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Estimating PageRank on Graph Streams

ATISH DAS SARMA, Georgia Institute of Technology
SREENIVAS GOLLAPUDI and RINA PANIGRAHY, Microsoft Research

This article focuses on computations on large graphs (e.g., the web-graph) where the edges of the graph are
presented as a stream. The objective in the streaming model is to use small amount of memory (preferably
sub-linear in the number of nodes n) and a smaller number of passes.

In the streaming model, we show how to perform several graph computations including estimating the
probability distribution after a random walk of length l, the mixing time M, and other related quantities
such as the conductance of the graph. By applying our algorithm for computing probability distribution on
the web-graph, we can estimate the PageRank p of any node up to an additive error of
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2 , we can compute the approximate PageRank values in Õ(nM− 1

4 ) space and Õ(M
3
4 )

passes. In comparison, a standard implementation of the PageRank algorithm will take O(n) space and
O(M) passes. We also give an approach to approximate the PageRank values in just Õ(1) passes although
this requires Õ(nM) space.

Categories and Subject Descriptors: F.2.0 [Analysis of Algorithms and Problem Complexity]: General

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Algorithms, graph conductance, mixing time, PageRank, random walk,
streaming algorithms

ACM Reference Format:
Das Sarma, A., Gollapudi, S., and Panigrahy, R. 2011. Estimating PageRank on graph streams. J. ACM 58,
3, Article 13 (May 2011), 19 pages.
DOI = 10.1145/1970392.1970397 http://doi.acm.org/10.1145/1970392.1970397

1. INTRODUCTION

Real-world networks such as the web and social networks can be modeled as large
graphs. Other instances of large graphs include click graphs generated from search
engine query logs, document-term graphs computed from large collection of documents
etc. The scale of these graphs has greatly increased the need for efficient algorithms
to process them. While the graphs can be stored in secondary storage, processing of
such data is usually performed using physical memory (RAM), which is a limited re-
source. The streaming model admits an ideal approach to processing such data. In this
model, the data is presented as a stream and any computation on the stream relies on
using a small amount of memory. Many streaming algorithms exist for computing fre-
quency moments (with matching lower bounds), quantiles, and norms [Alon et al. 1999;
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Indyk and Woodruff 2003; Bhuvanagiri et al. 2006; Bhuvanagiri and Ganguly 2006;
Manku et al. 1999; Greenwald and Khanna 2001; Guha and McGregor 2006], and com-
putations over graphs including counting triangles, properties of degree sequences, and
connectivity [Bar-Yossef et al. 2002; Cormode and Muthukrishnan 2005; Demetrescu
et al. 2006; Feigenbaum et al. 2005; Jowhari and Ghodsi 2005; McGregor 2005]. These
graphs described here readily admit a streaming model. In this article, we compute the
PageRank [Brin and Page 1998] of a large graph presented as a stream of edges in no
particular order; neither is it required that all the edges incident on a vertex be grouped
together in the stream. Moreover, they also admit link-based ranking algorithms like
the PageRank algorithm to compute the relative importance of nodes in the graph.

While the basic requirements of streaming algorithms include small space and a
small number of passes, these quantities can vary significantly from algorithm to algo-
rithm. After Henzinger et al. [1999] showed linear lower bounds on the “space × passes”
product for several problems including connectivity and shortest path problems, the
work of Feigenbaum et al. [2005] studied the value of space in computing graph dis-
tances in the streaming model. Specifically, they studied approximate diameter and
girth estimation. Their techniques are based on a single-pass randomized algorithm
for constructing a (2t + 1)-spanner. Demetrescu et al. [2006] proposed streaming graph
algorithms using sublinear space and passes to compute single-source shortest paths
on directed graphs and s-t connectivity on undirected graphs. In this article, we pro-
pose algorithms that require sublinear space and passes to compute the approximate
PageRank values of nodes in a large directed graph.

We now give a brief description of PageRank. Given a web-graph representing the
web pages and links between them, PageRank [Brin and Page 1998] computes a query-
independent score for the web pages, taking into account endorsement of a web page
by other web pages. The endorsement of a web page is computed from the in-links
pointing to the page from other web pages. Alternately, the PageRank algorithm can
also be viewed as computing the probability distribution of a random surfer visiting a
page on the web. In general, the PageRank of a page u is dependent on the PageRank
of all pages v that link to u as P R(u) = ∑

(v,u)∈E P R(v)/d(v) where d(.) denotes the
out-degree. A standard implementation of the algorithm requires several iterations,
say M, before the values converge. Alternately, this process can be viewed as a random
walk requiring M steps. The typical length is about 200. In fact, the random walk
is performed on a slightly modified graph that captures a random reset step in the
PageRank algorithm. This step was introduced to model the random jump of a surfer
from a page with no out-links to another page on the web and it also improves the
convergence time of the algorithm. Finally, we note that in a PageRank computation,
the nodes with large PageRank are of interest.

Besides PageRank, other graph properties of interest include connectedness, con-
ductance, mixing time, and the sparsest cut. It is well known and was first shown by
Jerrum and Sinclair [1989] that the mixing time M and conductance φ are related as
φ2/2 ≤ 1

M ≤ 2φ.1

1.1. Contributions of This Article

A random walk of length l can be modeled as a matrix-vector computation v = u.Al,
where u (a row vector) is the initial distribution on the nodes, A is the transition
matrix that corresponds to a single step in the random walk on the underlying graph,
and v is the final distribution after performing the walk. The problem of computing

1Note that mixing time is well-defined only for aperiodic graphs. Bipartite graphs, for example, are not
aperiodic. On the other hand, the bipartiteness of a graph can be checked in a single pass (see e.g., Feigenbaum
et al. [2005]).
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a single destination of a random walk of length l starting from a node picked from
the distribution u is same as sampling a node from the distribution v. So, by simply
maintaining an array of size n that represents the probability distribution, we can
compute v in l passes and O(n) space. Thus, a standard implementation of the PageRank
algorithm, that computes the stationary distribution, will require M passes and O(n)
space, where M is the mixing time. In comparison, our work requires Õ(

√
M) passes and

o(n) space to compute the PageRank of nodes with values greater than M/n. Performing
random walks of length M, the mixing time, of course, requires the knowledge of the
mixing time. We therefore also provide an algorithm to estimate the mixing time. In
this article we provide algorithms on a graph stream for the following problems:

—Running a single random walk of length l in Õ(
√

l) passes. In fact, we show how
to perform n/l independent random walks using space sublinear in n and passes
sublinear in l using the single random walk result as a subroutine;

—Using the sampled random walks obtained in the previous result, we show how to
compute an approximate probability distribution (the PageRank vector) of nodes
after a random walk of length l;

—Finally, using probability distributions of random walks for different lengths, we
show how to estimate the mixing time, which in turn gives an estimate of the con-
ductance of the graph.

