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Scribe: William Chen

1.1 Sorting

Definition 1.1.1 (The Sorting Problem). Given n items .x1; x2; � � � ; xn/ from an ordered universe, output a permuta-

tion � W Œn�! Œn� such that x�.1/ < x�.2/ � � � < x�.n/.

At present we do not know how to prove superlinear lower bounds for the Turing machine model for any problem

in NP, so we instead restrict ourselves to a more limited model of computation, the comparison tree. We begin by

considering deterministic sorting algorithms.

Deterministic Sorting Algorithms

Whereas the Turing machine is allowed to move heads, read and write symbols at every time step, in a comparison tree

T we are only allowed to make comparisons and read the result. Without loss of generality we’ll assume that the xi s

are distinct, so every comparison results in either a “<” or “>”. At each internal node of T we make a comparison,

the result of which gives tells us the next comparison to make by directing us to either the left or the right child. At

each leaf node we must have enough information to be able to output the sorted list of items. The cost of a sorting

algorithm in this model is then just the height of such a comparison tree T , i.e., the maximum depth of a leaf of T .

Now note that T is in fact a binary tree, so we have

` � 2h; h � dlg `e;

where ` is the number of leaves, and h is the height of T . But now we note that since there are nŠ possible permutations,

any correct tree must have at least nŠ leaves, so then, by Stirling’s formula, we have

h � dlg nŠe D �.n lg n/:

Open Problem. Prove that some language L 2 NP cannot be decided in O.n/ time on a Turing machine.

Randomized Sorting Algorithms

Now we turn our attention to randomized comparison-based sorting algorithms and prove that in this case access to a

constant time random number generator does not give us any additional power. That is to say, it does not change our
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lower bound. An example of such an algorithm is the variant of quicksort where, at each recursive call, the pivot is

chosen uniformly at random. Note that the “randomness” in any randomized algorithm can be captured as an infinite

binary “random string”, chosen at the beginning, such that at every call of the random number generator, we simply

read off the next bit (or the next few bits) on the random string. Then, we can say that a randomized algorithm is just

a probability distribution over deterministic algorithms (each obtained by fixing the random string). In other words,

when calling the randomized algorithm, one can move all the randomness to the beginning, and simply pick at random

a deterministic algorithm to call.

With this view of randomized algorithms in mind, we describe an extremely useful lemma due to Andrew Chi-Chih

Yao (1979). But first, some preliminaries.

Suppose we have some notion of “cost” of an algorithm (for some function/problem f ) on an input, i.e., a (non-

negative) function cost W A �X ! RC, where A is a space of (deterministic) algorithms and X is a space of inputs.

An example of a useful cost measure is “running time.” In what follows, we will consider random algorithms A � �,

where � is a probability distribution on A . Note that, per our above remarks, a randomized algorithm is specified by

such a distribution �. We will also consider a random input X � �, for some distribution � on X .

Definition 1.1.2 (Distributional, worst-case and randomized complexity). In the above setting, the termE� Œcost.a; X/�

is then just the expected cost of a particular algorithm a 2 A on a random input X � �. The quantity

D�.f / D min
a

E� Œcost.a; X/� ;

where f is the function we want to compute, is called the distributional complexity of f according to input distribution

�. We constrast this to the worst case complexity of f , which we can write as follows

C.f / D min
a

max
x

cost.a; x/:

Finally, we define R.f /, the randomized complexity of f as follows:

R.f / D min
�

max
x

E� Œcost.A; x/� :

From the definitions above it follows easily that

8� D�.f / � C.f / and R.f / � C.f /:

To obtain the latter inequality, consider the trivial distributions � that are each supported on a single algorithm a 2 A .

Theorem 1.1.3 (Yao’s Minimax Lemma). We have

1: (The Easy Half) For all input distributions �, D�.f / � R.f /.

2: (The Difficult Half) max�

˚

D�.f /
	

D R.f /.

