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1. (DFA → regular expression)

1.1. R0
11 = ε ∪ a

R0
12 = b

R0
21 = b

R0
22 = ε ∪ a

R1
11 = R0

11 ∪R0
11(R

0
11)

∗R0
11 = (ε ∪ a)+ = a∗

R1
12 = R0

12 ∪R0
11(R

0
11)

∗R0
12 = b ∪ (ε ∪ a)+b = a∗b

R1
21 = R0

21 ∪R0
21(R

0
11)

∗R0
11 = b ∪ b(ε ∪ a)+ = ba∗

R1
22 = R0

22 ∪R0
21(R

0
11)

∗R0
12 = (ε ∪ a) ∪ b(ε ∪ a)∗b = ε ∪ a ∪ ba∗b

R2
12 = R1

12 ∪R1
12(R

1
22)

∗R1
22 = a∗b ∪ a∗b(ε ∪ a ∪ ba∗b)+ = a∗b(a ∪ ba∗b)∗

⇒ L = R2
12 = a∗b(a ∪ ba∗b)∗

1.2. R0
11 = ε

R0
12 = a ∪ b

R0
13 = φ

R0
21 = φ

R0
22 = ε ∪ a

R0
23 = b

R0
31 = a

R0
32 = b

R0
33 = ε

R1
11 = ε

R1
12 = a ∪ b

R1
13 = φ

R1
21 = φ

R1
22 = ε ∪ a

R1
23 = b

R1
31 = a

R1
32 = b ∪ a(a ∪ b) = b ∪ aa ∪ ab

R1
33 = ε

R2
11 = ε

R2
12 = a ∪ b ∪ (a ∪ b)a∗ = a+ ∪ ba∗

R2
13 = (a ∪ b)a∗b = a+b ∪ ba∗b

R2
21 = φ

R2
22 = a∗

R2
23 = b ∪ (ε ∪ a)a∗b = a∗b

R2
31 = a

R2
32 = (b ∪ aa ∪ ab) ∪ (b ∪ aa ∪ ab)a∗(ε ∪ a) = ba∗ ∪ aa+ ∪ aba∗

R2
33 = ε ∪ (b ∪ aa ∪ ab)a∗b = ε ∪ ba∗b ∪ aa+b ∪ aba∗b

R3
11 = ε ∪ (a+b ∪ ba∗b)(ba∗b ∪ aa+b ∪ aba∗b)∗a

R3
13 = (a+b ∪ ba∗b)(ba∗b ∪ aa+b ∪ aba∗b)∗

⇒ L = R3
11 ∪R3

13
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2. (True or false)

2.1. False. For a counterexample, let L be any non-regular language such as {0n1n : n ≥ 0}. Since
L is non-regular, L (the complement of L) is also nonregular. Yet, L ∪ L = Σ∗ is regular.

2.2. False. For a counterexample, let L be any non-regular language such as {0n1n : n ≥ 0}. Since
L is non-regular, L (the complement of L) is also nonregular. Yet, L ∩ L = Φ is regular.

2.3. True. We proved in class that if a language is regular, so is its complement. This is equivalent
to the statement that if the complement of a language is regular, so is that language itself.

2.4. False. Any set can be written as a (possibly infinite) union of singleton sets containing its
elements. In particular, any language L can be written as a union of finite, therefore regular,
languages: L =

⋃
x∈L{x}. More concretely, take our favorite nonregular language. We have

{0n1n : n ≥ 0} =
⋃∞

n=0{0n1n}.
2.5. False. If this were true, then by De Morgan’s Law the previous would also have to be true.

For a concrete counterexample, let An = {0n1n} for every n ≥ 0. Then for every n, An is
regular. Assume, to get a contradiction, that the statement is true. Then

⋂∞
n=0 An is regular,

so that
⋂∞

n=0 An is regular. But by De Morgan’s Law, the latter is just
⋃∞

n=0 An, which we
know to be nonregular, giving us our contradiction.

3. (L regular ⇒ Max(L) regular)

If M = (Q,Σ, δ, q0, F ) is a DFA for L, then the intuition to construct a DFA M ′ for Max(L) is as
follows. If qf is a final state of M and there is a non-empty string that drives M from qf to a final
state (possibly qf itself), then qf should not be a final state in M ′. This ensures that M ′ does not
accept a string in L if there is a way of extending it to be another string in L.