For all these results, the main goal is to use as few passes over the stream as possible,
while using space sub-linear in the number of nodes in the graph. Notice that for a
dense graph (with number of edges being �(n2)), the space used by our algorithms
are asymptotically less than square-root of the length of the stream (i.e., square-root
of the number of edges). To compute the probability distribution over nodes after a
random walk of length l, a naı̈ve algorithm uses l passes and O(n) space by performing
l matrix-vector multiplications. We show how to approximate the same distribution.
For any node with probability p in the distribution, we can approximate p within
p ± √

εp ± ε in Õ(
√

l/α) passes and

Õ

(
min

(
nα + 1

ε

√
l
α

+ 1
ε

lα, αn
√

lα + 1
ε

√
l
α

))

space. Note that approximating p within p±√
εp±ε can also be viewed as a 1±√

ε/p±
ε/p approximation ratio which is close to 1 for p much larger than ε. This means we
can estimate the probability value with high accuracy for nodes with large probability.
Note that in the context of PageRank computation, we set l to the mixing time M of the
random walk. For concreteness, this means we can estimate the PageRank p of a node
within p±√

εp±ε in Õ(nM− 1
4 ) space and Õ(M

3
4 ) passes for ε = M/n. We also show how

to find what we call the ε-near mixing time, that is, the time taken for the probability
distribution to reach within ε of the steady state distribution under the L1-norm. This
automatically gives a result for estimating the conductance of the graph.

1.2. Related Work

Data streaming algorithms became popular since the famous result of Alon et al.
[1999] on approximating frequency moments. There have been a surge of papers
looking at various problems in the streaming setting. In particular, there has been
significant attention to computing various frequency moments as they provide
important statistics about the data. Tight results are known for computing some of
them while others remain open [Bhuvanagiri et al. 2006; Indyk and Woodruff 2003].
Recent streaming results include estimating earth-movers distance [Indyk 2004],
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communication complexity [Feldman et al. 2006; Woodruff 2004], counting triangles in
graphs [Bar-Yossef et al. 2002; Jowhari and Ghodsi 2005; Buriol et al. 2006], quantile
estimation [Guha and McGregor 2006, 2007b], sampling and entropy information
[Guha et al. 2006; Guha and McGregor 2007a], and graph matchings [McGregor 2005].

This is by no means a comprehensive summary of all the results on data streams.
There are many more studies on streaming problems including filtering irrelevant
data from the stream, low rank approximation and fast multiplication of matrices,
characterizing sketchable distances, scheduling problems, work on dynamic geometric
problems, generating histograms, and finding increasing subsequences.

In comparison to the work on aggregating statistics of a data stream, the work on
graphs as data streams is limited. Demetrescu et al. [2006] show space-pass trade-offs
for shortest path problems in graph streams. In general, it seems hard to approxi-
mate many properties on graphs while maintaining sub-linear space in the number of
vertices in the graph, by performing only a constant passes over the stream.

A very interesting piece of work is due to Sarlos et al. [2006] who give approaches
to finding summaries for hyperlink analysis and personalized PageRank computation.
Their study is not under the data streams setting; rather, they use sketching techniques
and construct simple deterministic summaries that are later used by the algorithms
for computing the PageRank vectors. They give lower bounds to prove that the space
required by their algorithms is optimal under their setting. Given an additive error of
ε and the probability δ of an incorrect result, their disk usage bound is O(n log (1/δ)/ε).

There has also been work on s-t connectivity [Feige 1997; Armoni et al. 1997] not
under the streams setting; however it is not clear that extending to the streaming
model is possible. Recent work by Wicks and Greenwald [2007] shows an interesting
approach to parallelizing the computation of PageRank. McSherry [2005] exploits the
link structure of the web graph within and across domains to accelerate the computa-
tion of PageRank. Andersen et al. [2006] computes local cuts near a specified vertex
using personalized PageRank vectors.

The main ingredient in all our algorithms is to perform random walks efficiently.
We begin by presenting the algorithm for running one random walk of length l in a
small number of passes in Section 3. The main idea in this algorithm is to sample
each of the n nodes independently with probability α and perform short (length w)
random walks from each of the sampled nodes in w passes. We then try to merge these
walks to form longer random walks from the source. The main idea in estimating the
probability distribution or mixing time is running several such random walks. However,
running several random walks requires some additional ideas to ensure small space. We
describe how to efficiently run a large number of random walks in Section 4. This also
gives an algorithm for approximating the probability distribution after a random walk.
The algorithm for approximating the mixing time uses these ideas and is described
in Sections 5. Section 6 provides an alternate algorithm for estimating the probability
distribution with higher accuracy more efficiently for certain values of ε.

2. PRIMER ON RANDOM WALKS AND PAGERANK

Random Walks. Given a weighted directed graph G, the random walk process is
defined as follows: The probability of transitioning from a node i to a node j, for
i, j ∈ V (G) and (i, j) ∈ E(G) is equal to wi j/

∑
(i,k)∈E(G) wik where wi j is the nonnegative

weight on the edge (i, j). For (i, j) /∈ E(G), the probability of transitioning from i to j is
0. So, the probability of transitioning from a node to a neighbor is proportional to the
weight of the corresponding edge. For undirected graphs, the weight is equal in both
directions.
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The random walk process can be defined for undirected graphs as well, where the
sum above is taken over all undirected edges (i, k) ∈ E(G). For unweighted graphs, the
probability of transitioning from a vertex i to any neighbor is the same, and is equal to
1/d(i) where d(i) is the degree of the vertex i in G.

Transition Matrix. The random walk transition probabilities on a graph is often
expressed in the form a matrix, called the transition matrix A. The (i, j)-th entry in the
matrix denotes the probability of transition from i to j by the random walk process.
The transition matrix A can easily be obtained from the adjacency matrix of the graph.
Every row sum of the matrix is 1.

Therefore, for edges (i, j) in the graph we have,

A(i, j) = wi j∑
(i,k)∈E(G) wik

For all other pairs (i, j), A(i, j) = 0. Starting from a probability distribution u (row-
vector) over the nodes, the distribution after l steps of the random walk can be computed
as u.Al.

Steady State Distribution. The steady state distribution of a random walk process
is defined as the distribution that the walk approaches, as the number of steps in the
walk goes to infinity. The steady state distribution vector v satisfies v = v.A. The steady
state vector is uniquely determined under some basic conditions [Jerrum and Sinclair
1989] such as the graph being connected (or strongly connected in the case of directed
graphs) and aperiodic. For undirected graphs, the vector v is determined by the degree
distribution, and for node i, vi is equal to the deg(i)

2m where deg(i) is the degree of node i
and m is the total number of edges.

PageRank. In real world graph applications, the PageRank vector is the steady state
distribution of a random walk that is a slight modification of the standard random walk
over the graph. At any step, the random walk process defined previously is followed
with probability β ≤ 1. With probability 1 − β, node i transitions to a randomly chosen
node. In particular, the transition matrix with random resets incorporated is as follows:

A(i, j) = β · wi j∑
(i,k)∈E(G) wik

+ (1 − β)
1
n

Alternatively, one can think of this as modifying the graph by scaling all current
weights by a factor of β, and adding a complete graph scaled to a weight of 1 − β.
This way, each node transitions to a randomly chosen node with probably 1 − β, and
transitions based on the underlying graph with probability β. Here, n is the number of
vertices in the graph. One of the reasons these random reset edges are incorporated is to
force the graph to become strongly connected. This way, the PageRank vector becomes
independent of the initial distribution. Since these edges can be implicitly assumed to
be appearing in the stream by the algorithm, here after whenever we mention a graph
or a random walk, we assume that it is over this modified graph with random reset
edges included.