The proof of part (2) is somewhat non-trivial and requires the use of the linear programming duality theorem.

Moreover, we do not need part (2) at this point, so we shall only prove part (1). We note in passing that part (2) can be

written as

max
�

min
a

E�Œcost.a; X/� D min
�

max
x

E�Œcost.A; x/�:

Proof of Part (1). To visualize this proof, it helps to consider the following table, where X D fx1; x2; x3; : : :g; A D
fa1; a2; a3; : : :g and cij D cost.ai ; xj /:

a1 a2 a3 � � �
x1 c11 c12 c13 � � �
x2 c21 c22 c23 � � �
x3 c31 c32 c33 � � �

:::
:::

:::
:::

: : :
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While reading the argument below, think of row averages and column averages in the above table.

Define R�.f / D maxx E� Œcost.A; x/�. Then, for all x, we have

E� Œcost.A; x/� � R�.f /;

whence

E� ŒE� Œcost.A; X/�� � R�.f /:

Since expectation is essentially just summation, we can switch the order of summation to get

E�

�

E� Œcost.A; X/�
�

� R�.f /;

which implies that there must be an algorithm a such that E�Œcost.a; X/� � R�.f /. Since the distributional complex-

ity D�.f / takes the minimum such a, it’s clear that

D�.f / � R�.f /:

Since this holds for any �, we have D�.f / � min� R�.f / D R.f /.

Before we returning to the issue of a lower bound for randomized sorting, we introduce another lemma.

Lemma 1.1.4 (Markov’s Inequality). If X is a random variable taking only nonnegative values, then for all t > 0, we

have PrŒX � t � � EŒX�=t .

Proof. An easy one-liner: EŒX� D EŒX j X < t� � PrŒX < t�C EŒX j X � t � � PrŒX � t � � 0C t � PrŒX � t �.

Corollary 1.1.5. Under the above conditions, for any constant c > 0, PrŒX > cEŒX�� � 1=c.

Let m denote the number of comparisons made on any particular run, or equivalently its runtime. Consider a

randomized sorting algorithm a (i.e., a distribution over comparison trees), where we set

C D max
input

fE�Œm�g

note here that m is a function of both the algorithm and the input.

Theorem 1.1.6 (Randomized sorting lower bound). Let T .x/ denote the expected number of comparisons made by a

randomized n-element sorting algorithm on input x. Let C D maxx T .x/. Then C D �.n lg n/.

Proof. Let A denote the space of all (deterministic) comparison trees that sort an n-element array and let X denote

the space of all permutations of Œn�. Consider a randomized sorting algorithm given by a probability distribution �

on A . As it stands, a “randomized sorting algorithm” is always correct on every input, but has a random runtime

(between �.n/ and O.n2/) that depends on its input. (Such algorithms are called Las Vegas algorithms.)

We want to convert each a 2 A into a corresponding algorithm a0 that has a nontrivially bounded runtime, but

may sometimes spits out garbage. We do this by allowing at most 10C comparisons, and outputting some garbage

if the sorted permutation is still unknown. Let A0 denote a random algorithm corresponding to a random A � �.

Corollary 1.1.5 implies

PrŒA0 is wrong on x� D PrŒNumComps.A; x/ > 10C � � 1

10
:

Now define

cost.a; x/ D
�

1; if a is wrong on input x

0; otherwise

We can then rewrite the above inequality as

max
x

E�Œcost.A0; x/� � 1

10
:
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By Yao’s minimax lemma, for all input distributions �, we have

D�.sorting with � 10C comparisons/ � 1

10
:

Now pick � to be the uniform distribution on X . Pick any deterministic algorithm a with � 10C comparisons that

achieves the minimum in the definition of D�. Then, for X � �, we have PrŒa is wrong on X� � 1=10. Now the

height of a’s tree is� 10C , so the number of leaves of a’s tree is� 210C , and thus the number of distinct permutations

that a can output is � 210C . But now we see that

PrŒX is one of the permutations output by a� >
9

10
;

so 210C � .9=10/nŠ and hence, by Stirling’s formula,

C � 1

10

�

lg

�
9

10
nŠ

��

D �.n lg n/:

1.2 Selection

Definition 1.2.1 (The Selection Problem). Given n items .x1; x2; � � � ; xn/ from an ordered universe and an integer

k 2 Œn�, the selection problem is to return the kth smallest element, i.e., xi such that jfj W xj < xi gj D k � 1. Let

V.n; k/ denote the height of the shortest comparison tree that solves this problem.

Special Cases. The minimum (resp. maximum) selection problems, where k D 1 (resp. k D n), and the median

problem, where k D dn
2
e. Minimum and maximum can clearly be done in O.n/ time. Other selection problems are

less trivial.

1.2.1 Minimum Selection

Theorem 1.2.2. Let T be a comparison tree that finds the minimum of n elements. Then every leaf of T has depth at

least n � 1. Since T is binary, it must therefore have at least 2n�1 leaves.

Proof. Consider any leaf � of T . If xi is the output at �, then every xj .j ¤ i/ must have won at least one comparison

on the path leading to � (if not, we cannot know for sure that xj is not the minimum). Since each comparison can be

won by at most one element, we have depth.�/ � n � 1.

Corollary 1.2.3. V.n; 1/ D n � 1.

1.2.2 General Selection

By an adversarial argument, Hyafil [Hya76] proved that V.n; k/ � n � k C .k � 1/dlg n
k�1
e. This was strengthened

by Fussenegger and Gabow [FG79] to the bound stated in the next theorem. Both these results give poor bounds for

k � n. However, observe that V.n; k/ D V.n; n � k/.

Note. For the special case where k D 2, we have V.n; 2/ D n�2Cdlg ne. It is a good exercise to prove this: both the

upper and the lower bound are interesting. Also, k 2 f1; 2; n � 1; ng are the only values for which we know V.n; k/

exactly.

Theorem 1.2.4 (Fussenegger & Gabow). V.n; k/ >D n � k C
˙

lg
�

n
k�1

��

.
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Proof. Let T be a comparison tree for selecting the kth smallest element. At a leaf � of T , if we output xi , then every

xj .j ¤ i/ must be “settled” with respect to xi , i.e., we must know whether or not xj < xi . In particular, we must

know the set

S� D fxj W xj < xi g:
Fix a particular set U � fx1; : : : ; xng, with jU j D k � 1. Now consider the following set of leaves:

LU D f� W S� D U g:

Notice that the output at any leaf in LU is the minimum of the elements in U . Therefore, if we treat U as “given,” and

prune T accordingly, by eliminating any nodes that perform comparisons involving one or more elements of U , then

the residual tree is one that has leaf set LU and finds the minimum of the n � k C 1 elements of U .

By Theorem 1.2.2, the pruned tree must have at least 2n�k leaves. Therefore, jLU j � 2n�k . The number of leaves

of T is the sum of jLU j over all
�

n
k�1

�

choices for the set U . Therefore, the height of T must be

height.T / �
&

lg

  

n

k � 1

!

� 2n�k

!'

D n � k C
&

lg

 

n

k � 1

!'

:

This proves the theorem.

1.2.3 Median Selection

Turning now to the median selection special case, recall that by Stirling’s formula, we have

 

n

n=2

!

D ‚

�
2n

p
n

�

;

which already gives us a good intial lower bound for median selection:

V
�

n;
n

2

�

� n

2
C
&

lg

 

n
n
2
� 1

!'

