
CS 39

Fall 2007

Theory of Computation

Solutions to Mid-Term Exam
Written by Amit Chakrabarti

Prof. Amit Chakrabarti

Computer Science Department

Dartmouth College

Who Graded What

Ranganathan Kondapally: #1, #2, #3.1

Amit Chakrabarti: #3.2, #4

Umang Bhaskar: #5, #6, #7

1. Write a regular expression for the language generated by the following grammar:

S −→ AT

T −→ ABT | TBA | AA

A −→ 0

B −→ 1

Your regular expression should be as simple as possible. No proof of correctness required.

Solution: The grammar generates 0(01)∗00(10)∗.

2. Draw a DFA (no proof required) for the language

{x ∈ {0, 1}∗ : x contains an equal number of occurrences of the substrings 01 and 10} .

For example, 101 and 0000 are in the language, but 1010 is not.

Solution: The idea is to handle strings beginning with a 1 and strings beginning with a 0
separately. The following DFA does the job:

q0

q1 q2

q3 q4

0

1

0

0 1

1
0

1
1 0

3. This problem has two parts, each of which asks you to prove a closure property of regular
languages. In each case, if your proof involves constructing a DFA/NFA, then you must (1)

formally describe the machine you are constructing and (2) explain why your construction

is correct. For step (2), an informal argument will suffice (though if you know how to write
a formal proof, that is also welcome).

Page 1 of 5

CS 39

Fall 2007

Theory of Computation

Solutions to Mid-Term Exam
Written by Amit Chakrabarti

Prof. Amit Chakrabarti

Computer Science Department

Dartmouth College

3.1. Recall that xR denotes the reverse of the string x. For a language L, define

LR = {xR : x ∈ L} .

Prove that if L is regular, so is LR.

Solution: The idea is to start with a DFA for the regular language L and “reverse all the

arrows” in this DFA, make its start state an accept state of the resulting machine, and

make all its accept states start states (or rather, since only one start state is allowed,
to introduce ε-transitions from a new start state to all the former accept states). This

procedure clearly gives us an NFA, because, for instance, if there are five different states
of the initial DFA that all lead into a state q on reading input symbol a, then after the

conversion, q will lead to these five different states on input a. Now we give a formal

proof.

Suppose L is a regular language. Let M = (Q, Σ, δ, q0, F) be a DFA recognizing L. Let
us construct an NFA M ′ = (Q ∪ {qnew}, Σ, δ′, qnew, {q0}) where δ′ is given by

δ′(qnew, ε) = F ,

δ′(qnew, a) = ∅ , ∀ a ∈ Σ ,

δ′(q, ε) = ∅ , ∀ q ∈ Q ,

δ′(q, a) = {r ∈ Q : δ(r, a) = q} , ∀ q ∈ Q, a ∈ Σ .

We claim that L(M ′) = LR, which would prove that LR is regular. To prove our claim,

we need to argue that (1) L(M ′) ⊆ LR and that (2) LR ⊆ L(M ′).

To prove (1), consider an x ∈ L(M ′). By definition, this means that we can write

x = a1a2 . . . an with each ai ∈ Σε and find a sequence r0, r1, . . . , rn of states of M ′ such

that

• r0 = qnew, the start state of M ′,

• ri ∈ δ′(ri−1, ai), for 1 ≤ i ≤ n, and

• rn ∈ {q0}, the set of final states of M ′.

By construction, a1 must be ε, because otherwise the set δ′(r0, a1) = δ′(qnew, a1) would

be empty. Also, the states ri−1 for 2 ≤ i ≤ n must all be different from qnew, and so,
every ai for 2 ≤ i ≤ n must be different from ε (i.e., in the set Σ). Therefore, by

construction, δ′(ri−1, ai) for 2 ≤ i ≤ n is the set of all r such that δ(r, a) = ri−1. Since,

by the second bullet above, ri is in this set, it follows that δ(ri, ai) = ri−1. Finally, the
state r1 must lie in F , because it must lie in δ′(r0, a1) = δ′(qnew, ε) = F . Thus, we have

• rn = q0, the start state of M ,

• ri−1 = δ(ri, ai), for n ≥ i ≥ 2, and

• r1 ∈ F , the set of final states of M .

