CR-PRECIS: A deterministic summary structure for update data streams

Sumit Ganguly¹ and Anirban Majumder^{2*}

¹ Indian Institute of Technology, Kanpur ² Lucent Technologies, Bangalore

Abstract. We present deterministic sub-linear space algorithms for a number of problems over update data streams, including, estimating frequencies of items and ranges, finding approximate frequent items and approximate ϕ -quantiles, estimating inner-products, constructing near-optimal *B*-bucket histograms and estimating entropy. We also present new lower bound results for several problems over update data streams.

1 Introduction

The data streaming model [2, 26] presents a computational model for a variety of monitoring applications, for example, network monitoring, sensor networks, etc., where data arrives rapidly and continuously and has to be processed in an online fashion using sub-linear space. Some examples of fundamental data streaming primitives include, estimating the frequency of items (point queries) and ranges (range-sum queries), finding approximate frequent items, approximate quantiles and approximate hierarchical heavy hitters, estimating inner-product, constructing approximately optimal B-bucket histograms, estimating entropy, etc.. We view a data stream as a sequence of arrivals of the form (i, v), where, i is the identity of an item belonging to the domain $\mathcal{D} = \{0, 1, \dots, n-1\}$ and v is a non-zero integer that depicts the change in the frequency of $i. v \ge 1$ signifies v insertions of the item i and $v \leq -1$ signifies |v| deletions of i. The frequency of an item i is denoted by f_i and is defined as the sum of the changes to its frequency since the inception of the stream, that is, $f_i = \sum_{(i,v) \text{ appears in stream}} v$. If $f_i \ge 0$ for all i (i.e., deletions correspond to prior insertions) then the corresponding streaming model is referred to as the *strict update* streaming model, whereas, the model in which frequencies can take arbitrary positive, zero or negative values is called the *general update* streaming model. The *insert-only* model refers to data streams with no deletions, that is, v > 0.

Randomized algorithms dominate the landscape of sub-linear space algorithms for problems over update streams. There are no deterministic sub-linear space algorithms known for a variety of basic problems over update streams, including, estimating the frequency of items and ranges, finding approximate frequent items and approximate ϕ -quantiles, finding approximate hierarchical

^{*} Work done while at IIT Kanpur.

heavy hitters, constructing approximately optimal *B*-bucket histograms, estimating inner-products, estimating entropy, etc.. Deterministic algorithms are often indispensable, for example, in a marketing scenario where frequent items correspond to subsidized customers, a false negative would correspond to a missed frequent customer, and conversely, in a scenario where frequent items correspond to punishable misuse [21], a false positive results in an innocent victim.

We now review a data structure introduced by Gasieniec and Muthukrishnan [26] (page 31) that we use later. We refer to this structure as the CR-PRECIS structure, since the Chinese Remainder theorem plays a crucial role in the analysis. The structure is parameterized by a height k and width t. Choose t consecutive prime numbers $k \leq p_1 < p_2 < \ldots < p_t$ and keep a collection of t tables T_j , for $j = 1, \ldots, t$, where, T_j has p_j integer counters, numbered from $0, 1, \ldots, p_j - 1$. Each stream update of the form (i, v) is processed as follows.

for j := 1 to t do { $T_{j}[i \mod p_{j}] := T_{j}[i \mod p_{j}] + v$ }

Lemma 1 presents the space requirement of a CR-PRECIS structure and is implicit in [26] (pp. 31) and is proved by a direct application of the prime number theorem [27]. Let $L_1 = \sum_i |f_i|$.

Lemma 1. The space requirement of a CR-PRECIS structure with height parameter $k \ge 12$ and width parameter $t \ge 1$ is $O(t(t + \frac{k}{\ln k})\log(t + \frac{k}{\ln k})(\log L_1))$ bits. The time required to process a stream update is O(t) arithmetic operations. \Box

[26] (pp. 31) uses the CR-PRECIS structure to present a k-set structure [15] using space $O(k^2(\log k)(\log L_1))$ bits. k-set structures using space $O(k(\log N)(\log N + \log L_1))$ bits are presented in [15].

Contributions. We present deterministic, sub-linear space algorithms for each of the problems mentioned above in the model of update streams using the CR-PRECIS structure. We also present improved space lower bounds for some problems over update streams, namely, (a) the problem of estimating frequencies with accuracy ϕ over strict update streams is shown to require $\Omega(\phi^{-1}(\log m) \log (\phi n))$ space (previous bound was $\Omega(\phi^{-1}\log(\phi n))$ [4]), and, (b) all the above problems except for the problems of estimating frequencies of items and range-sums, are shown to require $\Omega(n)$ space in the general update streaming model.

2 Review

In this section, we review basic problems over data streams. For strict update streams, let $m = \sum_{i} f_{i}$ and for general update streams, $L_{1} = \sum_{i} |f_{i}|$.

The point query problem with parameter ϕ is the following: given $i \in \mathcal{D}$, obtain an estimate \hat{f}_i such that $|\hat{f}_i - f_i| \leq \phi L_1$. For insert-only streams, the Misra-Gries algorithm [25], rediscovered and refined in [12, 4, 22], uses $\lceil \phi^{-1} \rceil \log m$ bits and satisfies $f_i \leq \hat{f}_i \leq f_i + \phi m$. The Lossy Counting algorithm [23] for insert-only streams returns \hat{f}_i satisfying $f_i \leq \hat{f}_i \leq f_i + \phi m$ using $\lceil \phi^{-1} \rceil \log(\phi m) \log m$ bits. The Sticky Sampling algorithm [23] extends the Counting Samples algorithm [16] and returns \hat{f}_i satisfying $f_i - \phi m \leq \hat{f}_i \leq f_i$ with probability $1 - \delta$

