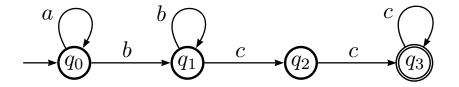
1. A language over an alphabet of size 3, happens to be recognized by an NFA, N, that has 11 states and 5 ε -transitions. Suppose we apply the subset construction to mechanically convert N into an equivalent DFA D. What is the maximum possible number of states that D could have?

[5 points]

Solution: D could have up to $2^{11} = 2048$ states. The alphabet size and the number of ε -transitions are immaterial.

2. Draw an NFA that recognizes the language $\{a^ib^jc^k: i \ge 0, j \ge 1, k \ge 2\}$. Keep it simple! [10 points]

Solution:



3. Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be two DFAs over the same alphabet Σ . Write a formal description of a DFA that recognizes the language $\mathcal{L}(M_1) \cap \mathcal{L}(M_2)$. No proof of correctness required.

[10 points]

Solution: The following DFA, M, recognizes $\mathcal{L}(M_1) \cap \mathcal{L}(M_2)$.

$$M = (Q_1 \times Q_2, \Sigma, \delta, (q_1, q_2), F_1 \times F_2),$$

where δ is given by

$$\delta((q,r),a) = (\delta_1(q,a), \delta_2(r,a)), \quad \forall q \in Q_1, r \in Q_2, a \in \Sigma.$$

4. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA and let $x = a_1 a_2 \dots a_n$ be a string with each $a_i \in \Sigma$. Write a formal mathematical definition of what we mean when we say "M accepts x."

[10 points]

Solution: "*M* accepts *x*" means that there exists a sequence r_0, r_1, \ldots, r_n with each $r_i \in Q$ such that

- $r_0 = q_0$,
- $\delta(r_i, a_{i+1}) = r_{i+1}, \ \forall i \text{ with } 0 \le i < n, \text{ and }$
- $r_n \in F$.

5. Write a regular expression for the language $\{x \in \{R, G, B\}^* : x \text{ has an odd number of } R$'s}. You do not have to give a proof of correctness.

[10 points]

Solution: The intuition is that any string in the given language consists of

- an initial block of symbols ending in the string's first *R*, followed by
- zero or more blocks, each containing two *R*'s and ending in the second *R*, followed by
- a final block of symbols containing no *R*'s.

Thus, the following regular expression generates the language:

 $(G \cup B)^* R ((G \cup B)^* R (G \cup B)^* R)^* (G \cup B)^*.$

- 6. Consider the language $L = 0^* 1^* \cap ((0 \cup 1)(0 \cup 1))^*$.
 - 6.1. Why is the above expression for L not a regular expression?

[5 points]

Solution: Because it contains an intersection operator ' \cap ', whereas regular expressions may only contain union, concatenation and Kleene star operators.

6.2. Write a regular expression for *L*.

[10 points]

Solution: Observe that L consists of all even-length strings of the form $0^{i}1^{j}$, where i and j are non-negative integers. In such a string, either i and j are both even or they are both odd. Therefore,

$$L = (00)^* (11)^* \cup 0(00)^* 1(11)^*.$$

CS 39		Prof. Amit Chakrabarti
Fall 2006	Solutions to Quiz 1	Computer Science Department
Theory of Computation	Oct 17, 2006	Dartmouth College

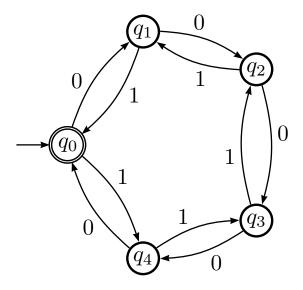
7. For a string $x \in \{0,1\}^*$, let $N_0(x)$ and $N_1(x)$ denote the number of 0's and 1's (respectively) in x. Of the following two languages, at least one is regular. Prove this.

$$\begin{split} L_1 &= & \left\{ x \in \{0,1\}^* : |N_0(x) - N_1(x)| = 5 \right\}, \\ L_2 &= & \left\{ x \in \{0,1\}^* : |N_0(x) - N_1(x)| \text{ is divisible by } 5 \right\}. \end{split}$$

Obviously you should start by picking one of the two languages. Remember, you don't need to prove anything about the other language.

[10 points]

Solution: The language L_2 is regular, because it is recognized by the following DFA.



The language L_1 is not regular. You did not have to prove this, but you should be able to do so by using the pumping lemma to try to pump the string $0^{p+5}1^p \in L_1$, where p is the hypothetical pumping length of L_1 .