Thus we have a sequence rn, rn−1, . . . , r1 of states of M which satisfies the above three

bullets; this ensures that anan−1 . . . a2 ∈ L(M) = L, i.e., that xR ∈ L, i.e., that x ∈ LR.

The proof of (2) is very similar, so we only sketch it here. We start with an x ∈ LR.
This means xR ∈ L = L(M). Therefore xR takes M through a sequence r0, r1, . . . , rn

of steps with r0 = q0 and rn ∈ F . Arguing just as above, we can show that x can take

M ′ through the sequence of states qnew, rn, rn−1, . . . , r0 and since qnew is the start state
of M ′ and r0 is an accept state of M ′, we see that M ′ accepts x. So x ∈ L(M ′).

3.2. Fix an alphabet Σ. For strings x = a1a2 · · · an and y = b1b2 · · · bn with the same length

n, where each ai ∈ Σ and each bi ∈ Σ, define the “perfect shuffle” of x and y — denoted

SHUFFLE(x, y) — to be the string a1b1a2b2 · · ·anbn. Thus, for example,

SHUFFLE(abc, dba) = adbbca, and SHUFFLE(20012, 01211) = 2001021121 .

Page 2 of 5

CS 39

Fall 2007

Theory of Computation

Solutions to Mid-Term Exam
Written by Amit Chakrabarti

Prof. Amit Chakrabarti

Computer Science Department

Dartmouth College

For languages A, B ⊆ Σ∗, define

SHUFFLE(A, B) = {SHUFFLE(x, y) : |x| = |y|, x ∈ A and y ∈ B} .

Prove that if A and B are regular, so is SHUFFLE(A, B).

Solution: Let MA = (QA, Σ, δA, qA, FA) and MB = (QA, Σ, δB, qB, FB) be DFAs recog-

nizing A and B respectively. Let C = SHUFFLE(A, B). To recognize C, we build a DFA
whose states keep track of three pieces of information as we read an input string z:

• The state in QA reached by following MA on the odd-position characters of z.

• The state in QB reached by following MB on the even-position characters of z.

• A tag in {0, 1}, keeping track of the position of the last input character mod 2.

We start in state (qA, qB , 0) and accept if we reach (q, r, 0) for some q ∈ FA and r ∈ FB.
Now we formalize this construction.

The DFA to recognize C is (Q, Σ, δ, q0, F), where

Q = QA × QB × {0, 1} ,

q0 = (qA, qB, 0) ,

F = FA × FB × {0} ,

and δ is given by

δ((q, r, t), a) =

{

(δA(q, a), r, 1), if t = 0,

(q, δB(r, a), 0), if t = 1.

The informal discussion above shows that this DFA works correctly.

4. Prove that there exist languages A, B, C ⊆ {0, 1}∗ that satisfy all of the following properties:

(a) A = B ∩ C.

(b) B and C are both non-regular.

(c) A is infinite and regular.

To get any credit, the languages A, B, C you pick must satisfy all three properties. Further,

you must prove the three properties for whatever A, B, C you have decided to use.

Solution: Define the sets X = {0n2

: n ≥ 0}, Y = 0∗ − X and A = 11∗. Note that, by
construction, any two of X , Y and A are disjoint; so a Venn diagram of these three sets

would look like this:

{0,1}

Y

X A*

Define B = X ∪A, C = Y ∪A. By the disjointness observed above (see diagram), condition

(a) clearly holds. Since A = 11∗ is regular, condition (c) also holds. The only nontrivial

thing is to establish condition (b). Let us use bars to denote complements of languages with
respect to {0, 1}∗. Then, by the disjointness conditions (see diagram), X = B − A = B ∩ A.

Similarly, Y = C ∩ A. Now we shall establish condition (b) using a proof by contradiction.