using space $O(\lceil \phi^{-1} \rceil \log(\delta^{-1}) \log m)$ bits. The COUNT-MIN sketch algorithm returns \hat{f}_i that satisfies (a) $f_i \leq \hat{f}_i \leq f_i + \phi m$ with probability $1 - \delta$ for strict update streams, and, (b) $|\hat{f}_i - f_i| \leq \phi L_1$ using $O(\lceil \phi^{-1} \rceil (\log \delta^{-1}) \log L_1)$ bits. The COUNTSKETCH algorithm [6] satisfies $|\hat{f}_i - f_i| \leq (\lceil \phi^{-1} \rceil F_2^{res}(\lceil \phi^{-1} \rceil))^{1/2} \leq \phi L_1$ with probability $1 - \delta$ using space $O(\lceil \phi^{-1} \rceil (\log \delta^{-1} \log L_1))$ bits, where, $F_2^{res}(s)$ is the sum of the squares of all but the top-*s* frequencies in the stream. [4] shows that any algorithm satisfying $|\hat{f}_i - f_i| \leq \phi m$ must use $\Omega(\lceil \phi^{-1} \rceil \log \phi n)$ bits.

Given a parameter $0 < \phi < 1$, an item *i* is said to be ϕ -frequent if $|f_i| \ge \phi L_1$. [11, 22] show that finding all and only frequent items requires $\Omega(n)$ space. Therefore low-space algorithms find ϵ -approximate frequent items, where, $0 < \epsilon < 1$ is another parameter: return *i* such that $|f_i| \ge \phi L_1$ and do not return any *i* such that $|f_i| < (1-\epsilon)\phi L_1$ [6, 11, 9, 12, 16, 22, 25, 23, 28]. Algorithms for finding frequent items with parameters ϕ and ϵ typically use point query estimators with parameter $\frac{\epsilon\phi}{2}$ and return all items *i* such that $\hat{f}_i > (1-\frac{\epsilon}{2})\phi L_1$. A superset of ϵ -approximate frequent items is typically found using the technique of dyadic intervals [10, 9], reviewed below.

A dyadic interval at level l is an interval of size 2^{l} from the family of intervals $\{[i2^{l}, (i+1)2^{l}-1], 0 \le i \le \frac{n}{2^{l}}-1\}, \text{ for } 0 \le l \le \log n, \text{ assuming that } n \text{ is a power}$ of 2. The set of dyadic intervals at levels 0 through $\log n$ form a complete binary tree, whose root is the level log n dyadic interval [0, n-1] and whose leaves are the singleton intervals. Each dyadic interval I_l with level $1 \le l \le \log n$ has two children that are dyadic intervals at levels l - 1. If $I_l = [i2^l, (i+1)2^l - 1]$, for $0 \leq i \leq \frac{n}{2^l}$, then, the left child of I_l is $[2i\frac{n}{2^{l+1}}, (2i+1)\frac{n}{2^{l+1}} - 1]$ and the right child is $[(2i+1)\frac{n}{2^{l+1}}, (2i+2)\frac{n}{2^{l+1}} - 1]$. Given a stream, one can naturally extend the notion of item frequencies to dyadic interval frequencies. The frequency of a dyadic interval I_l at level l is the aggregate of the frequencies of the level 0 items that lie in that interval, that is, $f_{I_l} = \sum_{x \in I_l} f_x$. The efficient solution to a number of problems over *strict update* streams, including the problem of finding approximate frequent items, is facilitated by using summary structures for each dyadic level $l = 0, 1, ..., \lceil \log \phi n \rceil \rceil$ [10]. For the problem of ϵ -approximate ϕ -frequent items, we keep a point query estimator structure corresponding to accuracy parameter $\epsilon \phi$ for each dyadic level $l = 0, \ldots, \lceil \log(\phi n) \rceil$. An arrival over the stream of the form (i, v) is processed as follows: for each $l = 0, 1, \ldots, |\log \phi n|$, propagate the update $((i \% 2^l), v)$ to the structure at level l. Since, each item i belongs to a unique dyadic interval at each level l, the sum of the interval frequencies at level l is m. If an item i is frequent (i.e., $f_i \ge \phi m$), then for each $1 \le \phi m$ $l \leq \log n$, the unique dyadic interval I_l that contains i at level l has frequency at least f_i and is therefore also frequent at level l. To find ϵ -approximate ϕ -frequent items, we start by enumerating $O(\lceil \phi^{-1} \rceil)$ dyadic intervals at level $|\log \phi n|$. Only those candidate intervals are considered whose estimated frequency is at least $(1-\frac{\epsilon}{2})\phi n$. We then consider the left and the right child of these candidate intervals, and repeat the procedure. In general, at level l, there are $O([\phi^{-1}])$ candidate intervals, and thus, the total number of intervals considered in the iterations is $O(\left[\phi^{-1}\right]\log(\phi n))$.

The *hierarchical heavy hitters* problem [8, 13] is a useful generalization of the frequent items problem for domains that have a natural hierarchy (e.g., domain of IP addresses). Given a hierarchy, the frequency of a node X is defined as the sum of the frequencies of the leaf nodes (i.e., items) in the sub-tree rooted at X. The definition of hierarchical heavy hitter node (HHH) is inductive: a leaf node x is an HHH node provided $f_x > \phi m$. An internal node is an HHH node provided that its frequency, after discounting the frequency of all its descendant *HHH* nodes, is at least ϕm . The problem is, (a) to find all nodes that are *HHH* nodes, and, (b) to not output any node whose frequency, after discounting the frequencies of descendant HHH nodes, is below $(1 - \epsilon)\phi m$. This problem has been studied in [8, 10, 13, 21]. As shown in [8], this problem can be solved by using a simple bottom-up traversal of the hierarchy, identifying the frequent items at each level, and then subtracting the estimates of the frequent items at a level from the estimated frequency of its parent [8]. Using COUNT-MIN sketch, the space complexity is $O((\epsilon \phi^2)^{-1} (\log((\delta \epsilon \phi^2)^{-1} \log n)) (\log n) (\log m))$ bits. [21] presents an $\Omega(\phi^{-2})$ space lower bound for this problem, for fixed $\epsilon < 0.01$.

