and might not be
the best one. Therefore, all it tells us is that the time complexity of SAT is at most exponential.

2. (DoubleSAT is NP-complete)

Proof. To see that DoubleSAT is in NP, we use the standard guess-and-check approach: guess
two distinct assignments to φ and accept if they both satisfy φ.

To prove that DoubleSAT is NP-hard, we reduce SAT to it, as follows.

“On input φ:
Let a be a new variable not in φ.1

Let φ′ = (φ ∧ a) ∨ (φ ∧ a).2

Output φ′.”3

Suppose A is an assignment that makes φ true. Then extending A by either a = T or a = F makes
φ′ true as well, so that φ′ has at least two satisfying assignments. On the other hand, if φ cannot
be satisfied, then regardless of what we assign to a, neither (φ ∧ a) nor (φ ∧ a) can be satisfied,
whence φ′ is unsatisfiable as well. Therefore this is a correct reduction, and we are done.

3. (Knapsack is NP-complete)

3.1. Consider the following counterexample: 〈3, 3, 2, 2, 5, 3, 3, 4, 6〉. That is, we have three objects:
A, B, and C, where A has weight 3 and value 5, while B and C both have weight 2 and value
3; the weight limit of our knapsack is 4; and our target loot is 6. Now, since 5/3 > 3/2, the
greedy burglar (algorithm) will pick A first. But after that, he will have only 1 weight unit
left in his knapsack, so will not be able to take anything else, giving him a total loot of only
5 < 6. On the other hand, the smart burglar would have taken B and C, giving him a total
loot of 6.

3.2. Proof. To nonderterministically decide Knapsack, simply guess a subset of items and check
if it satisfies the weight and value requirements. This can certainly be done in polynomial
time, so Knapsack is in NP.
To prove that it is NP-hard, we reduce Subset-Sum to it. Recall that Subset-Sum consists
of pairs 〈S, t〉, where S is a multiset of positive integers, some subcollection of which adds up
to t. Our reduction is as follows.

“On input 〈S, t〉:
Let S = {x1, . . . , xn}.1

Output 〈n, x1, . . . , xn, x1, . . . , xn, t, t〉.”2

Observe that

〈S, t〉 ∈ Subset-Sum ⇐⇒ ∃T ⊂ {1, . . . , n} such that
∑
i∈T

xi = t

⇐⇒ ∃T ⊂ {1, . . . , n} such that

(∑
i∈T

xi ≤ t
∧∑

i∈T

xi ≥ t

)
⇐⇒ 〈n, x1, . . . , xn, x1, . . . , xn, t, t〉 ∈ Knapsack.

Page 1 of 3



CS 39
Fall 2005
Theory of Computation

Homework 8 Solutions
Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

Hence this is a correct reduction, and we are done.

4. (MaxCut is NP-complete)

4.1. (a) Proof. Let A be a 6=-assignment to φ. Then A assigns either one or two true literals to
each clause of φ. Consider A, the negation of A. Every clause where A assigned one
true, A must now assign two trues, and every remaining clause, A must now assign one
true. It follows that A assigns either one or two true literals to every clause, and thus is
a 6=-assignment as well.

(b) Proof. Suppose we take a 3cnf-formula φ and replace each clause ci = (y1 ∨ y2 ∨ y3) with
the two clauses (y1 ∨ y2 ∨ zi) and (zi ∨ y3 ∨ b) to produce φ′.
To see that this is a reduction from 3SAT to 6=SAT, suppose φ had a satisfying assignment
A. Then for each clause ci = (y1 ∨ y2 ∨ y3), at least one of y1, y2, y3 must have been true
under A. To get a 6=-assignment for φ′, first extend A with b = F . Now, if either y1 or y2

is true, extend A with zi = F . Otherwise, if y3 is true, extend A with zi = T . In either
case, we make both clauses true, but with at least one false literal in each. Since we can
do this for every i, we have a 6=-assignment for φ′.
Conversely, suppose φ has no satisfying assignment, and let A′ be a satisfying 6=-assignment
to φ′. We can restrict A′ to the variables of φ to get an assignment A. But A must assign
all three literals false in some clause ci of φ, which forces A′ to have assigned zi = T and
b = T . Now, suppose A assigns all three literals true for some clause cj . Then in the
corresponding two clauses in φ′, no matter what value zj takes, at least one must have
three true literals, contradicting the assumption that A′ is an 6=-assignment. Hence such
an assignment cannot exist, and we are done.

(c) Proof. Since we know that 3SAT is NP-hard, the above reduction tells us that 6=SAT is
NP-hard as well. To see that it is in NP, observe that we can decide it by simply guessing
an assignment, and checking that it is indeed 6=. It follows that 6=SAT is NP-complete.

4.2. Proof. We can decide Max-Cut by simply guessing a cut and counting its size. This is clearly
polynomial, so Max-Cut is in NP. We show that it is NP-hard by a reduction from 6=SAT,
as follows.

“On input φ:
Convert each clause (x ∨ y ∨ z) into a triangle with vertices x, y, z and edges1

{x, y}, {x, z}, {y, z}.
For every pair of vertices x and x, add edge {x, x}.2

Let k be the number of edges added in Line 2, and G be the resulting graph.3

Output 〈G, k + 2c〉, where c is the number of clauses in φ.”4

Note that this construction is identical to the one you saw in class used to reduce 3SAT to IS,
with the addition only of the k + 2c. Now, suppose A is an 6=-assignment to φ. Consider the
cut of G consisting of T = {vertices assigned true} and F = {vertices assigned false}. Observe
that all k “conflict” edges must cross the cut for A to be an assignment at all. Moreover, since
A is an 6=-assignment, two edges from each of the c triangles must cross the cut. This gives
us a total of k + 2c edges, as desired.
Conversely, suppose (T, F ) is a cut of G of size ≥ k + 2c. Note that at most two edges in
any triangle can cross the cut, so those can at best give us a contribution of 2c edges. Thus,
the remaining k “conflict” edges must all cross, giving us a total, in fact, of exactly k + 2c.

Page 2 of 3



CS 39
Fall 2005
Theory of Computation

Homework 8 Solutions
Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

But this gives us an 6=-assignment to φ, with all vertices in T assigned true and those in F
assigned false, so we are done.

5. (RSA cryptography and P = NP)

First, we can restate the problem of breaking the RSA cryptosystem as that of factoring a product
of two primes; that is, given an input positive integer n = pq, p, q prime, we must find and output
either p or q.

Consider the following decision problem: given positive integers n, k, where k < n, does n have a
factor p such that 2 ≤ p ≤ k? This can be solved in nondeterministic polynomial time by guessing
such a p and dividing n by it to see if it is a factor, hence it is in NP. But if P = NP, then it is in P
as well, so we can use a black-box polytime decider for it to do a binary search on {1, . . . , n} and
find a factor in O(log n) iterations.

Note that a brute force search of {1, . . . , n} will not work since our running time needs to be
polynomial in the size of the input, that is, log n.

Page 3 of 3


