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Please think carefully about how you are going to organise your answers before you begin writing. Make sure your answers
are complete, clean, concise and rigorous.

1. Let L be the language over the alphabet {a, b} given by the regular expression (ab ∪ aab ∪ aba)∗.

1.1. Design an NFA for L that has no ε-transtions and has only 4 states. [6 points]

1.2. Convert the above NFA into a DFA for L by mechanically using the subset construction we studied in class.
[10 points]

1.3. Remove all states that are unreachable from the start state of the resulting DFA, to get a 7-state DFA for L.
[3 points]

1.4. If you carefully observe this DFA, you will notice two states that can be replaced by a single state. Do this and
draw the resulting DFA. Your final DFA should have exactly 6 states. [7 points]

2. Construct NFAs equivalent to following regular expressions (your NFAs may have ε-transitions):

2.1. 10 ∪ (0 ∪ 11)0∗1 [7 points]

2.2. ((0 ∪ 1)(0 ∪ 1))∗ ∪ ((0 ∪ 1)(0 ∪ 1)(0 ∪ 1))∗ [7 points]

3. Give regular expressions for the following languages.

3.1. {w ∈ {0, 1}∗ : w has three consecutive 0’s or three consecutive 1’s or both}. [7 points]

3.2. {w ∈ {0, 1}∗ : w has three consecutive 0’s and three consecutive 1’s}. [7 points]

3.3. The set of strings in {0, 1}∗ with an equal number of 0’s and 1’s such that no prefix has two more 0’s than 1’s
nor two more 1’s than 0’s. [10 points]

3.4. Let us define a valid floating point number as u.v, where u and v are (finite) strings of decimal digits (0..9)
satisfying the following constraints: (the symbol “.” between u and v is the decimal point.)

i. Neither u nor v may be ε.
ii. u can be just 0. If u is not 0, u has no leading 0’s.

iii. v can be just 0. If v is not 0, v has no trailing 0’s.

(Thus, for example, 0.0, 231.0 and 5.608 are valid, but 0.00, 05.68, .65, 12. and 4.5100 are not valid.)
Give a regular expression for the set of valid floating point numbers described above. You might want to
introduce some notation first to keep your expression small and readable. [10 points]
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4. Let L be a nonempty language and M an NFA that recognizes L. Prove that M can be converted into an NFA
M ′ which recognizes the same language L and has exactly one accept state. Your proof must describe M ′ both
informally, using plain English, and formally, using mathematical notation. [10 points]

5. For a language L over alphabet Σ, define HALF(L) = {x ∈ Σ∗ : ∃ y ∈ Σ∗ (|x| = |y| and xy ∈ L)}. Prove that if L is
regular, then so is HALF(L). Your proof must be formal; proofs not written in a formal mathematical style get very
little credit even if they express the right intuition. [16 points]

Hint: Since L is regular, you know that there exists some DFA M that recognizes L, but you know absolutely nothing
else about M . How do you make use of M? Here are two different approaches you can try. Approach 1: Build an
NFA for HALF(L). Suppose x is the input string. Nondeterministically guess which state M will end up in after
reading x and nondeterministically guess a y to append to x as in the definition of HALF(L). Approach 2: Build a
DFA for HALF(L). As you read x, work forwards and backwards simultaneously inside M and try to meet in the
middle.

Challenge Problems

Remember that challenge problems carry no regular credit, but are intended to provide a higher level of challenge for
those who want to think further about the theory of computing.

CP1: For the language L from Problem 1, prove that it is impossible to design a DFA with 5 or fewer states.

CP2: For a language L over alphabet Σ, define LOG(L) = {x ∈ Σ∗ : ∃ y ∈ Σ∗ (|y| = 2|x| and xy ∈ L)}. Prove that if L is
regular, then so is LOG(L).
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