Given a range [l, r] from the domain \mathcal{D} , the range frequency is defined as $f_{[l,r]} = \sum_{x=l}^{r} f_x$. The range-sum query problem with parameter ϕ is: return an estimate $\hat{f}_{[l,r]}$ such that $|\hat{f}_{[l,r]} - f_{[l,r]}| \leq \phi m$. The range-sum query problem can be solved by using the technique of dyadic intervals [19]. Any range can be uniquely decomposed into the disjoint union of at most $2 \log n$ dyadic intervals of maximum size (for e.g., over the domain $\{0, \ldots, 15\}$, the interval [3, 12] = [3, 3] + [4, 7] + [8, 11] + [12, 12]). The technique is to keep a point query estimator corresponding to each dyadic level $l = 0, 1, \ldots, \log n - 1$. The range-sum query is estimated as the sum of the estimates of the frequencies of each of the constituent maximal dyadic intervals of the given range. Using COUNT-MIN sketch at each level, this can be accomplished using space $O(\phi^{-1} \log(\log(\delta^{-1}n))(\log n)(\log m))$ bits and with probability $1 - \delta$ [10].

Given $0 \leq \phi \leq 1$ and $j = 1, 2, \ldots, \lceil \phi^{-1} \rceil$, an ϵ -approximate $j^{th} \phi$ -quantile is an item a_j such that $(j\phi - \epsilon)m \leq \sum_{i=a_j}^{n-1} f_i \leq (j\phi + \epsilon)m$. The problem has been studied in [10, 20, 18, 24]. For insert-only streams, [20] presents an algorithm requiring space $O((\log(\epsilon\phi)^{-1})\log(\epsilon\phi m))$. For strict update streams, the problem of finding approximate quantiles can be reduced to that of estimating range sums [18] as follows. For each $k = 1, 2, \ldots, \phi^{-1}$, a binary search is performed over the domain to find an item a_k such that the estimated range sum $\hat{f}_{[a_k,n-1]}$ lies between $(k\phi - \epsilon)m$ and $(k\phi + \epsilon)m$. [10] uses COUNT-MIN sketches and the above technique to find ϵ -approximate ϕ -quantiles with confidence $1 - \delta$ using space $O(\epsilon\phi^{-1}\log^2 n((\log(\epsilon\phi\delta)^{-1}) + \log\log n)).$

A *B*-bucket histogram *h* divides the domain $\mathcal{D} = \{0, 1, \ldots, n-1\}$ into *B* non-overlapping intervals, say, I_1, I_2, \ldots, I_B and for each interval I_j , chooses a value v_j . Then $h[0 \ldots n-1]$ is the vector defined as $h_i = v_j$, where, I_j is the unique interval containing *i*. The cost of a *B*-bucket histogram *h* with respect to the frequency vector *f* is defined as ||f - h||. Let h^{opt} denote an optimal *B*-bucket histogram satisfying $||f - h^{opt}|| = \min_{B\text{-bucket histogram } h} ||f - h||$. The problem is to find a *B*-bucket histogram \hat{h} such that $||f - \hat{h}|| \leq (1+\epsilon)||f - h^{opt}||$.

An algorithm for this problem is presented in a seminal paper [17] using space and time poly $(B, \frac{1}{\epsilon}, \log m, \log n)$ (w.r.t. L_2 distance $||f - h||_2$).

Given two streams R and S with item frequency vectors f and g respectively, the inner product $f \cdot g$ is defined as $\sum_{i \in \mathcal{D}} f_i \cdot g_i$. The problem is to return an estimate \hat{P} satisfying $|\hat{P} - f \cdot g| \leq \phi m_R m_S$. The problem finds applications in database query processing. The work in [1] presents a space lower bound of $s = \Omega(\phi^{-1})$ for this problem. Randomized algorithms [1, 7, 14] match the space lower bound, up to poly-logarithmic factors. The entropy of a data stream is defined as $H = \sum_{i \in \mathcal{D}} |f_i| \log \frac{L_1}{|f_i|}$. The problem is to return an ϵ -approximate estimate \hat{H} satisfying $|\hat{H} - H| \leq \epsilon H$. For insert-only streams, [5] presents a randomized estimator that uses space $O(\epsilon^{-2}(\log \delta^{-1}) \log^3 m)$ bits and also shows an $\Omega(\epsilon^{-2}(\log(\epsilon^{-1}))^{-1})$ space lower bound for estimating entropy. [3] presents a randomized estimator for update streams using space $O(\epsilon^{-3} \log^5 m(\log \epsilon^{-1})(\log \delta^{-1}))$.

We note that sub-linear space deterministic algorithms over update streams are not known for any of the above-mentioned problems.

3 CR-PRECIS structure for update streams

In this section, we use the CR-PRECIS structure to present algorithms for a family of problems over update streams.

An application of the Chinese Remainder Theorem. Consider a CR-PRECIS structure with height k and width t. Fix $x, y \in \{0, \ldots, n-1\}$ where $x \neq y$. Suppose x and y collide in the tables indexed by J, where, $J \subset \{1, 2, \ldots, t\}$. Then, $x \equiv y \mod p_j$, for each $j \in J$. By the Chinese Remainder theorem, $x \equiv y \mod (\prod_{j \in J} p_j)$. Therefore, $|J| < \log_k n$, otherwise, $\prod_{j \in J} p_j \ge k^{\log_k n} = n$, which is a contradiction, since, $x, y \in \{0, 1, \ldots, n-1\}$ and are distinct. Therefore, for any given $x, y \in \{0, 1, \ldots, n-1\}$ such that $x \neq y$,

$$|\{j \mid y \equiv x \mod p_j \text{ and } 1 \le j \le t\}| \le \log_k n - 1 . \tag{1}$$

3.1 Algorithms for strict update streams

In this section, we use the CR-PRECIS structure to design algorithms over strict update streams.

