
CS 39

Fall 2006

Theory of Computation

Solutions to Mid-Term Exam
Written by Amit Chakrabarti

Prof. Amit Chakrabarti

Computer Science Department

Dartmouth College

Who Graded What

Hong Lu: #1, #2, #6

Amit Chakrabarti: #3, #4, #5

Vibhor Bhatt: #7, #8

The Solutions

1. Write a regular expression for the language generated by the following grammar:

S −→ AT

T −→ ABT | TBA | AA

A −→ 0

B −→ 1

A single line answer will do; you don’t have to justify or show any steps. Your regular
expression should be as simple as possible.

Solution: The grammar generates 0(01)∗00(10)∗.

2. Draw a DFA for the language

{x ∈ {0, 1}∗ : x contains an equal number of occurrences of the substrings 01 and 10} .

For example, 101 and 0000 are in the language, but 1010 is not.

Solution: The idea is to handle strings beginning with a 1 and strings beginning with a 0
separately. The following DFA does the job:

q0

q1 q2

q3 q4

0

1

0

0 1

1
0

1
1 0

3. Recall that xR denotes the reverse of the string x. For a language L, let LR = {xR : x ∈ L}.
Give a complete formal proof that if L is regular, so is LR.

Solution: The idea is to start with a DFA for the regular language L and “reverse all the

arrows” in this DFA, make its start state an accept state of the resulting machine, and make

all its accept states start states (or rather, since only one start state is allowed, to introduce

Page 1 of 5

CS 39

Fall 2006

Theory of Computation

Solutions to Mid-Term Exam
Written by Amit Chakrabarti

Prof. Amit Chakrabarti

Computer Science Department

Dartmouth College

ε-transitions from a new start state to all the former accept states). This procedure clearly
gives us an NFA, because, for instance, if there are five different states of the initial DFA that

all lead into a state q on reading input symbol a, then after the conversion, q will lead to
these five different states on input a. Now we give a formal proof.

Suppose L is a regular language. Let M = (Q, Σ, δ, q0, F) be a DFA recognizing L. Let us
construct an NFA M ′ = (Q ∪ {qnew}, Σ, δ′, qnew, {q0}) where δ′ is given by

δ′(qnew, ε) = F ,

δ′(qnew, a) = ∅ , ∀ a ∈ Σ ,

δ′(q, ε) = ∅ , ∀ q ∈ Q ,

δ′(q, a) = {r ∈ Q : δ(r, a) = q} , ∀ q ∈ Q, a ∈ Σ .

We claim that L(M ′) = LR, which would prove that LR is regular. To prove our claim, we

need to argue that (1) L(M ′) ⊆ LR and that (2) LR ⊆ L(M ′).

To prove (1), consider an x ∈ L(M ′). By definition, this means that we can write x =
a1a2 . . . an with each ai ∈ Σε and find a sequence r0, r1, . . . , rn of states of M ′ such that

• r0 = qnew, the start state of M ′,

• ri ∈ δ′(ri−1, ai), for 1 ≤ i ≤ n, and

• rn ∈ {q0}, the set of final states of M ′.

By construction, a1 must be ε, because otherwise the set δ′(r0, a1) = δ′(qnew, a1) would be

empty. Also, the states ri−1 for 2 ≤ i ≤ n must all be different from qnew, and so, every ai for

2 ≤ i ≤ n must be different from ε (i.e., in the set Σ). Therefore, by construction, δ′(ri−1, ai)
for 2 ≤ i ≤ n is the set of all r such that δ(r, a) = ri−1. Since, by the second bullet above,

ri is in this set, it follows that δ(ri, ai) = ri−1. Finally, the state r1 must lie in F , because it

must lie in δ′(r0, a1) = δ′(qnew, ε) = F . Thus, we have

• rn = q0, the start state of M ,

• ri−1 = δ(ri, ai), for n ≥ i ≥ 2, and

• r1 ∈ F , the set of final states of M .

Thus we have a sequence rn, rn−1, . . . , r1 of states of M which satisfies the above three
bullets; this ensures that anan−1 . . . a2 ∈ L(M) = L, i.e., that xR ∈ L, i.e., that x ∈ LR.

The proof of (2) is very similar, so we only sketch it here. We start with an x ∈ LR. This

means xR ∈ L = L(M). Therefore xR takes M through a sequence r0, r1, . . . , rn of steps

with r0 = q0 and rn ∈ F . Arguing just as above, we can show that x can take M ′ through
the sequence of states qnew, rn, rn−1, . . . , r0 and since qnew is the start state of M ′ and r0 is

an accept state of M ′, we see that M ′ accepts x. So x ∈ L(M ′).

