
CS 39

Fall 2007

Theory of Computation

Solutions to Quiz 2
Nov 20, 2007

Prof. Amit Chakrabarti

Computer Science Department

Dartmouth College

1. Let Σ = {0, 1}. Consider the following classes of languages over the alphabet Σ:

A = {L ⊆ Σ∗ : L can be recognized by an NFA}

B = {L ⊆ Σ∗ : L can be generated by a regular expression}

C = {L ⊆ Σ∗ : L is decidable}

D = {L ⊆ Σ∗ : L can be recognized by a PDA}

E = {L ⊆ Σ∗ : both L and Σ∗ − L can be recognized by PDAs}

F = {L ⊆ Σ∗ : L can be generated by a CFG in which every rule is of the form A → aB

or else A → ε, where A, B are variables and a is a terminal of the CFG}

G = {L ⊆ Σ∗ : L can be generated by a CFG in which every rule is of the form A → BC

or else A → a or else S → ε, where A, B, C are variables, S is the start variable

and a is a terminal of the CFG}

1.1. Describe, in a one-line chain, all of the proper subset and equality relationships between
the classes A, B, C, D, E, F and G. For example, your answer might look like this:

A ⊂ F ⊂ B = G ⊂ C = D = E. Here “⊂” means “is a proper subset of.”

[5 points]

Solution: A = B = F ⊂ E ⊂ D = G ⊂ C.

A = B was proved in class; B = F follows from HW5, #4.2; F ⊆ E follows because

regular languages are closed under complement and regular languages are context-

free; E ⊆ D is trivial; D = G follows from our theorem about Chomsky normal form
CFGs; G ⊆ C follows because an NDTM can simulate a PDA.

1.2. For every proper subset relationship you indicated above, give an example of a language

that proves the inequality of the corresponding classes. For example, if you wrote
“B ⊂ C” then give an example of a language in C but not in B, and so on. Keep in

mind that Σ = {0, 1}.
[10 points]

Solution: Here are some examples that work:

F ⊂ E : {0n1n : n ≥ 0} is in E but not in F .

E ⊂ D : Σ∗ − {ww : w ∈ Σ∗} is in D but not in E.

G ⊂ C : {ww : w ∈ Σ∗} is in C but not in G.

Page 1 of 4

CS 39

Fall 2007

Theory of Computation

Solutions to Quiz 2
Nov 20, 2007

Prof. Amit Chakrabarti

Computer Science Department

Dartmouth College

2. Recall that a configuration of a Turing Machine (Q, Σ, Γ, δ, q0, qacc, qrej) is a string in Γ∗QΓ∗

(or equivalently, a string in (Q ∪ Γ)∗ that contains exactly one symbol from Q). The string

encodes certain pieces of information about the TM in the middle of a run.

2.1. Suppose Σ = {0, 1} and q5 ∈ Q. Exactly what information is encoded by the configura-
tion “1011q5010”?

[5 points]

Solution: The given configuration tells us that

• the TM is in state q5,

• the tape contents are “1011010” followed by an infinite number of blanks, and

• the head is currently over the second ‘0’.

2.2. Give a complete formal definition of what it means for a configuration C1 of a TM to
yield a configuration C2. Make sure you cover all cases.

[10 points]

Solution: We say that C1 yields C2 if at least one of the following conditions holds:

• C1 = uaqbv, C2 = uacrv and δ(q, b) = (r, c, R)

• C1 = uaqbv, C2 = uracv and δ(q, b) = (r, c, L)

• C1 = qbv, C2 = crv and δ(q, b) = (r, c, R)

• C1 = qbv, C2 = rcv and δ(q, b) = (r, c, L)

for some a, b ∈ Γ, u, v ∈ Γ∗ and q, r ∈ Q.

Page 2 of 4

CS 39

Fall 2007

Theory of Computation

Solutions to Quiz 2
Nov 20, 2007

Prof. Amit Chakrabarti

Computer Science Department

Dartmouth College

3. For a string x ∈ {0, 1}∗, let N0(x) and N1(x) denote the number of 0s and 1s in x, respec-
tively. Draw a PDA for the following language (keep it simple!):

{x ∈ {0, 1}∗ : every prefix w of x satisfies N0(w) ≥ N1(w)} .

[10 points]

Solution:

q0

0, ε → #
1, # → ε

4. Suppose A is a Turing-recognizable language over the alphabet Σ and B is a decidable

language over Σ. Give an informal high-level description of a Turing machine that recognizes

A − B. You do not have to prove that your construction is correct.
[10 points]

Solution: Let MA be a recognizer TM for A and MB a decider TM for B. We construct a
recognizer 2-tape TM M for A − B as follows:

M = “On input x:

1. Copy x onto tape 2 and reset both heads to their leftmost positions.
2. Run MB using tape 2; if it accepts, then REJECT.

3. Run MA using tape 1; if it accepts, then ACCEPT.

4. If we reach here, then REJECT.”

M accepts a string iff MB rejects it and then MA accepts it, as required.

An interesting observation is that it is perfectly okay to run MA first!

Page 3 of 4

CS 39

Fall 2007

Theory of Computation

Solutions to Quiz 2
Nov 20, 2007

Prof. Amit Chakrabarti

Computer Science Department

Dartmouth College

5. For a language L over alphabet Σ, define

HALF(L) = {x ∈ Σ∗ : ∃ y ∈ Σ∗ (|x| = |y| and xy ∈ L)} .

Throughout this section, let A = {ambmcn##d3n : m, n ≥ 0}; thus, A is a language over

the alphabet {a, b, c, d, #}. Also, throughout this section, you may use without proof any
facts proved in class, provided you clearly state what fact(s) you are using.

5.1. Specify a CFG for A. No explanation is necessary.
[5 points]

Solution: The following CFG generates A:

S −→ TU

T −→ aT b | ε

U −→ cUddd | ##

5.2. Specify the following language as simply as possible in set notation:

HALF(A) ∩ a∗b∗c∗# .

No explanation is necessary. For an example of how a language is specified in set

notation, see the definition of A above.
[5 points]

Solution: {anbncn# : n ≥ 0}.

5.3. Your answer above should look very similar to a language we have studied in class.
Examine it carefully. Based on it, what can you conclude about the closure of the class

of context-free languages under the operation HALF? Prove your answer.

[10 points]

Solution: Context-free languages are not closed under HALF. The language A pro-

vides a counterexample. We gave a CFG for it in #5.1, so A is context-free. However,

HALF(A) is not context-free. Here’s a proof.

Suppose HALF(A) is context-free. Then HALF(A) ∩ a∗b∗c∗# must also be context-free
because, as proved in class, the intersection of a CFL and a regular language is a CFL.

By the result of #5.2, this means the language B = {anbncn# : n ≥ 0} must be

context-free.

At this point you could use the pumping lemma to get a contradiction, but there is an

even simpler solution! Suppose G = (V, {a, b, c, #}, R, S) is a CFG that generates B.
Then, the CFG G′ = (V ∪ {#}, {a, b, c}, R′, S), where R′ = R ∪ {‘# → ε’}, clearly

generates {anbncn : n ≥ 0}. However, as proved in class, this latter language is not
context-free, so we have a contradiction.

Page 4 of 4