Point Queries. Consider a CR-PRECIS structure with height k and width t. The frequency of $x \in \mathcal{D}$ is estimated as: $\hat{f}_x = \min_{j=1}^t T_j[x \mod p_j]$. The accuracy guarantees are given by Lemma 2.

Lemma 2. For
$$0 \le x \le n-1$$
, $0 \le \hat{f}_x - f_x \le \frac{(\log_k n-1)}{t}(m-f_x)$.

Proof. Clearly, $T_j[x \mod p_j] \ge f_x$. Therefore, $\hat{f}_x \ge f_x$. Further,

$$t\hat{f}_x \leq \sum_{j=1}^t T_j [x \mod p_j] = tf_x + \sum_{j=1}^t \sum_{\substack{y \neq x \ y \equiv x \mod p_j}} f_y$$
.

Thus,
$$t(\hat{f}_x - f_x) = \sum_{j=1}^t \sum_{\substack{y \neq x \\ y \equiv x \mod p_j}} f_y = \sum_{\substack{y \neq x \\ y \neq x}} \sum_{j:y \equiv x \mod p_j} f_y$$
$$= \sum_{\substack{y \neq x}} f_y |\{j:y \equiv x \mod p_j\}| \leq (\log_k n - 1)(m - f_x), \text{ by } (1) \quad . \quad \Box$$

If we let $k = \lceil \phi^{-1} \rceil$ and $t = \lceil \phi^{-1} \rceil \log_{\lceil \phi^{-1} \rceil} n$, then, the space requirement of the point query estimator is $O(\phi^{-2}(\log_{\lceil \phi^{-1} \rceil} n)^2(\log m))$ bits. A slightly improved guarantee that is often useful for the point query estimator is given by Lemma 3, where, $m^{res}(s)$ is the sum of all but the top-*s* frequencies [3, 6].

Lemma 3. Consider a CR-PRECIS structure with height s and width $2s \log_s n$. Then, for any $0 \le x \le n-1$, $0 \le \hat{f}_x \le \frac{m^{res}(s)}{s}$.

Proof. Let y_1, y_2, \ldots, y_s denote the items with the top-*s* frequencies in the stream (with ties broken arbitrarily). By (1), *x* conflicts with each $y_j \neq x$ in at most $\log_s n$ buckets. Hence, the total number of buckets at which *x* conflicts with any of the top-*s* frequent items is at most $s \log_s n$. Thus there are at least $t - s \log_s n$ tables where, *x* does not conflict with any of the top-*s* frequencies. Applying the proof of Lemma 2 to only these set of $t - s \log_s n \geq s \log_s n$ tables, the role of *m* is replaced by $m^{res}(s)$.

We obtain deterministic algorithms for estimating range-sums, finding approximate frequent items, finding approximate hierarchical heavy hitters and ϵ approximate quantiles over strict update streams, by using the corresponding well-known reductions to point query estimators. The only change is that the use of randomized summary structures is replaced by a CR-PRECIS structure. Theorem 4 summarizes the space versus accuracy guarantees for these problems.

Theorem 4. There exist deterministic algorithms over the strict update streaming model for the problems mentioned in Figure 1 using the space and per-update processing time depicted there. \Box

Estimating inner product. Let $m_R = \sum_{i \in \mathcal{D}} f_i$ and let $m_S = \sum_{i \in \mathcal{D}} g_i$. We maintain a CR-PRECIS structure for each of the streams R and S, that have the same height k, same width t and use the same prime numbers as the table sizes. For $j = 1, 2, \ldots, t$, let T_j and U_j respectively denote the tables maintained for streams R and S corresponding to the prime p_j respectively. The estimate \hat{P} for the inner product is calculated as $\hat{P} = \min_{j=1}^t \sum_{b=1}^{p_j} T_j[b]U_j[b]$.

Problem	SPACE	Time
1. ϵ -approx. ϕ -frequent	$O(\lambda^2(\log_{\lambda} n)(\log \lambda))$	$O(\lambda \log_{\lambda} n \log n)$
items $(\lambda = \lceil (\epsilon \phi)^{-1} \rceil)$	$\log(\lambda^{-1}n) \ (\log m))$	
2. Range-sum: parameter	$O(\rho^2(\log_{\rho} n) \ (\log \rho$	$O(\rho(\log_{\rho} n) \ (\log n))$
$\phi, \ (\rho = \lceil \phi^{-1} \rceil)$	$+\log \log_{\rho} n))(\log m)\log n)$,
3. ϵ -approx. ϕ -quantile	$O(\lambda^2(\log^5 n)(\log m))$	$O(\lambda(\log^2 n))$
$(\lambda = \lceil (\epsilon \phi)^{-1} \rceil)$	$(\log \log n + \log \lambda)^{-1})$	$(\log \log n + \log \lambda)^{-1})$
4. ϵ -approx. ϕ -hierarchical	$O(\tau^2(\log_{\tau} n)^2)$	$O(\tau(\log n)(\log_{\tau} n))$
heavy hitters. $h = $ height,	$(\log \tau + \log \log n) \log m)$	
$(\tau = (\epsilon \phi^2)^{-1} h)$		
5. ϵ -approx. <i>B</i> -bucket	$O((\epsilon^{-2}B^2)(\log^3 n))$	$O((\epsilon^{-1}B)(\log^2 n))$
histogram	$(\log^{-1}(\epsilon^{-1}B))(\log m)$	$(\log^{-1}(\epsilon^{-1}B))$

Fig. 1. Space and time requirement for problems using CR-PRECIS technique.