4. Consider two languages A, B ⊆ Σ∗. Prove that (A∗B∗)∗ = (A ∪ B)∗. Remember that to

prove X = Y for sets X and Y you must separately prove X ⊆ Y and Y ⊆ X .

First Solution: Suppose x ∈ (A∗B∗)∗. By definition of Kleene star, x is a concatenation of

zero or more strings, each in A∗B∗, i.e. x = x1x2 . . . xn with each xi ∈ A∗B∗. Again, by
definition, each xi = yi1yi2 . . . yisi

zi1zi2 . . . ziti
with each yij ∈ A and each zij ∈ B. Putting

it all together:

x = y11 . . . y1s1
z11 . . . z1t1y21 . . . y2s2

z21 . . . z2t2 zntn
.

Since each yij and each zij is in A ∪ B, it follows that x ∈ (A ∪ B)∗. We have shown that

(A∗B∗)∗ ⊆ (A ∪ B)∗.

Page 2 of 5

CS 39

Fall 2006

Theory of Computation

Solutions to Mid-Term Exam
Written by Amit Chakrabarti

Prof. Amit Chakrabarti

Computer Science Department

Dartmouth College

Now, suppose x ∈ (A ∪ B)∗. Then x = x1x2 . . . xn where each xi ∈ A ∪ B. If an xi ∈ A,
we can write xi = xiε which puts it in A∗B∗. If an xi ∈ B, we can similarly write xi = εxi

which puts it in A∗B∗. Therefore, each xi ∈ A∗B∗, whence x ∈ (A∗B∗)∗. We have shown
that (A ∪ B)∗ ⊆ (A∗B∗)∗.

This completes the proof.

Second Solution: Since A∗ ⊆ (A ∪ B)∗ and B∗ ⊆ (A ∪ B)∗, we have

A∗B∗ ⊆ (A ∪ B)∗(A ∪ B)∗ = (A ∪ B)∗ .

Applying the Kleene star to both sides, we get (A∗B∗)∗ ⊆ ((A ∪ B)∗)∗ = (A ∪ B)∗.

Since A ⊆ A∗ ⊆ A∗B∗ and B ⊆ B∗ ⊆ A∗B∗, we have A ∪ B ⊆ A∗B∗. Applying the Kleene

star to both sides, we get (A ∪ B)∗ ⊆ (A∗B∗)∗.

5. Prove that there exist languages A, B, C ⊆ {0, 1}∗ that satisfy all of the following properties:

(a) A = B ∩ C.

(b) B and C are both non-regular.

(c) A is infinite and regular.

To get any credit, you must prove all three properties for whatever A, B, C you have decided

to use.

Solution: Define the sets X = {0n2

: n ≥ 0}, Y = 0∗ − X and A = 11∗. Note that, by

construction, any two of X , Y and A are disjoint; so a Venn diagram of these three sets

would look like this:

{0,1}

Y

X A*

Define B = X ∪A, C = Y ∪A. By the disjointness observed above (see diagram), condition

(a) clearly holds. Since A = 11∗ is regular, condition (c) also holds. The only nontrivial
thing is to establish condition (b). Let us use bars to denote complements of languages with

respect to {0, 1}∗. Then, by the disjointness conditions (see diagram), X = B − A = B ∩ A.

Similarly, Y = C ∩ A. Now we shall establish condition (b) using a proof by contradiction.

First, suppose B is regular. Then, by closure of regular languages under complement and

intersection, X = B∩A would also be regular. But we’ve prove in class that X is not regular,

so we have a contradiction. Thus, B must be non-regular. Next, suppose C is regular. Again,
by closure properties, Y = C ∩ A would be regular. The complement of Y with respect to

0∗ is X , so X must also be regular and again we have a contradiction. Thus, C must be

non-regular.

6. A permutation of a string x is any string that can be obtained by rearranging the characters
of x. Thus, for example, the string abc has exactly six permutations:

abc, acb, bac, bca, cab, cba .

Page 3 of 5

CS 39

Fall 2006

Theory of Computation

Solutions to Mid-Term Exam
Written by Amit Chakrabarti

Prof. Amit Chakrabarti

Computer Science Department

Dartmouth College

Clearly, if y is a permutation of x, then |y| = |x|. For a language L over alphabet Σ, define

PERMUTE(L) = {x ∈ Σ∗ : x is a permutation of some string in L} ,

SELECT(L) = {x ∈ Σ∗ : every permutation of x is in L} .

Classify each of the following statements as TRUE or FALSE, and give proofs justifying your
classifications.