� n

2
C n � 1

2
lg n�O.1/ D 3

2
n � o.n/:

Using more sophisticated techniques, one can prove the following stronger lower bounds:

V
�

n; n
2

�

� 2n � o.n/: [BJ85]

V
�

n; n
2

�

� .2C 2�50/n � o.n/: [DZ01]

On the upper bound side, we again have nontrivial results, starting with the famous “groups of five” algorithm:

V
�

n; n
2

�

� 6nC o.n/: [BFPC73]

V
�

n; n
2

� � 3nC o.n/: [SPP76]

V
�

n; n
2

�

� 2:995n: [DZ99]
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2.1 Definitions and Basic Theorems

Definition 2.1.1 (Decision Tree Complexity). Let f W f0; 1gn ! f0; 1g be some Boolean function. We sometimes

write fn when we want to emphasize the input size. A decision tree T models a computation that adaptively reads the

bits of an input x, branching based on each bit read. Thus, at each internal node of T , we read a specific bit (indicated

by the label of the node) and branch left or right depending upon whether the bit read was a ‘0’ or a ‘1’. At each leaf

node we must have enough information to determine f .x/. We define the deterministic decision tree complexity D.f /

of f to be

D.f / D minfheight.T / W T is a decision tree that evaluates f g:

For example, easy adversarial arguments show that for the “or”, “and” and “parity” functions, we have D.ORn/ D
D.ANDn/ D D.PARn/ D n. It is convenient to introduce a term for functions that are maximally hard to evaluate in

the decision tree model.

Definition 2.1.2 (Evasiveness). A function f W f0; 1gn! f0; 1g is said to be evasive (a.k.a. elusive) if D.f / D n.

We shall try to relate this algorithmically defined quantity D.f / to several more combinatorial measure of the

hardness of f , that we now define.

Definition 2.1.3 (Certificate Complexity). For a function f W f0; 1gn ! f0; 1g, define a 0-certificate to be a string

˛ 2 f0; 1;�gn such that 8 x 2 f0; 1gn W x matches ˛ ) f .x/ D 0. That is to say, for any input x that matches ˛ for

all non-� bits, we have f .x/ D 0, no matter the settings of the free variables given by the �’s. Define the size of a

certificate ˛ to be the number of exposed (i.e., non-�) bits. Then, define the 0-certificate complexity of f as

C0.f / D max
x

minfsize.˛/ W ˛ is a 0-certificate that matches xg:

We define 1-certificates and C1.f / similarly. We use the convention that C0.f / D 1 if f � 1, and similarly for

C1.f /. Finally, we define the certificate complexity C.f / of a function f to be the larger of the two, that is

C.f / D maxfC0.f /; C1.f /g:
Example 2.1.4. C1.ORn/ D 1, whereas C0.ORn/ D n, so C.ORn/ D n.

The quantity C.f / is sometimes called the nondeterministic decision tree complexity.

Note that for any decision tree for f , any leaf giving an answer p 2 f0; 1gmust be of depth at least Cp.f /, so we

have C.f / � D.f /.

6
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Definition 2.1.5 (Sensitivity). For a function f W f0; 1gn ! f0; 1g, define the sensitivity sx.f / for f on a particular

input x as follows

sx.f / D jfi 2 Œn� W f .x.i// ¤ f .x/gj;
where we write x.i/ to denote the string x with the i th bit flipped. We then define the sensitivity of f as

s.f / D max
x
fsx.f /g:

Definition 2.1.6 (Block Sensitivity). For a block B � Œn� of bit positions and n D jxj, let x.B/ be the string x with

all bits indexed by B flipped. Define the block sensitivity bsx.f / for f on a particular input x as

bsx.f / D maxfb W fB1; B2; : : : ; Bbg is a set of disjoint blocks such that 8 i 2 Œb� W f .x/ ¤ f .x.Bi //g:

That is to say, bsx.f / is the maximum number of disjoint blocks that are each sensitive for f on input x. We then

define the block sensitivity of f as

bs.f / D max
x

bsx.f /:

Note that since block sensitivity is just a generalization of sensitivity (which requires that the “blocks” be of size 1

each), we have bsx.f / � sx.f /, and thus bs.f / � s.f /. Before we go on to develop some of the theory behind this,

consider the following example.