Lemma 5. $f \cdot g \leq \hat{P} \leq f \cdot g + \left(\frac{\log_k n - 1}{t}\right) m_R m_S.$

Proof. For $j = 1, \ldots, t$, $\sum_{b=0}^{p_j-1} T_j[b]U_j[b] \ge \sum_{b=0}^{p_j-1} \sum_{x \equiv b \mod p_j} f_x g_x = f \cdot g$. Thus, $\hat{P} \ge f \cdot g$. Further,

$$\begin{split} t\hat{P} &\leq \sum_{j=1}^{t} \sum_{b=1}^{p_j} T_j[b] U_j[b] = t(f \cdot g) + \sum_{j=1}^{t} \sum_{\substack{x \neq y \\ x \equiv y \mod p_j}} f_x g_y \\ &= t(f \cdot g) + \sum_{x,y:x \neq y} f_x g_y \sum_{j:x \equiv y \mod p_j} 1 \\ &\leq t(f \cdot g) + (\log_k n - 1)(m_R m_S - f \cdot g), \text{ by } (1). \end{split}$$

Estimating entropy. We use the CR-PRECIS structure to estimate the entropy H over a strict update stream. For parameters k and t to be fixed later, a CR-PRECIS structure of height $k \geq 2$ and width t is maintained. Also, let $0 < \epsilon < 1$ be a parameter. First, we use the point query estimator to find all items x such that $\hat{f}_x \geq \frac{m}{\epsilon t}$. The contribution of these items, called *dense* items, to the estimated entropy is given by $\hat{H}_d = \sum_{x:\hat{f}_x > \frac{m}{\epsilon t}} \hat{f}_x \log \frac{m}{\hat{f}_x}$. Next, we remove the estimated contribution of the dense items from the tables. To ensure that the residues of dense frequencies remain non-negative, the estimated frequency is altered. Since, $0 \leq \hat{f}_x - f_x \leq \frac{(m-f_x)}{t}$, $f_x \geq \hat{f}_x - \frac{m-\hat{f}_x}{t-1} = f'_x$ (say), the tables are modified as follows: $T_j[x \mod p_j] := T_j[x \mod p_j] - f'_x$, for each x s.t. $\hat{f}_x \geq \frac{m}{\epsilon t}$ and $j = 1, \ldots, t$. \hat{H}_s estimates the contribution to H by the non-dense or sparse items: $\hat{H}_s = \arg_{j=1}^t \sum_{1 \leq b \leq p_j} \arg_{T_j[b] \leq \frac{m}{\epsilon^2 t}} T_j[b] \log \frac{m}{T_j[b]}$. The final estimate is returned as $\hat{H} = \hat{H}_d + \hat{H}_s$.

Analysis. The main part of the analysis concerns the accuracy of the estimation of H_s . Let H_d and H_s denote the (true) contributions to entropy due to dense and sparse items respectively, that is, $H_d = \sum_{x \text{ dense}} f_x \log \frac{m}{t_x}$ and $H_s = \sum_{x \text{ sparse }} f_x \log \frac{m}{f_x}$. A standard case analysis [3,5] (Case 1: $f_x \leq m/e$ and Case 2: $f_x > m/e$, where, e = 2.71828..) is used to show that $|\hat{H}_d - H_d| \leq \frac{2}{t}H_d$. Define $g_x = f_x$, if x is a sparse item and $g_x = f_x - f'_x$, if x is a dense item. Let $m' = \sum_x g_x$ and let $H(g) = \sum_{x:f_x > 0} g_x \log \frac{m}{g_x}$. Suppose x maps to a bucket b in table T_j . Then, $f_x \leq T_j[b]$ and

$$\sum_{b=1}^{p_j} T_j[b] \log \frac{m}{T_j[b]} \le \sum_{b=1}^{p_j} \sum_{x \mod p_j=b} g_x \log \frac{m}{T_j[b]} = H(g) \; .$$

Thus, $\hat{H}_s \leq H(g)$. Since, H(g) may contain the contribution of the residues of the dense items, $H_s \leq H(g)$. The contribution of the residues of dense items to H(g) is bounded as follows. Let x be a dense item. Define $h(a) = y \log \frac{m}{y}$. For $t > \frac{1}{\epsilon^2}$, and since, $f_x \geq \frac{m}{\epsilon t}$, $h(\frac{g_x}{m}) \leq h\left(\frac{m-f_x}{mt}\right) \leq \epsilon h(f_x)$. Since, Therefore,

$$H(g) = \sum_{x} g(x) \log \frac{m}{g_x} = H_s + \sum_{x \text{ dense}} mh(g_x) \le H_s + \sum_{x \text{ dense}} m\epsilon h(f_x) = H_s + \epsilon H_d .$$

Further, for $0 \le x \le n-1$, let $S_x = \sum_{j=1}^t (T_j[x \mod p_j] - g_x)$. Then

$$S_x = \sum_{j=1}^{l} \sum_{\substack{y \neq x \\ y \equiv x \mod p_j}} g_y = \sum_{y \neq x} f_y |\{j : y \equiv x \mod p_j\}| \le (m' - g_x)(\log n - 1)$$
(2)