We will provide a streaming algorithm to estimate the steady state distribution of a
random walk on a graph; since the PageRank vector is the steady state distribution of
a random walk on a slightly altered graph, we can still use our algorithm by implicitly
handling the edges corresponding to the random resets at run time. With every stream,
the algorithm can pretend that the edges corresponding to the random resets are also
presented, and the algorithm handles them similarly.

Mixing Time and Conductance. The mixing time of a graph is the number of steps
required for the random walk process, starting at any distribution, to reach close to

Journal of the ACM, Vol. 58, No. 3, Article 13, Publication date: May 2011.



13:6 A. Das Sarma et al.

the steady state distribution. Therefore, if M is the mixing time, then for any starting
distribution u, the transition matrix A of the graph satisfies u.AM is close to u.AM+1.
Formally, the mixing time is defined as the smallest M such that the variation distance
|u.AM − u.AM+1|1 is at most ε for all u. Here ε is normally chosen to be a constant 1/2e.

The conductance of a graph G is defined as φ(G) = minS:|S|≤|V |/2 (E(S, V (G) \ S)/E(S))
where E(S, V (G)\S) is the number of the edges spanning the cut (S, V (G)\S) and E(S)
is the number of edges on the smaller side of the cut. Conductance is a good measure of
how separable a graph is into two pieces. The conductance � of a graph and the mixing
time M are related by 	(1/M) ≤ � ≤ 	(1/

√
M) as shown in Jerrum and Sinclair [1989].

3. SINGLE RANDOM WALK

We first present an algorithm to perform a single random walk over a graph stream
efficiently. The naı̈ve approach is to do this in O(1) space and l passes by performing
one step of the random walk with every pass over the stream. At the other extreme,
one can perform a random walk of length l in 1 pass and O(nl) space by sampling l
edges out of each of the n nodes in one pass. Subsequently, with these nl edges stored,
it is possible to perform a random walk of length l without any more passes, as with l
edges out of each node, the random walk cannot get stuck at a node before completing
a walk of length l. In this section, we show the following result.

THEOREM 3.1. One can perform a random walk of length l in Õ(
√

l/α) passes with
high probability2 and Õ(nα + √

l/α) space, for any choice of α with 0 < α ≤ 1.

Setting α = 1, we get the following corollary.

COROLLARY 3.2. One can perform a random walk of length l in Õ(
√

l) passes and Õ(n)
space.

We start by describing the overall approach of our algorithm.
Perform Short Random Walks Out of Sampled Nodes. The main idea in our algorithm

is to sample each node with probability α independently and perform short random
walks of length w from each sampled node; this is done in w passes over the stream.
The algorithm tries to extend the walk from the source by merging these short walks
to form a longer random walk. It may get stuck in one of two ways. First, the walk may
end up at a node that has not been sampled. Second, the walk may end up at one of the
sampled nodes for a second time; notice that its stored w length walk cannot be used
more than once in order to preserve the randomness of the walk. Note that sampling
each node with probability α can be done by using a pseudo-random hash function on
the node id.

Handling Stuck Nodes. While constructing the walk if it gets stuck at a node, from
which no unused w-length walk is available, we will refer to such a node as a stuck
node. We handle stuck nodes as follows. We keep track of the set S of sampled nodes
whose w length walks have already been used in extending the random walk so far. In
one additional pass, we now sample s edges out of the stuck node as well as each node in
S. (If the degree of a node is present in the stream it can be done in one pass; otherwise,
one can do this in two passes, one to compute its degree and another to sample the
edges.) We then extend the walk as far as possible using these newly sampled edges.
If the new endpoint is a sampled node whose w-length walk has not been used (i.e., it
is not in S), then we continue merging as before. Otherwise, if the new end-point is a

2Also abbreviated as w.h.p. The probability is at least 1 − (1/poly(nl)) if we include log(nl) factors in the Õ.
All our theorems hold w.h.p.
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ALGORITHM 1: SINGLERANDOMWALK(u, l)
1: Input: Starting node u, and desired walk length l.
2: Output: Lu the random walk from u of length l.
3: T ← set of nodes obtained by sampling each node independently with probability α (in one

pass).
4: In w passes, perform walks of length w from every node in T . Let W [t] ← the end point of

the walk of length w from t ∈ T (the nodes in T whose w length walks get used towards Lu
will get included in S).

5: S ← {}(we will refer to the nodes in S as centers).
6: Initialize Lu to a zero length walk starting at u. Let x ← u.
7: while |Lu| < l do
8: (1) if (x ∈ T and x /∈ S) extend Lu by appending the walk (implicit in) W [x]. S ← S ∪ {x}.

x ← W [x], the new end point of Lu. {this means we have a w length walk starting at x
that has not been used so far in Lu}

(2) if (x /∈ T or x ∈ S) HANDLESTUCKNODE(x, T , S, Lu, l). {this means that either x was not
in the initial set of sampled nodes, or x’s w-length walk has already been used up}

9: end while

ALGORITHM 2: HANDLESTUCKNODE(x, T , S, Lu, l)
1: R ← x.
2: while |Lu| < l do
3: E ← sample s edges (with repetition) out of each node in S ∪ R.
4: Extend Lu as far as possible by walking along the sampled edges in E (on visiting a node

in S ∪ R for the k-th time, use the kth edge of the s sampled edges from that node).
5: x ← new end point of Lu after the extension. One of the following cases arise.

(1) if (x ∈ S ∪ R) continue {no new node is seen, at least s progress has been made.}
(2) if (x ∈ T and x /∈ S ∪ R) return {this means that x is a node that has not been seen in

the walk so far, and x was among the set of nodes sampled initially; therefore, the
w-length walk from x has not been used}

(3) if (x /∈ T and x /∈ S ∪ R) R ← R ∪ {x}. {this means that x is a new node that has not
been visited in this invocation, and x is not in the initial set sampled nodes T }

6: end while

new stuck node, we repeat the process of sampling s edges out of S and all the stuck
nodes visited since the last w-length walk was used. Finally, if the new endpoint is not
a stuck node, we continue appending w length walks as before.

We need to argue that whenever the algorithm hits a stuck node, it makes sufficient
progress with each pass. Note that after each round of sampling s edges out of the
stuck nodes and the nodes in S, the walk is extended further. Either the walk reaches
a node that is not stuck, thereby resulting in w progress, or the walk is extended until
it again reaches a node that is stuck. Notice that in the latter case, s steps of progress
is made. The point is that we cannot keep finding new stuck nodes repeatedly for too
long as each new node is a sampled node with probability α. So, it is unlikely we will
visit more than Õ(1/α) new stuck nodes in a sequence before becoming unstuck. These
steps are detailed in the algorithm SINGLERANDOMWALK.

