
CS 39
Winter 2009
Theory of Computation

Homework 2
Due Jan 21, 2009

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

Please think carefully about how you are going to organise your answers before you begin writing. Make sure your answers
are complete, clean, concise and rigorous.

1. Let L be the language over the alphabet {a, b} given by the regular expression (ab ∪ aab ∪ aba)∗.

1.1. Design an NFA for L that has no ε-transtions and has only 4 states. [6 points]

1.2. Convert the above NFA into a DFA for L by mechanically using the subset construction we studied in class.
[10 points]

1.3. Remove all states that are unreachable from the start state of the resulting DFA, to get a 7-state DFA for L.
[3 points]

1.4. If you carefully observe this DFA, you will notice two states that can be replaced by a single state. Do this and
draw the resulting DFA. Your final DFA should have exactly 6 states. [7 points]

2. Construct NFAs equivalent to following regular expressions (your NFAs may have ε-transitions):

2.1. 10 ∪ (0 ∪ 11)0∗1 [7 points]

2.2. ((0 ∪ 1)(0 ∪ 1))∗ ∪ ((0 ∪ 1)(0 ∪ 1)(0 ∪ 1))∗ [7 points]

3. Give regular expressions for the following languages.

3.1. {w ∈ {0, 1}∗ : w has three consecutive 0’s or three consecutive 1’s or both}. [7 points]

3.2. {w ∈ {0, 1}∗ : w has three consecutive 0’s and three consecutive 1’s}. [7 points]

3.3. The set of strings in {0, 1}∗ with an equal number of 0’s and 1’s such that no prefix has two more 0’s than 1’s
nor two more 1’s than 0’s. [10 points]

3.4. Let us define a valid floating point number as u.v, where u and v are (finite) strings of decimal digits (0..9)
satisfying the following constraints: (the symbol “.” between u and v is the decimal point.)

i. Neither u nor v may be ε.
ii. u can be just 0. If u is not 0, u has no leading 0’s.

iii. v can be just 0. If v is not 0, v has no trailing 0’s.

(Thus, for example, 0.0, 231.0 and 5.608 are valid, but 0.00, 05.68, .65, 12. and 4.5100 are not valid.)
Give a regular expression for the set of valid floating point numbers described above. You might want to
introduce some notation first to keep your expression small and readable. [10 points]

Page 1 of 2

CS 39
Winter 2009
Theory of Computation

Homework 2
Due Jan 21, 2009

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

4. Let L be a nonempty language and M an NFA that recognizes L. Prove that M can be converted into an NFA
M ′ which recognizes the same language L and has exactly one accept state. Your proof must describe M ′ both
informally, using plain English, and formally, using mathematical notation. [10 points]

5. For a language L over alphabet Σ, define HALF(L) = {x ∈ Σ∗ : ∃ y ∈ Σ∗ (|x| = |y| and xy ∈ L)}. Prove that if L is
regular, then so is HALF(L). Your proof must be formal; proofs not written in a formal mathematical style get very
little credit even if they express the right intuition. [16 points]

Hint: Since L is regular, you know that there exists some DFA M that recognizes L, but you know absolutely nothing
else about M . How do you make use of M? Here are two different approaches you can try. Approach 1: Build an
NFA for HALF(L). Suppose x is the input string. Nondeterministically guess which state M will end up in after
reading x and nondeterministically guess a y to append to x as in the definition of HALF(L). Approach 2: Build a
DFA for HALF(L). As you read x, work forwards and backwards simultaneously inside M and try to meet in the
middle.

Challenge Problems

Remember that challenge problems carry no regular credit, but are intended to provide a higher level of challenge for
those who want to think further about the theory of computing.

CP1: For the language L from Problem 1, prove that it is impossible to design a DFA with 5 or fewer states.

CP2: For a language L over alphabet Σ, define LOG(L) = {x ∈ Σ∗ : ∃ y ∈ Σ∗ (|y| = 2|x| and xy ∈ L)}. Prove that if L is
regular, then so is LOG(L).

Page 2 of 2

