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General Instructions: Please write concisely, but rigorously, and show your calculations explicitly. Each problem is worth 5
points, and only “nearly flawless” solutions will earn full credit.

Honor Principle: You are allowed to discuss the problems and exchange solution ideas with your classmates. But when you
write up any solutions for submission, you must work alone. You may refer to any textbook you like, including online ones.
However, you may not refer to published or online solutions to the specific problems on the homework, if you intend to turn it
in for credit. If in doubt, ask the professor for clarification!

Coresets and Clustering

9. Consider the minimum enclosing ball (MEB) problem, which we discussed in class. Fix a collection of t nonzero vectors
u1, . . . , ut ∈ Rd with the property that

∀ z ∈ Rd \ {0} ∃ i ∈ [t] : ang(z, ui)≤ θ ,

where ang(x , y) := arccos
〈x , y〉
‖x‖2‖y‖2

.

For a finite set of points P ⊆ Rd , we constructed a coreset Q (for the MEB problem) as follows.

Q :=
t
⋃

i=1

�

argmax
x∈P
〈x , ui〉, arg min

x∈P
〈x , ui〉

	

.

Prove, formally (without appealing to intuitive reasoning by picture), that this construction gives us a (1+δ)-coreset for
P, for the setting θ = O(

p
δ). Also prove that this coreset has the disjoint union property: i.e., if Q1,Q2 are α-coresets

for disjoint sets P1, P2 respectively, then Q1 ∪Q2 is an α-coreset for P1 ∪ P2.

10. A summarization cost function ∆ is said to be metric if it satisfies the following condition, for all streams σ,π and
summaries S ⊆ σ, T ⊆ σ[S] ◦π:

∆(σ[S] ◦π, T )−∆(σ, S) ≤ ∆(σ ◦π, T ) ≤ ∆(σ[S] ◦π, T ) +∆(σ, S) . (1)

Here, σ[S] is the stream obtained by replacing each token of σ with its best representative from S.

Suppose that our streams consist of points in some metric space (M , d), and our cost function is the k-center cost function,
i.e.,

∆(σ, S) =

¨

∞ , if S 6⊆ σ or |S|> k
maxx∈σminy∈S d(x , y) , otherwise.

Give a rigorous proof that this particular function ∆ is metric. (Write out the steps of reasoning explicitly and point out
exactly which steps use the properties that define a metric space.) Note that in the case of k-center, we might as well
assume σ[S] = S. This corresponds to the version of Eq. (1) given in class.

Space requirements for triangle counting

These problems involve graph streams. Recall that such a stream specifies an input graph G, with vertex set V (G) = [n] and
edge set E(G) of size m. Each token is a pair {u, v} ∈ E(G), and the tokens are all distinct; we are assuming that each edge is
seen exactly once in the stream. We are interested in estimating T3, where

Ti =

�

�

�

�

�

{u, v, w} ∈
�

V

3

�

: |E(G)∩ {{u, v}, {v, w}, {u, w}}|= i
�
�

�

�

�

.

In both these problems, we are promised that T3 ≥ t, for some given value t > 0.
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11. The sampling-based algorithm for estimating T3 is based on the following basic estimator: pick an edge {u, v} uniformly
at random from the stream; pick a vertex w uniformly at random from V (G)\{u, v}; output m(n−2) if edges {u, w} and
{v, w} occur after {u, v} in the stream, and 0 otherwise.

Prove that the output of this algorithm has expectation exactly T3. By running some number, p, of independent copies
of this algorithm in parallel and averaging the outputs, we would like to obtain an (ε, 1

3
)-approximation to T3. By using

appropriate probabilistic analysis (as in the AMS repeat-count algorithm), show that p = O(ε−2mn/t) copies suffice.

12. The sketch-based triangle counting algorithm uses the following idea. We process a virtual stream of triples of vertices
derived from the given stream of edges, where an actual token {u, v} gives rise to n− 2 virtual tokens

{u, v, w1}, {u, v, w2}, . . . , {u, v, wn−2} , where {w1, w2, . . . , wn−2}= [n] \ {u, v} .

We then compute F0, F1 and F2 for this stream. Prove that Fk = T1 + 2k T2 + 3k T3.

To count triangles in the graph, we can write three such equations, for k ∈ {0, 1,2}, and then solve for T3. Work out an
exact formula for T3 in terms of n, m, F0 and F2. Based on your formula, work out exactly what guarantees you need
on your estimates of F0 and F2 so that the formula gives you a (1± ε) approximation to T3. Based on these required
guarantees, work out an upper bound on the total space needed by the algorithm to give an (ε, 1

3
)-approximation to T3.

The space may depend on t, as in the previous problem.

Distance estimation, generalized

13. Recall that the distance estimation problem asks us to process a streamed graph G so that, given x , y ∈ V (G), we can
return an t-approximation of dG(x , y), i.e., an estimate d̂(x , y) with the property

dG(x , y) ≤ d̂(x , y) ≤ t · dG(x , y) .

Here t is a fixed integer known beforehand. In class, we solved this using space eO(n1+2/t), by computing a subgraph H
of G that happened to be a t-spanner. Now suppose that the input graph is edge-weighted, with weights being integers
in [W]. Each token in the input stream is of the form (u, v, wuv), specifying an edge (u, v), and its weight wuv ∈ [W].
Distances in G are defined using weighted shortest paths, i.e.,

dG,w(x , y) := min

(

∑

e∈π
we : π is a path from x to y

)

Give an algorithm that processes G using space eO(n1+2/t log W ) so that, given x , y ∈ V (G), we can then return a (2t)-
approximation of dG,w(x , y). Give careful proofs of the quality and space guarantees of your algorithm.

Hint: Partition the edges into dlog We disjoint classes, where class i consists of all edges e with 2i−1 ≤ we < 2i , and
compute multiple t-spanners.
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