Define a bucket b in a table T_j to be dense if $T_j[b] > \frac{m}{\epsilon^2 t}$ and $c = \epsilon^2 t$. Then,

$$\begin{split} t\hat{H}_s &= \sum_{j=1}^t \sum_{\substack{1 \le b \le p_j \\ b \text{ not dense}}} T_j[b] \log \frac{m}{T_j[b]} \\ &\geq \sum_{j=1}^t \sum_{\substack{1 \le b \le p_j \\ b \text{ not dense}}} \sum_{\substack{x:x \equiv b \mod p_j \text{ and } g_x \ge 1}} g_x \log c \\ &= tm' \log c - \sum_x g_x \log c \mid \{j: T_j[x \mod p_j] \text{ is dense }\}| \\ &= tm' \log c - \sum_x g_x(\log c) \mid [S_x/(c^{-1}m - g_x)] \\ &\geq tm' \log c - \sum_x g_x c(1 - \epsilon)^{-1}(\log c)(\log_k N) \quad \text{by (2) and since, } g_x \le \epsilon c^{-1}m \\ &\geq tm' \log c - m' c(1 - \epsilon)^{-1}(\log c)(\log_k N) \\ &\geq tm' \log c \left(1 - \epsilon^2(1 - \epsilon)^{-1}\log_k N\right) \end{split}$$

Lemma 6. For each $0 < \varepsilon < 1$ and $\alpha > 1$, there exists a deterministic algorithm over strict update streams that returns \hat{H} satisfying $\frac{H(1-\varepsilon)}{\alpha} \leq H \leq (1+\frac{\varepsilon}{\sqrt{\log N}})H$ using space $O(\frac{\log^2 N}{\varepsilon^4}m^{\frac{2}{\alpha}}(\log m + \log \varepsilon^{-1})(\log m))$ bits.

Proof. By earlier argument,

$$\hat{H}_d + \hat{H}_s \le (1 + 2t^{-1})H_d + H(g) \le (1 + 2t^{-1})H_d + \epsilon H_d + H_s$$
$$\le (1 + 2t^{-1} + \epsilon)(H_d + H_s) .$$

Further, since, $H(g) \leq m' \log m$, using (3) we have,

$$\hat{H}_d + \hat{H}_s \ge (1 - 2t^{-1})H_d + H_s \frac{\log c}{\log m} (1 - \epsilon^2 (1 - \epsilon)^{-1} \log_k N)$$
.

The lemma follows by letting $\epsilon = \frac{\varepsilon}{2\sqrt{\log N}}$ and $t = \frac{m^{1/\alpha}}{\epsilon^2}$.

Lower bounds for computation over strict update streams. In this section, we improve on the existing space lower bound of $\Omega(\phi^{-1}\log(\phi n))$ for point query estimation with accuracy parameter ϕ [4].

Lemma 7. For $\phi > \frac{8}{\sqrt{n}}$, a deterministic point query estimator with parameter ϕ over strict update streams requires $\Omega(\phi^{-1}(\log m)\log(\phi n))$ space.

Proof. Let $s = \lceil \phi^{-1} \rceil$. Consider a stream consisting of s^2 distinct items, organized into s levels 1,..., s with s items per level. The frequency of an item at level l is set to $t_l = 2^{l-1}$. Let $\phi' = \frac{\phi}{16}$ and let A be a deterministic point query estimator with accuracy parameter ϕ' . We will apply A to obtain the identities of the items, level by level. Initially, the stream is inserted into the data structure of A. At iteration $r = 1, \ldots, s$ in succession, we maintain the invariant that items in levels higher than s - r + 1 have been discovered and their exact frequencies are deleted from A. Let l = s - r + 1. At the beginning of iteration r, the total frequency is $m = m_l = \sum_{u=1}^l (st_u) \leq s \sum_{u=1}^l 2^{l-1} < s2^l$. At iteration r, we use A to return the set of items x such that $\hat{f}_x \geq U_l = 2^{l-1} - 2^{l-4}$. Therefore, (a) estimated frequencies of items in level l cross the threshold U_l , since, $\hat{f}_x \geq f_x - \phi'm \geq 2^{l-1} - \frac{\phi 2^l s}{16} \geq U_l$, and, (b) estimated frequencies of items in level l - 1 or lower do not cross U_l , since, $\hat{f}_y \leq f_y + \phi'm \leq 2^{l-2} + 2^{l-3} < U_l$. After s iterations, the level by level arrangement of the items can be reconstructed. The number of such arrangements is $\binom{n}{s \dots s}$ and therefore \mathcal{A} requires space $\log \binom{n}{s \dots s} = \Omega(s^2 \log \frac{n}{s}) = \Omega(s(\log m)(\log \frac{n}{s}))$, since, $n > 64s^2$ and $m = m_s = s2^{s+1}$. □

Lemma 8. For $\phi > 8n^{-1/2}$, any point query estimator for strict update streams with parameter ϕ and confidence 0.66 requires $\Omega(\phi^{-1}(\log m)(\log(\phi n)))$ bits.

Proof. We reduce the bit-vector indexing problem to a randomized point query estimator. In the bit-vector indexing problem, bit vector v of size |v| is presented followed by an index i between 1 and |v|. The problem is to decide whether v[i] = 1. It is known to require space $\Omega(|v|)$ by a randomized algorithm that gives the correct answer with probability $\frac{2}{3}$. Let $s = \lceil \phi^{-1} \rceil, |v| = s^2 \lceil \log \lceil \frac{n}{s} \rceil \rceil$ and $\rho = \lceil \log \lceil \frac{n}{s} \rceil \rceil$. We can isomorphically view the vector $v[1 \dots |v|]$ as a set