Page 3 of 5

CS 39

Fall 2007

Theory of Computation

Solutions to Mid-Term Exam
Written by Amit Chakrabarti

Prof. Amit Chakrabarti

Computer Science Department

Dartmouth College

First, suppose B is regular. Then, by closure of regular languages under complement and
intersection, X = B∩A would also be regular. But we’ve prove in class that X is not regular,

so we have a contradiction. Thus, B must be non-regular. Next, suppose C is regular. Again,
by closure properties, Y = C ∩ A would be regular. The complement of Y with respect to

0∗ is X , so X must also be regular and again we have a contradiction. Thus, C must be

non-regular.

5. A permutation of a string x is any string that can be obtained by rearranging the characters

of x. Thus, for example, the string abc has exactly six permutations:

abc, acb, bac, bca, cab, cba .

Clearly, if y is a permutation of x, then |y| = |x|. For a language L over alphabet Σ, define

PERMUTE(L) = {x ∈ Σ∗ : x is a permutation of some string in L} .

Are regular languages closed under the operation PERMUTE? Justify your answer with a
formal proof.

Solution: No, regular languages are not closed under PERMUTE. For a counterexample,

consider L = (01)∗. Any string in L contains an equal number of 0’s and 1’s, so, when we
take all permutations of all strings in L, we get precisely the language {x ∈ {0, 1}∗ : x

contains as many 0’s as 1’s}. We have proved in class, using the pumping lemma, that this

language is not regular. Thus PERMUTE(L) need not be regular even if L is.

6. Draw a PDA for the language {0i1j : i < j < 2i}. Provide a brief justification (no need for a

formal proof) that your PDA works correctly.

Solution: Let L be the given language. First, let us try to build a PDA for a slightly easier
language: L′ = {0i1j : i ≤ j ≤ 2i}. The idea is to push either one or two a’s (choose

nondeterministically) onto our stack as we read the 0’s in the input string, and then pop one

symbol at a time as we read the 1’s. If we empty the stack at the same time as when we
finish reading the input, we may accept.

But for the language L, we must reject strings of the form 0i1i and 0i12i. To do so, observe

that the shortest string in L is 00111 and that any string in L is therefore of the form

000i′1j′111

for some i′ ≥ 0, j′ ≥ 0, and (i′ + 2) < (j′ + 3) < 2(i′ + 2). Since i′ and j′ are integers, the

latter condition is equivalent to i′ ≤ j′ ≤ 2i′. Thus, strings in L are simply strings in L′ with
two 0’s prepended and three 1’s appended. With this in mind, we build our PDA:

Page 4 of 5

CS 39

Fall 2007

Theory of Computation

Solutions to Mid-Term Exam
Written by Amit Chakrabarti

Prof. Amit Chakrabarti

Computer Science Department

Dartmouth College

0, ε→$ 0, ε→ε ε, ε→ε

1, $→ε

1, ε→ε1, ε→ε

0, ε→a 0, ε→aa 1, a→ε

7. Design a context-free grammar for the complement of the language {anbn : n ≥ 0} over the
alphabet {a, b}. Give brief explanations for the “meanings” of your variables (i.e., explain

what strings are generated by each of your variables). No further proof is necessary.

Solution: A string in the complement of {anbn : n ≥ 0} is either of the form {aibj : i > j ≥
0} or of the form {aibj : j > i ≥ 0} or not of the form a∗b∗, which means that it contains the

substring ba. In the following grammar, the variable U generates strings of the third type,

while T generates strings of the form anbn to which we either prepend a string of one or
more a’s (generated by A) or append a string of one or more b’s (generated by B).

S −→ AT | TB | U

A −→ Aa | a

B −→ Bb | b

T −→ aT b | ε

U −→ V baV

V −→ V a | V b | ε

Another Especially Elegant Solution: The following CFG, proposed by Ruslan Dimov ’08,
also works (think why).

S −→ aSb | aSa | bSb | bS | Sa | a | b

Page 5 of 5

