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1. (Operations on languages)

1.1. Cycle(L) consists of strings formed by taking a string in L, breaking it into two pieces, and
concatenating them in reverse order. For A = {0n1n : n > 0}, we can perform this process
on a string 0n1n by either breaking it in the left half (in the 0’s) or in the right half (in the
1’s), giving us 0k1n0n−k or 1k0n1n−k, respectively. We can thus write

Cycle(A) = {0k1n0n−k : 0 ≤ k ≤ n} ∪ {1k0n1n−k : 0 ≤ k ≤ n}.

1.2. The condition that Min(L) = Max(L) = L is equivalent to the requirement that for any
two distinct strings in L, neither is a prefix of the other. Some (infinite) examples of such
languages are {0n1 : n ≥ 0}, {1n0n : n > 0}.

1.3. No. Suppose, to get a contradiction, that we have a language L over some alphabet Σ such
that Min(L) = Σ∗. Let a ∈ Σ. Then the strings a, aa ∈ Min(L) ⊂ L. But a is a proper prefix
of aa, so by definition aa cannot be in Min(L), giving us our contradiction.

1.4. Half(L) consists of the first halves of all even-length strings in L. For a string of the form
0p1q0r, where q = p + r so that in particular it has even length 2q, this is just 0p1r. We can
therefore write

Half(L) = {0p1r : p, r ≥ 0}

1.5. HalfPalindrome(L) consists of the first halves of all even-length palindromes in L. In other
words, HalfPalindrome(L) = Half(L′), where L′ ⊂ L is the subset of all palindromes in L

(all strings in L already have even length, as we saw above). But L′ is just {0p1q0p : q = 2p},
so we have

HalfPalindrome(L) = {0p1p : p ≥ 0}

2. (Tables ↔ Diagrams)

2.1. M1 = (Q,Σ, δ, q1, F ), where
Q = {q1, q2, q3}, Σ = {a, b}, F = {q2}, and
δ(q1, a) = q2, δ(q1, b) = q1,
δ(q2, a) = q3, δ(q2, b) = q3,
δ(q3, a) = q2, δ(q3, b) = q1.

M2 = (Q,Σ, δ, q1, F ), where
Q = {q1, q2, q3, q4}, Σ = {a, b}, and
δ(q1, a) = q1, δ(q1, b) = q2,
δ(q2, a) = q3, δ(q2, b) = q4,
δ(q3, a) = q2, δ(q3, b) = q1,
δ(q4, a) = q3, δ(q4, b) = q4.
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3. (Designing DFAs)

3.1. If the empty string is to be accepted, the start state must be an accept state. Moreover, any
symbol read should take the machine to a permanent reject state. Both these requirements
are captured by the following DFA.

q0 q1

0, 1 0, 1

3.2. We want to keep track of the first three symbols on the input string in only so much as there is
still a possibility of the string being 11 or 111. Thus, if we see either a 0 or a fourth symbol, we
move to a permanent accept state, since the string is certainly neither 11 nor 111. Following
this intuition, we only need five states, as follows.

q0 1 11 111

qf
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3.3. Essentially, we want to keep track of the last three symbols seen, say, . . . xyz, but again in
only so much as they may be part (or all) of the string 110. More precisely, we want to keep
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track of any suffix of xyz that is also a prefix of 110. That way, we would never miss a 110
that comes by, and can simply move to a permanent reject state if we see it. In the following
DFA, other than the start state q0, state names indicate the longest suffix of xyz that is a
prefix of 110.

q0 1 11 110

0

1

0

1 0

1
0, 1

3.4. Here, it seems we really have no way out of keeping track of the precise last three symbols
seen. In particular, we need to differentiate strings of length < 3 from those of length ≥ 3.
We can formally define the following 15-state DFA.

Let M = (Q,Σ, δ, q0, F ), where

Q = {qx ∈ Σ∗ : |x| ≤ 3},

Σ = {0, 1},

q0 = qǫ,

F = {qx ∈ Q : |x| = 3, x 6= 111}, and, for any qx ∈ Q, a ∈ Σ,

δ(qx, a) =







qxa if |x| < 3
qx2x3a if qx ∈ F, where xi is the ith symbol in x

qx otherwise

However, if we do not go for generality, and instead observe that our machine need only be
looking for the string 111, the problem reduces to one very similar to Problem 3.3, and like 3.3
can be solved in only four states. Of course, we need several more states to keep track of the
string before it reaches length three, but even this part can be reduced to six states (instead
of the default seven). We end up with a 10-state DFA, depicted below.
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3.5. The key idea is that if suffices to keep track of the input (as a binary number) modulo 5. If we
are in state 0, then the input is divisible by 5, so we accept. Transitions are consistently defined
owing to the fact given in the hint, namely, that (mn+ p) mod 5 = ((m mod 5) ·n+ p) mod 5.
If we’ve seen (binary number) m so far, then seeing an additional symbol p would give us a
new value of 2m + p. That is, apply the hint with n = 2, p ∈ {0, 1} the next symbol seen, and
m the numerical value of the string seen so far. We thus get the following DFA.
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3.6. Generalizing from the formal definition of the (unsimplified) DFA from Problem 3.4, we im-
mediately get the nearly identical machine below.

Let M = (Q,Σ, δ, q0, F ), where

Q = {qx ∈ Σ∗ : |x| ≤ 100},

Σ = {0, 1},

q0 = qǫ,

F = {qx ∈ Q : |x| = 100, x contains at least ten 0’s}, and

δ(qx, a) =







qxa if |x| < 100
qx2x3...x100a if qx ∈ F,

qx otherwise
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