Formally, let M ′ = (Q,Σ, δ, q0, F
′), where F ′ = {q : q ∈ F and ∀x ∈ Σ+, δ̂(q, x) /∈ F}.

4. (L regular ⇒ Cycle(L) regular)

We observe that a string w is in Cycle(L) if and only if there is a way to split w into two parts:
x1 and x2, such that there is a state q of L’s DFA M satisfying

1. δ̂(q, x1) ∈ F and

2. δ̂(q0, x2) = q.

That is to say, a marble starting off in state q ends up in a final state of M upon consuming x1,
and a marble starting off in the initial state of M ends up in q upon consuming x2. This suggests
that the marble should keep track of three things: (1) the state of M where it started, (2) the state
of M at which it currently is, and (3) whether it is consuming x1 or x2. Accordingly, each state of
the new NFA M ′ will be a 3-vector (p, q, i), where p and q are states of M , and i ∈ {1, 2}.
Formally, if M = (Q,Σ, δ, q0, F ) is a DFA for L, define a new NFA M ′ = (Q′,Σ, δ′, q′0, F

′), where

Q′ = Q×Q× {1, 2} ∪ {q′0} where q′0 /∈ Q×Q× {1, 2}
F ′ = {(q, q, 2) : q ∈ Q}

δ′(q′0, ε) = {(q, q, 1) : q ∈ Q}
δ′((p, q, 1), ε) = {(p, q0, 2)} for every q ∈ F

δ′((p, q, i), a) = {(p, δ(q, a), i)} if a ∈ Σ

By the discussion above, M ′ recognizes Cycle(L).
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5. (Regular or not?)

5.1. L = {0m1n0m+n : m,n ≥ 0}.
Nonregular. Assume, to get a contradiction, that L is regular. Let s = 1p0p, where p is the
pumping length. Clearly, s ∈ L (for m = 0 and n = p) and |s| ≥ p, so let s = xyz as specified
by the Pumping Lemma. Since |xy| ≤ p, y must lie entirely within the sequence of 1’s. Hence,
xz = 1p−|y|0p should belong to L by the Lemma, but it does not since p − |y| 6= p, giving us
our contradiction.

5.2. L = {0m1n : m divides n}.
Nonregular. Assume, to get a contradiction, that L is regular. Let s = 0p1p, where p is the
pumping length. Again, let s = xyz as specified by the Pumping Lemma. Since |xy| ≤ p, y
must lie entirely within the sequence of 0’s. Hence, xy2z = 0p+|y|1p should belong to L by
the Lemma, but does not since p + |y| > p so it certainly does not divide p, giving us our
contradiction.

5.3. L = {xwxR : x,w ∈ {0, 1}∗ and |x|, |w| > 0}.
Regular. Careful observation will reveal that a string is in L if and only if it starts and ends
with the same symbol and is of length at least three. L is therefore captured by the regular
expression 0(0 ∪ 1)+0 ∪ 1(0 ∪ 1)+1.

5.4. L = {02n
: n ≥ 0}.

Nonregular. Assume, to get a contradiction, that L is regular. Let s = 02p
, where p is the

pumping length. Let s = xyz as specified by the Pumping Lemma. Then by the Lemma,
xy2z ∈ L. However, clearly |xy2z| > |xyz| = 2p, yet |xy2z| < 2p+1 since |y| ≤ |xy| ≤ p < 2p,
so xy2z /∈ L, giving us our contradiction.

5.5. L = {w ∈ Σ∗
2 : the bottom row of w is the reverse of the top row of w}.

Nonregular. Assume, to get a contradiction, that L is regular. Let s =
[

0
0

]p [
1
1

] [
0
0

]p
, where p

is the pumping length. Let s = xyz as specified by the Pumping Lemma. Since |xy| < p, y

lies entirely in the first sequence of
[

0
0

]
’s. Hence, xz =

[
0
0

]p−|y| [1
1

] [
0
0

]p
does not belong to L,

contradicting the Lemma.

5.6. L = {0m1n : m,n ≥ 0 and m 6= n}.
Nonregular. Assume, to get a contradiction, that L is regular. Let R denote the language
captured by the regular expression 0∗1∗. Then L ∪ R, and therefore L ∪R, must be regular
since the set of all regular languages is closed under union and complementation. But the
latter expression is precisely the language {0n1n : n ≥ 0}, which we know to be nonregular,
giving us our contradiction.
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