The notation in the algorithm SINGLERANDOMWALK uses T to denote the sampled
nodes obtained by sampling each node independently with probability α. The table W
indexed by a sampled node (say t) stores the end point of the w length walks starting
at t as W[t]. Note that this table can be populated in w passes using O(αn) space. The
set S keeps track of all nodes in T whose w length walks get used up. The algorithm
continues extending the walk using the w length walks implicitly stored in the table
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W until it finds a stuck node. The module HANDLESTUCKNODE proceeds by sampling s
edges out of S ∪ R where R is the set of stuck nodes visited in the current invocation
of SINGLERANDOMWALK. Finally, Lu denotes the random walk of length l from u. We now
state some claims using this notation, based on the algorithm.

Remark 3.3. The length of the walk produced by algorithm SINGLERANDOMWALK

could exceed l slightly (by at most w). To prevent this, we can run the algorithm
till we get a walk of length at least l − w and then extend this walk to length l in at
most w additional passes.

We begin the analysis with a lemma that follows immediately from the algorithm.

LEMMA 3.4. |S| ≤ l/w.

PROOF. A node is added to the set S only after we use a w length walk from one of
the sampled nodes. If we perform a walk of length l, we will end up using at most l

w
walks of length w.

We now state and prove the main claim that is needed to bound the number of passes
required by algorithm SINGLERANDOMWALK to perform a random walk of length l.

CLAIM 3.5. With every additional pass over the edge stream (after the first w passes),
the length of the random walk Lu either increases by s, or if it does not increase by s
then with probability α it increases by w. Further, |R| ≤ Õ(1/α) with high probability.

PROOF. We only need to examine the algorithm HANDLESTUCKNODE. An additional
pass over the stream is made when s edges are sampled (independently, with repetition)
from every node in S ∪ R. This happens when the algorithm gets stuck at a new stuck
node in R. After a pass over the stream, either the algorithm makes s progress, or a new
node is visited. This is because, after a pass, all nodes that were stuck (i.e., nodes whose
w-length walks are used up) now have s edges sampled out of them. If on extending
the walk, the walk continues to visit these nodes, the algorithm completes at least s
steps before getting stuck again at one of the nodes in S. However, the algorithm may
exit the set of stuck nodes and end up at a node outside, before completing s steps. In
this case, with probability α, the new node is in T (since T contains each node with
probability α), and with probability 1 − α, it is a new stuck node. This is because each
of these new nodes was sampled independently with probability α at the beginning of
the algorithm. If the new node is not a stuck node, w progress is made. The probability
of not seeing a new node in T is 1 − α with every additional pass that lands at a new
node. Therefore, the probability that more than O(log(nl)/α) new stuck nodes are seen
before a new node in T is seen is small (at most 1/poly(nl)) by Chernoff Bounds. So
w.h.p., |R| is less than Õ(1/α) in each invocation of HANDLESTUCKNODE.

We are now ready to prove Theorem 3.1.

PROOF OF THEOREM 3.1.
Correctness. We first argue that the walk of length l from source u generated by

our algorithm is indeed a random walk. Notice that the algorithm uses each w-length
walk only once in the walk Lu. Note that the algorithm never reuses any randomly
sampled edges or walks. Whenever we sample s edges, we pick the ith sampled edge,
when visiting the node for the ith time. Therefore, randomness is maintained. It is
important to note that while sampling s edges, we (correctly) allow the same edge to be
sampled multiple times; in particular, this would definitely happen for a vertex with
degree less than s.

Space. We need space O(αn) for storing the sampled nodes and the end point of their
w length walks. Using Lemma 3.4, sampling s edges from every node in S requires
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O(s(l/w)) space, while sampling s edges from the nodes not in R takes up an additional
Õ

(
s 1

α

)
space as |R| = Õ(1/α) w.h.p. Õ

(
nα + s

( l
w

+ 1
α

))
.

Passes. The most crucial observation in analyzing the number of passes required by
the algorithm SINGLERANDOMWALK is Claim 3.5. This claim states that in case s progress
is not made in a pass then with probability α w progress is made. The number of passes
in which s progress is made is at most l/s. Now let us bound the number of passes in
which case s progress is not made – then with probability α, w progress is made which
can happen at most l/w times. Now, in Õ(1/α) such passes at least once w progress
is made. Thus, the number of passes when s progress is not made is at most Õ

( l
wα

)
w.h.p (the Õ includes log(nl) factors to achieve a high probability of 1 − 1/poly(nl)).
Additionally, w passes are used for generating the w length walks from each of the
sampled O(αn) nodes.

Therefore, the total number of passes used in the algorithm is Õ(w + (l/s) + (l/wα))
with high probability. Setting s = √

lα and w = √
l/α completes the proof.

Note that SINGLERANDOMWALK takes sublinear space and passes even for performing
very long (O(n) length) random walks. Setting l = O(n) and choosing α = n− 1

3 in
Theorem 3.1 gives the following corollary.

COROLLARY 3.6. One can perform a random walk of length O(n) in Õ(n2/3) passes and
Õ(n2/3) space.

The previous algorithm can easily be extended to the case when the starting node of
the random walk comes from a distribution, rather than a specific node. In this case,
one can sample a node from the initial distribution and use this as the source node for
the random walk.

Notice that if we wanted to perform a larger number of independent random walks
using this algorithm directly, the space required would increase linearly in the num-
ber of walks, while the passes would remain unchanged. The bottleneck in the space
requirement would arise due to two reasons. First, the algorithm would need to store
multiple w-length walks from each sampled node, one for each random walk. Second,
many of these random walks could get stuck at the same time, and the algorithm may
be required to sample s edges out of the centers of many walks. In the following section,
we reduce the space requirements arising in both these scenarios by trying to identify
the appropriate number of w-length walks required for each sampled node.

The previous algorithm only samples end points from the distribution at length l.
One can in fact regenerate the entire walk by using a pseudo-random generator for the
coin tosses during the algorithm.

Remark 3.7. Note that since we only store the end-points of w length walks in W , the
internal nodes are not available in Lu at the end of the algorithm SINGLERANDOMWALK.
These w-length walks can be reconstructed by making pseudorandom choices while
creating the w length random walks in Step 3 of SINGLERANDOMWALK, and reusing the
coin tosses to reconstruct them at the end. A single pseudo-random hash function can
be used to generate all the coin tosses.

4. ESTIMATING PROBABILITY DISTRIBUTION BY PERFORMING A LARGE NUMBER
OF RANDOM WALKS

We now show how to estimate the probability distribution of the destination node after
performing a random walk. We achieve this by performing several random walks. The
source node may either be fixed or chosen from a certain initial distribution. A naı̈ve
method that uses algorithm SINGLERANDOMWALK to perform K random walks would
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require O(K(nα + √
l/α)) space. In this section, we show how algorithm SINGLERAN-

DOMWALK can be extended to perform n/l random walks without significant increase in
the space-pass complexity. Specifically, we show the following result.

THEOREM 4.1. One can perform K random walks of length l in Õ(
√

l/α) passes and
Õ(nα + K

√
l/α + Klα) space for any choice of α with 0 < α ≤ 1.