6.1. If L1 = 1∗0, then PERMUTE(L1) is regular.

Solution: TRUE. In this case PERMUTE(L1) = {x ∈ {0, 1}∗ : x contains exactly one

0} = 1∗01∗, which is clearly regular.

6.2. If L2 = 0∗1∗, then SELECT(L2) is regular.

Solution: TRUE. We claim that SELECT(L2) = 0∗∪1∗, which is clearly regular. To prove

this, we first note that any string in 0∗ ∪ 1∗ has only one permutation (namely, itself)

and that belongs to L2; therefore 0∗ ∪ 1∗ ⊆ SELECT(L2). We then note that any string
x ∈ L2 − (0∗ ∪ 1∗) contains at least one 0 and at least one 1, so one of its permutations

must contain the substring “10.” This permutation clearly does not belong to L2, so
x /∈ SELECT(L2). Therefore SELECT(L2) ⊆ 0∗ ∪ 1∗.

6.3. Regular languages are closed under the operation PERMUTE.

Solution: FALSE. For a counterexample, consider L = (01)∗. Any string in L contains

an equal number of 0’s and 1’s, so, when we take all permutations of all strings in L, we
get precisely the language {x ∈ {0, 1}∗ : x contains as many 0’s as 1’s}. We have proved

in class, using the pumping lemma, that this language is not regular. Thus PERMUTE(L)
need not be regular even if L is.

6.4. Regular languages are closed under the operation SELECT.

Solution: FALSE. For a counterexample, consider L′ = (01)∗, with the complement

being taken with respect to alphabet {0, 1}. Clearly L′ is regular. If a string x has an
unequal number of 0’s and 1’s, then no matter how we permute it we will never land

in the set (01)∗, i.e., every permutation of x is in L′, i.e., x ∈ SELECT(L′). On the

other hand, if a string x has as many 0’s as 1’s, then it can be permuted into the form
(01)∗, so x /∈ SELECT(L′). In short, we have shown that SELECT(L′) = {x ∈ {0, 1}∗ : x
contains an unequal number of 0’s and 1’s}. Thus, SELECT(L′) is the complement of a
non-regular language, whence it is itself non-regular.

7. Draw a PDA for the language {0i1j : i < j < 2i}. For clarity, keep your stack alphabet
disjoint from {0, 1}. Provide a brief justification (no need for a formal proof) that your PDA

works correctly.

Solution: Let L be the given language. First, let us try to build a PDA for a slightly easier

language: L′ = {0i1j : i ≤ j ≤ 2i}. The idea is to push either one or two a’s (choose

nondeterministically) onto our stack as we read the 0’s in the input string, and then pop one
symbol at a time as we read the 1’s. If we empty the stack at the same time as when we

finish reading the input, we may accept.

But for the language L, we must reject strings of the form 0i1i and 0i12i. To do so, observe

that the shortest string in L is 00111 and that any string in L is therefore of the form

000i′1j′111

for some i′ ≥ 0, j′ ≥ 0, and (i′ + 2) < (j′ + 3) < 2(i′ + 2). Since i′ and j′ are integers, the
latter condition is equivalent to i′ ≤ j′ ≤ 2i′. Thus, strings in L are simply strings in L′ with

two 0’s prepended and three 1’s appended. With this in mind, we build our PDA:

Page 4 of 5

CS 39

Fall 2006

Theory of Computation

Solutions to Mid-Term Exam
Written by Amit Chakrabarti

Prof. Amit Chakrabarti

Computer Science Department

Dartmouth College

0, ε→$ 0, ε→ε ε, ε→ε

1, $→ε

1, ε→ε1, ε→ε

0, ε→a 0, ε→aa 1, a→ε

8. Design a context-free grammar for the complement of the language {anbn : n ≥ 0} over the

alphabet {a, b}. Give brief explanations for the “meanings” of your variables (i.e. explain
what strings are generated by each of your variable).

Solution: A string in the complement of {anbn : n ≥ 0} is either of the form {aibj : i > j ≥
0} or of the form {aibj : j > i ≥ 0} or not of the form a∗b∗, which means that it contains the
substring ba. In the following grammar, the variable U generates strings of the third type,

while T generates strings of the form anbn to which we either prepend a string of one or

more a’s (generated by A) or append a string of one or more b’s (generated by B).

S −→ AT | TB | U

A −→ Aa | a

B −→ Bb | b

T −→ aT b | ε

U −→ V baV

V −→ V a | V b | ε

Another Cute Solution: The following cute CFG, suggested by Jason Reeves ’07, also hap-
pens to work (proof left as an exercise to the reader):

A −→ B | aAb

B −→ a | b | aCa | bCb | bCa

C −→ ε | B | aCb

Page 5 of 5