of contiguous segments τ of size ρ each, starting at positions 1 modulo ρ . The s^2 possible starting positions can be represented as (a_{τ}, b_{τ}) , where, $a_{\tau}, b_{\tau} \in$ $\{0, 1, \ldots, s-1\}$. Map each such segment to an item from the domain $s^2 2^{\rho}$ with $2[\log s] + \rho$ bit binary address $a_{\tau} \circ b_{\tau} \circ \tau$, where, \circ represents bit concatenation. The frequency of the item is set to $2^{a_{\tau}}$. The bit vector is isomorphically mapped to a set of s^2 items of frequencies between 1 and 2^{s-1} , such that there are exactly s items with frequency 2^l , for $l = 0, 1, \ldots, s - 1$. If the error probability of the point estimator is at most $1-\frac{1}{3s^2}$, then, using the argument of Lemma 7, the set of all the s^2 items and their frequencies are correctly retrieved with error probability bounded by $\frac{s^2}{3s^2} = \frac{1}{3}$. That is, the bit vector is effectively reconstructed and the original bit vector index query can be answered. The above argument holds for every choice of the 1-1 onto mappings of the s^2 starting positions of ρ -size segments to (a_{τ}, b_{τ}) . In particular, it holds for the specific map when the query index i belongs to a segment τ_0 whose starting position is mapped to the highest level, i.e., $b_{\tau_0} = s - 1$. In this case, a single invocation of the point query suffices. Thus the space required is $\Omega(s^2 \log \frac{n}{s}) = \Omega(\phi^{-1}(\log m)(\log \phi n)).$

3.2 General update streaming model

In this section, we consider the general update streaming model. Lemma 9 presents the property of point query estimator for general update streams.

Lemma 9. Consider a CR-PRECIS structure with height k and width t. For $x \in \mathcal{D}$, let $\hat{f}_x = \frac{1}{t} \sum_{j=1}^{t} T_j [x \mod p_j]$. Then, $|\hat{f}_x - f_x| \leq \frac{(\log_k n - 1)}{t} (L_1 - |f_x|)$.

Proof. $t\hat{f}_x = \sum_{j=1}^t T_j [x \mod p_j] = tf_x + \sum_{j=1}^t \sum \{f_y \mid y \neq x \text{ and } y \equiv x \mod p_j\}.$

Thus,
$$t|\hat{f}_x - f_x| = |\sum_{j=1}^{c} \sum_{\substack{y \neq x \ y \equiv x \mod p_j}} f_y| = |\sum_{\substack{y \neq x \ y \equiv x \mod p_j}} \sum_{\substack{j:y \equiv x \mod p_j}} f_y|$$

 $\leq \sum_{\substack{y \neq x \ j:y \equiv x \mod p_j}} |f_y| \leq (\log_k n - 1) (F_1 - |f_x|), \text{ by } (1) \square$

Similarly, we can obtain an estimator for the inner-product of streams R and S. Let $L_1(R)$ and $L_1(S)$ be the L_1 norms of streams R and S respectively.

Lemma 10. Consider a CR-PRECIS structure of height k and width t. Let $\hat{P} = \frac{1}{t} \sum_{j=1}^{t} \sum_{b=1}^{p_j} T_j[b] U_j[b]$. Then, $|\hat{P} - f \cdot g| \leq \frac{(\log_k n - 1)}{t} L_1(R) L_2(S)$.

Lower bounds for computations over general update streams. We now present space lower bounds for problems over general update streams.

Lemma 11. Deterministic algorithms for the following problems in the general update streaming model requires $\Omega(n)$ bits: (1) finding ϵ -approximate frequent items with parameter s for any $\epsilon < \frac{1}{2}$, (2) finding ϵ -approximate ϕ -quantiles for any $\epsilon < \phi/2$, (3) estimating the k^{th} norm $L_k = (\sum_{i=0}^{n-1} |f_i|^k)^{1/k}$, for any real value of k, to within any multiplicative approximation factor, and (4) estimating entropy to within any multiplicative approximation factor.

Proof. Consider a family \mathcal{F} of sets of size $\frac{n}{2}$ elements each such that the intersection between any two sets of the family does not exceed $\frac{n}{8}$. It can be shown³ that there exist such families of size $2^{\Omega(n)}$. Corresponding to each set S in the family, we construct a stream str(S) such that $f_i = 1$ if $i \in S$ and $f_i = 0$, otherwise. Denote by $str_1 \circ str_2$ the stream where the updates of stream str_2 follow the updates of stream str_1 in sequence. Let \mathcal{A} be a deterministic frequent items algorithm. Suppose that after processing two distinct sets S and T from \mathcal{F} , the same memory pattern of \mathcal{A} 's store results. Let Δ be a stream of deletions that deletes all but $\frac{s}{2}$ items from str(S). Since, $L_1(str(S) \circ \Delta) = \frac{s}{2}$, all remaining $\frac{s}{2}$ items are found as frequent items. Further, $L_1(str(T) \circ \Delta) \geq \frac{n}{2} - \frac{s}{2}$, since, $|S \cap T| \leq \frac{n}{8}$. If $s < \frac{n}{3}$, then, $\frac{F_1}{s} > 1$, and therefore, none of the items qualify as frequent. Since, str(S) and str(T) are mapped to the same bit pattern, so are $str(S) \circ \Delta$ and $str(T) \circ \Delta$. Thus \mathcal{A} makes an error in reporting frequent items in at least one of the two latter streams. Therefore, \mathcal{A} must assign distinct bit patterns to each str(S), for $S \in \mathcal{F}$. Since, $|\mathcal{F}| = 2^{\Omega(n)}$, \mathcal{A} requires $\Omega(\log(|\mathcal{F}|)) = \Omega(n)$ bits, proving part (1) of the lemma.