In particular, if K = n
l , then for α ≥ l−1/3, the space requirement is O(nα) which is as

good as the space complexity of SINGLERANDOMWALK. We first describe how Theorem 4.1
can be used to estimate the probability distribution after a random walk of length l.

By performing a large number of random walks and computing the fraction of walks
that end at a given node gives us an estimate of the probability that a random walk
ends at this node. If the actual probability of ending at a node is p, then by setting
K = 	(log n/ε), we get an estimate for p with accuracy p±√

εp±ε. By Chernoff bounds,
due to the log n factor, this estimate is valid w.h.p. for all nodes.

The specific form of the bound we require here (and use repeatedly in our analysis
later on as well) is stated in Lemma 4.2.

LEMMA 4.2. If the probability of an event X occurring is p, then in t = 	(log n/ε)
trials, the fraction of times the event X occurs is (p ± √

pε ± ε) times w.h.p.3

PROOF. Given independent identically distributed random variables Xi, such that
Pr[Xi = 1] = p and Pr[Xi = 0] = (1− p), and t events X1, X2, . . . , Xt, standard Chernoff
or Hoeffding Bounds says for the lower tail

Pr

[
1
t

t∑
i=1

Xi < (1 − δ)tp

]
<

(
e−δ

(1 − δ)(1−δ)

)tp

< e−tpδ2/2.

For the upper tail, the bound is

Pr

[
1
t

t∑
i=1

Xi > (1 + δ)tp

]
<

(
eδ

(1 + δ)(1+δ)

)tp

.

Further, for δ > 2e−1, this bound reduces to 2−δtp and for δ < 2e−1, this bound reduces
to e−tpδ2/4.

For the lemma, we choose t = 	((log n/ε)), and δ =
√

(ε/p) + (ε/p). Now consider
two cases, one where p > ε and when p ≤ ε. When p ≤ ε, the lower tail bound
follows automatically since p − ε < 0. For the upper tail bound, we have δ > 1;
in this case, the weaker bound is 2−δtp and we show that this suffices to prove the
lemma. We have 2−δtp = 2−(

√
εp+ε)t ≤ 2−εt = 2− log n = 1/n. Now consider the case when

p > ε. Now, δ < 2 is small and so the lower and upper tail bounds are e−tpδ2/2 and
e−tpδ2/4, respectively. In this case,

√
ε/p > ε/p; therefore, we get an asymptotic bound

of e−	(tp(
√

ε/p2) = e−	( log n
ε

p(ε/p)) = e−	(log n) = 1
n	(1) . This completes the proof.

We then get the following corollary.

COROLLARY 4.3. For any node with probability p in the probability distribution after
a walk of length l, one can approximate its probability up to an accuracy of p±√

pε±ε in
Õ(

√
l/α) passes and Õ(nα+(1/ε)

√
(l/α)+(1/ε)lα) space for any choice of α with 0 < α ≤ 1.

This is a (1 ±
√

(ε/p) ± (ε/p))-factor approximation for a node with probability p in the
distribution.

3probability 1 − 1/n�(1).
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Notice that for p � ε, this is a constant factor approximation close to 1.
By applying this algorithm on the web-graph (including the random reset edges that

are handling implicitly), we can estimate the PageRank vector up to an accuracy of
p±√

pε ± ε for any node with probability p in the stationary distribution, in Õ(
√

M/α)
passes and Õ(nα + 1/ε

√
M/α + (1/ε)Mα) space, where M is the mixing time of the

graph. We will show later in Section 5 how to estimate the mixing time M of any graph.
Note that our algorithm is also able to handle the random resets in the standard
definition of PageRank by handling these transitions implicitly; that is the transition
edges corresponding to the random resets can be included into the graph implicitly.

Our technique for performing a large number of walks uses algorithm SINGLERAN-
DOMWALK as a subroutine. The key idea in our approach is to estimate the probability
ri that the w length walk of node i is used in SINGLERANDOMWALK. We then use the
ri ’s to store the appropriate number of w length walks from each sampled node for
K executions of SINGLERANDOMWALK. Estimating ri however again requires performing
random walks. For this purpose, we start by performing one random walk, then two,
then four and so on, doubling the number of random walks in every phase, giving more
and more accurate estimates of ri for the sampled nodes.

Let us first define ri for every node i assuming a given set of sampled nodes in
Algorithm SINGLERANDOMWALK. Note that this definition is dependent on the length of
the walk but we omit write this as a superscript.

Definition 4.4 (ri). For any sampled node i, define ri to be the probability that on
running the algorithm SINGLERANDOMWALK, the w length walk of node i is used (and
hence i gets included in the set of centers S in the performed walk of length l).

Lemma 3.4 states that |S| ≤ l/w. Notice that a node is included in S if and only if its
w length random walk is used towards the random walk Lu. By our definition of ri, we
have that

∑
i ri is equal to the expected size of |S|. From these two statements, we get

the following observation.

Observation.
∑

i ri ≤ l/w.

We now describe the algorithm for performing a large number of random walks.
Whenever we say sample x walks of length w from i, we mean take the endpoints of x
independent random walks of length w starting at i.

This algorithm runs in phases. To obtain K walks of length l, algorithm MULTI-
PLERANDOMWALK is run for j = log K phases. In phase j + 1 we run O(2 j log n) parallel
executions of SINGLERANDOMWALK and use these to get an estimate r̃i of ri to an addi-
tive error of

√
ri/2 j + 1/2 j . This estimate is then used in the next phase to store the

appropriate number of w length walks from each i. Note that, all the executions of
SINGLERANDOMWALK share the same set of sampled nodes.

We are now ready to prove Theorem 4.1.

PROOF OF THEOREM 4.1.
Correctness. We need to show that the number of w length walks we store from

the sampled nodes in step 1 of each phase j + 1 in MULTIPLERANDOMWALK is sufficient
for Kj+1 executions of SINGLERANDOMWALK. Note that (assuming previous phases have
completed successfully) in each phase the estimate r̃i is accurate up to an additive error
of

√
ri/2 j +1/2 j w.h.p; this follows from lemma 4.2 since we are using Kj = Õ(2 j) walks

to estimate ri. Therefore, our estimate r̃i is w.h.p. at least ri−
√

ri/2 j−1/2 j ≥ ri/2−1.5/2 j

(since
√

xy ≤ (x+ y)/2, for any positive reals x, y). It follows that the actual value ri is at
most O(r̃i+1/2 j) w.h.p. The number of walks in phase j+1 that use this node as a center
is w.h.p., by Chernoff bounds, at most O(Kj+1ri + log n) ≤ O(2 j+1r̃i log n + 2 + log n) =
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ALGORITHM 3: MULTIPLERANDOMWALK(I, l, K)
1: Input: Distribution of the source nodes, I, and length of the walk, l
2: T ← set of nodes obtained by sampling each node independently with probability α.
3: Perform phases 1 through log K as follows -
4: Phase 1:

(1) Perform O(log n) walks of length w from each of the sampled nodes, in w passes.
(2) Spawn K1 = O(log n) instances of SINGLERANDOMWALK to obtain K1 walks. All these

instances use only the w-length walks in the previous step.
(3) For each sampled node i ∈ T , set estimate r̃i = ni/K1 where ni is the number of walks

produced in the previous step that use i as a center.

5: Phase ( j + 1): {The value of r̃i differs from ri by an additive error of O(
√

ri/2 j + 1/2 j) w.h.p.}.

(1) In w passes, sample O(2 j r̃i log n + log n) random walks of length w for all nodes in T .
(2) Run Kj+1 = 2 j O(log n) independent instances of SINGLERANDOMWALK using the w- length

random walks sampled in the previous step.
(3) Set estimate r̃i = ni/Kj+1 where ni is the number of walks that use i as a center.

O(2 j r̃i log n + log n). This is exactly the number of w-length walks we sample in phase
j + 1. This implies that w.h.p. any time one of Kj+1 = 2 j O(log n) walks hits a sampled
node for the first time, there is an unused w length walk for that node, to extend it. By
including log nKl factors in the Õ, each individual walk holds with probability at least
1 − 1/poly(nKl); so it holds with high probability over all the K walks. No w length
walk or sampled edge, is ever reused throughout the execution; therefore, all random
choices in the eventual walk are independent.

Space. Suppose we do t phases such that 2t = K. Total space required would include
O(nα) space to store the sampled nodes. Further, to store the w length walks in phase
t, we need O(

∑
i∈T (2tr̃i log n + log n)) space. Now r̃i ≤ ri + √

ri/2t + 1/2t ≤ O(ri + 1/2 j)
since (

√
xy ≤ (x + y)/2 for x, y ≥ 0). So the space to store the w length walks in phase t

is at most O(
∑

i∈T (2tri log n+ 1 + log n)) = Õ(K(l/w) + nα) space. And finally, the space
for sampling s edges in each execution of HANDLESTUCKNODE amounts to Õ(K l

w
s+ K 1

α
s).

Therefore, the algorithm MULTIPLERANDOMWALK uses a total space of Õ(K l
w

s+K 1
α
s+αn).

Passes. The number of passes required in algorithm MULTIPLERANDOMWALK in any
given phase is the same as in SINGLERANDOMWALK, no matter how many walks are being
run in that phase. So the total passes required for a given phase is Õ(w + (l/s)+ (l/wα))
again using Claim 3.5. The number of phases run is log K. It follows that the total
number of passes in MULTIPLERANDOMWALK is Õ(w + (l/s) + (l/wα)). Setting w = √

l/α
and s = √

lα, the theorem follows.
We now show how MULTIPLERANDOMWALK algorithm can be used for estimating the

mixing time.

5. ESTIMATING MIXING TIME

In our previous algorithms, we need to preform walks of length l equal to the mixing
time, to estimate the PageRank distribution. We now present an algorithm to estimate
the mixing time of a graph. However, instead of computing the exact mixing time,
we compute the time required for approximate mixing of a random walk. That is,
we compute a length l such that running a random walk for l steps from an initial
distribution ends at a node with a probability distribution that is close to the stationary
distribution. We wish to compute l given an initial distribution u. We denote the mixing
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time for an initial distribution u to reaching within ε in L1 distance of the steady state
distribution by lu(ε). The following definition makes this precise for undirected graphs.

Definition 5.1 (ε-Near Mixing Time of Undirected Graph). We say that lu(ε) is the ε-
near mixing time of an undirected graph for an initial distribution u if the L1-distance
between the steady state distribution and the distribution obtained after a random
walk of length lu(ε) starting at node from distribution u is at most ε. Further, lu(ε) must
be the shortest such length that satisfies this condition.

For directed graphs, we have a weaker definition of ε-near mixing time.

Definition 5.2 (ε-Near Mixing Time of Directed Graph). We say that lu(ε) is the ε-
near mixing time of a directed graph for an initial distribution u if the L1-distance
between the distribution obtained after a random walk of length lu(ε) starting at a
node from distribution u, and the distribution obtained after a random walk of length
lu(ε) + poly(1/ε), is at most ε.

LEMMA 5.3. The ε-near mixing time is monotonic property, that is, if given a source
distribution, the distribution after a walk of length l is within ε in L1 distance of the
steady state distribution, then so is a walk of length l + 1.

PROOF. The monotonicity follows from the fact that ||xA||1 ≤ ||x||1 for any transition
probability matrix A and for any vector x. This, in turn, follows from the fact that the
sum of entries of any column of A is 1.

Now let π be the stationary distribution of the transition matrix A. This implies that
if l is ε-near mixing, then ||uAl − π ||1 ≤ ε, by definition of ε-near mixing time. Now
consider ||uAl+1 − π ||1. This is equal to ||uAl+1 − π A||1 since π A = π . However, this
reduces to ||(uAl − π )A||1 ≤ ε. It follows that (l + 1) is ε-near mixing.

In this section, specifically, we show the following result.

THEOREM 5.4. Given u, one can find a time that is between lu(6ε) and lu(ε3/4
√

n log n)
in Õ(nα + poly(ε−1)(

√
(Mun/α) + Muα

√
n)) space and Õ(

√
Mu/α) passes over the stream,

where Mu = lu(ε3/4
√

n log n). For directed graphs, one can find a time that is between

lu(ε) and lu(max{ε2/(32n1/3), ε/(4
√

n)}), in Õ(
√

Mu
α

) passes Õ(nα+poly(ε−1)(n2/3
√

(Mu/α)+
Muαn2/3)) space, where Mu = lu(max{ε2/(32n1/3), ε/(4

√
n)}).

The naı̈ve approach to compute the mixing time requires O(n) space and O(Mu)
passes over the input stream This computes uAMu exactly where u is the initial vector
of size n and A the matrix representation of the graph. It takes n space to maintain
this vector, and Mu passes to multiply by A once in every pass.

The main idea in estimating the mixing time is to run many random walks of length
l from the specified source using the approach described in the previous section, and
use these to compute the distribution after l-length random walk. We then compare
the distribution at different l, with the stationary distribution, to check if the two
distributions are ε-near. We need to address the following issues. First, we do not
know what value(s) of l to try. Second, we need to compare these distributions with the
steady state distribution; while the steady state distribution is easy to compute for an
undirected graph, it is hard to compute for directed graphs.

To compare two distributions, we use the technique of Batu et al. [2001] to determine
if the distributions are ε-near. Their result is summarized in the following theorem.

THEOREM 5.5 ([BATU ET AL. 2001]). Given Õ(n1/2 poly(ε−1)) samples from a black-box
distribution X over [n], and a specified distribution Y , there is a test that outputs PASS
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ALGORITHM 4: MODIFIEDSINGLERANDOMWALK(u, l)
1: Input: Starting node u, and desired walk length l. Array W [t, k] for t ∈ T , 0 < k ≤ ∞ of

infinitely many random walks of length w for every node in T ; W [t, k] denotes the kth walk
for node t.