Let S and T be sets from \mathcal{F} such that str(S) and str(T) result in the same memory pattern of a quantile algorithm \mathcal{Q} . Let Δ be a stream that deletes all items from S and then adds item 0 with frequency $f_0 = 1$ to the stream. now all quantiles of $str(S) \circ \Delta = 0$. $str(T) \circ \Delta$ has at least $\frac{7n}{8}$ distinct items, each with frequency 1. Thus, for every $\phi < \frac{1}{2}$ and $\epsilon \leq \frac{\phi}{2}$ the kth ϕ quantile of the two streams are different by at least $k\phi n$. Part (3) is proved by letting Δ be an update stream that deletes all elements from str(S). Then, $L_k(str(S) \circ \Delta) = 0$ and $L_k(str(T) \circ \Delta) = \Omega(n^{1/k})$.

Proceeding as above, suppose Δ is an update stream that deletes all but one element from str(S). Then, $H(str(S) \circ \Delta) = 0$. $str(T) \circ \Delta$ has $\Omega(n)$ elements and therefore $H(str(T) \circ \Delta) = \log n + \Theta(1)$. The multiplicative gap $\log n : 0$ is arbitrarily large—this proves part (4) of the lemma.

References

- N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. "Tracking Join and Self-Join Sizes in Limited Storage". In Proc. ACM PODS, 1999.
- B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. "Models and Issues in Data Stream Systems". In Proc. ACM PODS, 2002.
- L. Bhuvanagiri and S. Ganguly. "Estimating Entropy over Data Streams". In Proc. ESA, pages 148–159, 2006.
- P. Bose, E. Kranakis, P. Morin, and Y. Tang. "Bounds for Frequency Estimation of Packet Streams". In SIROCCO, pages 33–42, 2003.
- A. Chakrabarti, G. Cormode, and A. McGregor. "A Near-Optimal Algorithm for Computing the Entropy of a Stream". In Proc. ACM SODA, 2007.
- M. Charikar, K. Chen, and M. Farach-Colton. "Finding frequent items in data streams". In Proc. ICALP, 2002, pages 693–703.

³ number of sets that are within a distance of $\frac{n}{8}$ from a given set of size $\frac{n}{2}$ is $\sum_{r=0}^{\frac{n}{8}} {\binom{n/2}{r}}^2 \leq 2{\binom{n/2}{n/8}}^2$. Therefore, $|\mathcal{F}| \geq \frac{\binom{n}{n/2}}{2\binom{n/2}{n/8}}^2 \geq \frac{2^{n/2}}{2(3e)^{n/8}} = \frac{1}{2} \left(\frac{16}{3e}\right)^{n/8}$.

- G. Cormode and M. Garofalakis. "Sketching Streams Through the Net: Distributed Approximate Query Tracking". In Proc. VLDB, September 2005.
- 8. G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. "Finding Hierarchical Heavy Hitters in Data Streams". In *Proc. VLDB*, 2003.
- 9. G. Cormode and S. Muthukrishnan. "What's New: Finding Significant Differences in Network Data Streams". In *IEEE INFOCOM*, 2004.
- G. Cormode and S. Muthukrishnan. "An Improved Data Stream Summary: The Count-Min Sketch and its Applications". J. Algorithms, 55(1):58–75, April 2005.
- G. Cormode and S. Muthukrishnan. "What's hot and what's not: tracking most frequent items dynamically". ACM Trans. Database Syst., 30(1):249–278, 2005.
- 12. E. D. Demaine, A. López-Ortiz, and J. I Munro. "Frequency estimation of internet packet streams with limited space". In *Proc. ESA*, 2002.
- C. Estan, S. Savage, and G. Varghese. "Automatically inferring patterns of resource consumption in network traffic". In *Proc. ACM SIGCOMM*, pages 137–148, 2003.
- S. Ganguly, D. Kesh, and C. Saha. "Practical Algorithms for Tracking Database Join Sizes". In Proc. FSTTCS, 2005.
- 15. S. Ganguly and A. Majumder. "Deterministic K-set Structure". In Proc. ACM PODS, 2006.
- P. B. Gibbons and Y. Matias. "New Sampling-Based Summary Statistics for Improving Approximate Query Answers". In Proc. ACM SIGMOD, 1998.
- A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. Strauss. "Fast Small-space Algorithms for Approximate Histogram Maintenance". In *Proc.* ACM STOC, 2002.
- A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. "How to Summarize the Universe: Dynamic Maintenance of Quantiles". In *Proc. VLDB*, 2002.
- A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. "Surfing Wavelets on Streams: One-pass Summaries for Approximate Aggregate Queries". In *Proc. VLDB*, September 2001.
- M. Greenwald and S. Khanna. "Space-efficient online computation of quantile summaries". In SIGMOD, 2001.
- J. Hershberger, N. Shrivastava, S. Suri, and C.D. Toth. "Space Complexity of Hierarchical Heavy Hitters in Multi-Dimensional Data Streams". In *Proc. ACM PODS*, 2005.
- R.M. Karp, S. Shenker, and C.H. Papadimitriou. "A Simple Algorithm for Finding Frequent Elements in Streams and Bags". ACM TODS, 28(1):51–55, 2003.
- G. Manku and R. Motwani. "Approximate Frequency Counts over Data Streams". In Proc. VLDB, pages 346–357, August 2002.
- G. Manku, S. Rajagopalan, and B. Lindsay. "Random sampling techniques for space efficient online computation of order statistics of large datasets". In Proc. ACM SIGMOD, 1999.
- J. Misra and Gries. D. "Finding repeated elements". Sci. Comput. Programm., 2:143–152, 1982.
- S. Muthukrishnan. "Data Streams: Algorithms and Applications". Foundations and Trends in Theoretical Computer Science, Vol. 1, Issue 2, 2005.
- J.B. Rosser. "Explicit bounds on some functions on prime numbers". Amer. J. Math., 63(1941).
- R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, Y. Zhang, P. Dinda, M-Y. Kao, and G. Memik. "Monitoring Flow-level High-speed Data Streams with Reversible Sketches". In *IEEE INFOCOM*, 2006.