2: Output: Lu the random walk from u of length l.
3: T ← set of nodes obtained by sampling each node independently with probability α.
4: Let count[t] denote the next unused w length walk of t we will use. Initialize count[t] = 1 for

all t.
5: Initialize Lu to a zero length walk starting at u. Let x ← u, the source node.
6: while |Lu| < l do
7: (1) if (x ∈ T ) extend Lu by appending the walk corresponding to W [x, count[x]].

count[x] ← count[x] + 1. x ← new end point of Lu. {we increment count[x] so that the
next time the walk ends at x, we will use the next w length walk from x stored in the
table W .}

(2) if (x /∈ T ) MODIFIEDHANDLESTUCKNODE(x, T , Lu, l). {this means that x was not in the
initial set of sampled nodes}

8: end while

with high probability if |X− Y |1 ≤ ε3

4
√

n log n, and outputs FAIL with constant probability
if |X−Y |1 > 6ε. Similarly, given two black-box distributions X and Y over [n], there is a
test that requires O(n2/3ε−4 log n log(1/δ)) samples which outputs PASS with probability
at least 1− δ if |X−Y |1 ≤ max{ε2/(32n1/3), ε/(4

√
n)}, and outputs FAIL with probability

at least 1 − δ if |X − Y |1 > ε.

We are now ready to prove Theorem 5.4.

PROOF OF THEOREM 5.4. For undirected graphs, the stationary distribution of the ran-
dom walk is well-known to be deg(i)

2m for node i with degree deg(i), where m is the number
of edges in the graph. We only need Õ(n1/2 poly(ε−1)) samples from a distribution to
compare it to the stationary distribution. This can be achieved by running MULTI-
PLERANDOMWALK to obtain K = Õ(n1/2 poly(ε−1)) random walks. To find the approximate
mixing time, we try out increasing values of l that are powers of 2. Once we find the
right consecutive powers of 2, the monotonicity property admits a binary search to
determine the exact value of ε-near mixing time. Note that we can apply binary search
as ε-near mixing time is a monotonic property.

The result in Batu et al. [2001] also provides an approach to determine if two un-
known distributions X and Y over [n] are ε-close in L1 norm; however, this requires
Õ(n2/3 poly(ε−1)) samples from each distribution. This completes the proof.

Theorem 5.4 gives some interesting consequences for specific values of α and Mu. We
state some below. In the extreme cases of α = 1 and α = 1/Mu, we can calculate the
ε-near mixing time with either of the trade-offs presented in the following corollary.

COROLLARY 5.6. Given u, one can find a time that is between lu(6ε) and
lu(ε3/(4

√
n log n)) in either Õ(n)+ poly(ε−1)(Mu

√
n) space and Õ(

√
Mu) passes, or Õ

( n
Mu

+
Mu

√
npoly(ε−1)

)
space and Õ(Mu) passes, where Mu = lu(max{ε2/(32n1/3), ε/(4

√
n)})

Assuming the actual mixing time of the graph (worst case over all source nodes), say
M, is within constant factors of the estimated mixing time, one can compute a square-
root approximation to the conductance � of the graph as 	(1/M) ≤ � ≤ 	(1/

√
M) as
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shown in Jerrum and Sinclair [1989]. The conductance of a graph G is defined as

φ(G) = min
S:|S|≤|V |/2

E(S, V (G) \ S)
E(S)

where E(S, V (G) \ S) is the number of the edges spanning the cut, and E(S) is the
number of edges on the smaller side of the cut.

6. ESTIMATING DISTRIBUTIONS WITH BETTER ACCURACY

In this section, we present an algorithm that has a better space complexity when the
accuracy parameter ε is less than

√
l/n. The main idea is to replace the estimation of

ri ’s in MULTIPLERANDOMWALK, that measures the probability that node i is used as a
center, by another quantity qi that measures how many w length walks from node i
may be used. We start with a modification of SINGLERANDOMWALK, where we assume
that there are infinitely many w length walks out of each sampled node, that can be
accessed as an oracle. We then look at the expected number (qi) of w length walks
that will be used for each node i. Subsequently, in MODIFIEDMULTIPLERANDOMWALK, we
estimate qi in phases by doubling the number of walks in each phase getting better
accuracy each time (just as in MULTIPLERANDOMWALK).

We begin by describing the modification to the algorithm SINGLERANDOMWALK. The
main difference is that there are many w length walks available from the sampled
nodes; so the algorithm gets stuck only when it hits a nonsampled node. This is different
from the earlier version where the algorithm got stuck even if it visited a sampled node
for the second time. The notation in the algorithm below uses T to denote the sampled
nodes obtained by sampling each node with probability α independently. The table W
stores infinitely many w length walks per node in T ; W[t, k] is the endpoint of the k’th
w length walk starting at t. At most count[t] of these walks is actually used. Note that
this table can be populated in l passes, however the space requirement depends on the
maximum count[t] for every t. Right now, we assume that the table W is infinite and
we can obtain a w length walk for any value of count[t]. Unlike in SINGLERANDOMWALK

where we defined the set S to keep track of all nodes in T whose w length walks get
used up, in MODIFIEDSINGLERANDOMWALK, we do not need S. The algorithm continues
extending the walk using the w length walks implicitly stored in the table W until
it finds a stuck node. The module MODIFIEDHANDLESTUCKNODE proceeds by sampling s
edges out of R where R is the set of stuck nodes visited in the current invocation. In
this case, only a nonsampled node can be a stuck node.

With the algorithm in place, we now need to define qi, that we use instead of pi, in
MODIFIEDMULTIPLERANDOMWALK. Assume a given set of sampled nodes T .

Definition 6.1 (qi). For any sampled node i, define qi to be the expected value of
count[i] at the end of the execution of l-length random walk using MODIFIEDSINGLERAN-
DOMWALK.

Notice that the main difference in MODIFIEDSINGLERANDOMWALK as compared to SIN-
GLERANDOMWALK is that there is no set S to store the centers whose w length walk has
been used up. Every node in the initial sampled set T has sufficient number of w length
walks. So whenever this walk gets stuck it is stuck at a nonsampled node. In this case,
s edges are sampled out of all the new nodes visited since the last time a w length walk
was used; as before this set is denoted by R.

Estimating qi using SINGLERANDOMWALK. We now show how to estimate qi. In the
first phase, we use SINGLERANDOMWALK to perform O(log n) walks. To estimate the qi ’s,
the entire walks of length l need to be reconstructed. This can be done using the
pseudo-random coin tosses as described in Remark 3.7 which adds Õ(l) to the space
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ALGORITHM 5: MODIFIEDHANDLESTUCKNODE(x, T , Lu, l)
1: R ← x.
2: while |Lu| < l do
3: E ← sample s edges (with repetition) out of each node in R.
4: Extend Lu as far as possible by walking along the sampled edges in E (on visiting a node

in R for the k-th time, use the k-th edge of the s sampled edges from that node).
5: x ← new end point of Lu after the extension. One of the following cases arise.

(1) if (x ∈ R) continue {no new node is seen}
(2) if (x ∈ T ) return {this means that x is a sampled node; therefore, we can use the next

w-length walk from x by accessing the table W}
(3) if (x /∈ T and x /∈ R) R ← R ∪ {x}. {this means that x is a new node that has not been

visited in this invocation, and x is not in the initial set sampled nodes T }
6: end while

requirements. Once the walks of length l are reconstructed, for any walk, start walking
from the source node; each time a sampled node (say t) is seen, increment count[t] and
skip w steps, and continue walking till the end. Set the estimate q̃i to be the average
of count[i] over the O(log n) random walks. In phase j + 1, we run Kj+1 = 2 j O(log n)
walks and use this to obtain improved estimates of qi for the next phase.

ALGORITHM 6: MODIFIEDMULTIPLERANDOMWALK(I, l, K)
1: Input: Distribution of the source nodes, I, and length of the walk, l
2: T ← set of nodes obtained by sampling each node independently with probability α.
3: Perform phases 1 through log K as follows -
4: Phase 1: Perform O(log n) walks of length l using SINGLERANDOMWALK. Estimate qi using

the technique described above for reconstructing the walks and tracking count[i] for all
i ∈ T . Set estimate q̃i for qi to be the average of count[i] over all the log n walks.

5: Phase ( j + 1): {spawn Kj+1 walks}

—In w passes, sample Kj+1 = Õ(2 jqi + l
w

) walks from all i ∈ T .
—Perform 2 j O(log n) random walks using MODIFIEDSINGLERANDOMWALK and again compute

the estimates q̃i ’s. The estimate q̃i is obtained by taking the average value of count[i] over
the Kj+1 executions.

By definition of qi,
∑

qi ≤ l
w

. Since qi
l/w is a random variable in the range [0, 1], in

Kj+1 walks the estimate q̃/l/w is such that q̃/l/w = q/l/w ± (
√

(qi/(2 jl/w)) + 1
2 j ) w.h.p.

THEOREM 6.2. MODIFIEDMULTIPLERANDOMWALK can be used to perform K random
walks of length l in Õ(

√
l/α) passes and Õ(αn

√
lα + K

√
(l/α) + l) space.

PROOF.
Correctness. The proof is similar to that of Theorem 4.1. We need to show that the

number of w length walks we store from the sampled nodes in Step 1 of each phase
j + 1 in MULTIPLERANDOMWALK is sufficient for Kj+1 executions of SINGLERANDOMWALK.
Note that (assuming previous phases have completed successfully) in each phase the
estimate q̃i

l/w is accurate up to an additive error given by

q̃i

l/w
= qi

l/w
±

(√(
qi

l/w

)
1
2 j

+ 1
2 j

)
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w.h.p. Simplifying as in the proof of Theorem 4.1 (using the fact that
√

xy ≤ (x + y)/2),
we get w.h.p. that

q̃i

l/w
≥ qi

l/w
−

√(
qi

l/w
1
2 j

)
− 1

2 j
≥ qi

2l/w
− 1.5

2 j
.

It follows that qi
l/w is at most O

( q̃i
l/w + 1/2 j

)
w.h.p, or qi = O

(
q̃i + l

w2 j

)
w.h.p. The number

of walks in phase j + 1 that use this node as a center is w.h.p., by Chernoff bounds, at
most O(Kj+1qi +log n) ≤ O(2 j+1q̃i log n+2l/w+log n) = Õ(2 jqi +l/w). This is exactly the
number of w-length walks we sample in phase j + 1. This implies that w.h.p. any time
one of Kj+1 = 2 j O(log n) walks hits a sampled node, there is an unused w length walk
for that node, to extend it. No w length walk or sampled edge, is ever reused throughout
the execution; therefore, all random choices in the eventual walk are independent.

Space. Suppose we do t phases such that 2t = K. Total space required would include
O(nα) space to store the sampled nodes; to store the w length walks in the phase (t−1),
we need

Õ

(∑
i∈T

(
2tqi + l

w

))
= Õ

(
K

∑
i∈T

qi + nα
l
w

)
= Õ

(
K

(
l
w

)
+ nα

l
w

)

space; and finally, the space for sampling s edges in each execution of MODIFIEDHAN-
DLESTUCKNODE amounts to Õ(K 1

α
s). Observe that in MODIFIEDHANDLESTUCKNODE, we

only sample s edges out of R instead of S ∪ R as in HANDLESTUCKNODE. Also, as shown
before, |R| ≤ Õ(1/α) since each new node is likely to be a sampled node with prob-
ability α. So, the space required for the executions of MODIFIEDHANDLESTUCKNODE is
Õ(K 1

α
s). Also the first phase required Õ(l) space to reconstruct the walks obtained

from SINGLERANDOMWALK. Therefore, the total space required for this algorithm is

Õ
(

K
l
w

s + K
1
α

s + αn
l
w

+ l
)

.

Passes. The number of passes required is same as in MULTPLERANDOMWALK. So the
total passes required for this walk is still Õ

(
w + l

s + l
wα

)
.

Setting s = √
lα and w = √

lα completes the proof.

Comparing this with Theorem 4.1, we see that in the space requirement, the term
Klα is no longer there; however, the space of O(nα) in Theorem 4.1 has increased to
O(αn

√
lα); additionally, for the first phase where we needed to reconstruct the walks, we

incurred an additional space requirement of O(l). Depending on the values and bounds
required, one of these theorems is a better than the other. This gives the following
corollary similar to Corollary 4.3.

COROLLARY 6.3. For any node with probability p in the probability distribution after
a walk of length l, one can approximate its probability up to an accuracy of p± √

pε ± ε

for any ε > 0 in Õ(
√

l/α) passes and

Õ

(
αn

√
lα + 1

ε

√
l
α

+ l

)

space. This also implies a(
1 ±

√
ε

p
± ε

p

)
-approximation ratio

for any node with value p in the probability distribution.
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Notice that this is a constant (close to 1) factor approximation for any node with
p � ε.

7. CONCLUSIONS

We presented the following results for graphs presented as edge streams.

(1) Algorithm SINGLERANDOMWALK can perform a random walk of length l in O(
√

l/α)
passes and O(nα + √

l/α) space.
(2) Algorithm MULTIPLERANDOMWALK and algorithm MODIFIEDMULTIPLERANDOMWALK

can perform K random walks of length l in Õ(
√

l/α) passes and Õ(nα+K
√

l/α+Klα)
space or Õ(nα

√
lα + K(

√
l/α)) space, respectively. These algorithms also provide an

approach to approximating the probability distribution after a random walk of
length l. It follows that every node with probability p in the probability distribu-
tion after a random walk of length l can be approximated to an error of ±√

pε ± ε

using Õ(
√

l/α) passes and min{Õ(nα + 1
ε

√
l/α + 1

ε
lα), Õ(nα

√
lα + (1/ε)(

√
l/α))} space.

In particular, the latter algorithm performs better for thresholds ε ≤ √
l/n.

(3) We use this technique and present an approach to determine the ε-near mixing
time.

Some open questions that arise are:

(1) Can we estimate the distribution of nodes with accuracy ε = 1/n using O(n) space?
(2) Can one prove any space-pass trade-off bounds? The trivial algorithm to calcu-

late the exact distribution after a random walk of length l requires O(nl) in the
space×passes product. Our result stated in Corollary 6.3, for a threshold of ε = 1/n,
also has the same space-pass trade-off.

(3) Is there a lower bound on the number of passes required to perform random walks
or estimate distributions when the space allowed is O(n)? Alternatively, is there an
O(n) space constant pass algorithm?
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