Example 2.1.7. Consider a function f .x/ defined as follows, where the input x is of length n and is arranged in ap
n �pn matrix. Assume

p
n is an even integer. Define

f .x/ D
�

1; if some row of the matrix matches 0�110�

0; otherwise:

Since each row can have at most 2 sensitive bits, we have s.f / D 2
p

n D O.
p

n/. However, for block sensitivity we

have bs.f / � bsz.f / � n
2

where z D 0n and we have n
2

blocks each consisting of 2 consecutive bits, which makes

every block sensitive. This gives a quadratic gap between s.f / and bs.f /.

Theorem 2.1.8. s.f / � bs.f / � C.f / � D.f /.

Proof. The leftmost and rightmost inequalities have already been established above. To see that the middle inequality

holds, observe that every certificate must expose at least one bit per sensitive block.

Here we note that there could be at least a quadratic gap between s.f / and bs.f / as evidenced by example 2.1.7.

It turns out that there is a maximum of a quadratic gap between C.f / and D.f /, which leads us to the next theorem,

whose proof we will see as a corollary later in this section.

Theorem 2.1.9 (Blum-Impagliazzo). D.f / � C.f /2

Example 2.1.10. Consider a function g D ANDp
n ı ORp

n. That is to say, g divides the input x with jxj D n into
p

n

groups, feeds each group into the subfunction ORp
n, and then feeds the results of each ORp

n into ANDp
n. To certify

0, we need only expose all
p

n of the inputs in one OR-subtree to show that they are all 0. To certify 1, we need only

expose one input in each of the
p

n OR-subtrees to show that there is at least a single 1 going into every OR. Then, we

have

C.g/ D pn

however, it’s easy to see that given any subset of the input, the final answer still depends on the rest of the input, and

thus D.g/ D n. Therefore, g is evasive.

2.1.1 Degree of a Boolean Function

Definition 2.1.11 (Representative Polynomial). For a function f W f0; 1gn ! f0; 1g, we say that a polynomial

p.x1; x2; : : : ; xn/ represents f if for all Ea 2 f0; 1gn, we have p.Ea/ D f .Ea/.

7
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Definition 2.1.12 (Degree of a Boolean Function). For a function f W f0; 1gn! f0; 1g and a representative polynomial

p for f , the degree of f is then just the degree of p.

Theorem 2.1.13. For any such f , there exists a unique multilinear polynomial that represents f .

Proof. Let fEa1; Ea2; : : : ; Eakg be the set of all inputs that make f D 1. Then, we claim that for all Eb; Ec 2 f0; 1gn, there

exists a polynomial pEb.x1; : : : ; xn/ such that

pEb.Ec/ D
�

1 if Ec D Eb
0 otherwise

To see this, for any such vector Eb, consider the polynomial

pEb.x1; : : : ; xn/ D
n
Y

iD1

.xi C Ebi � 1//

Clearly this polynomial is 1 if and only if every xi D Ebi . Then, it follows that the polynomial that represents f is just

the polynomial

p D
k
X

iD1

pEai

Since each Eai is distinct, at most one pEai
will evaluate to 1, but since that implies that the input is one of the accepting

inputs for f , p behaves as desired. To prove uniqueness, suppose 2 multilinear polynomials p; q both represent f ,

then the polynomial r D p � q satisfies r.Ea/ D 0 for all Ea 2 f0; 1gn.

Consider the smallest monomial xi1 ; xi2 ; : : : ; xik in r . FINISH UNIQUENESS PROOF.

Theorem 2.1.14. For a Boolean function f , let p be its representative polynomial. Then we have deg.p/ � D.f /

Proof. For any leaf � of a decision tree, without loss of generality let x1; x2; : : : ; xr be the queries made along the

path to that leaf, and let b1; b2; : : : ; br be the results of the queries. Then for every leaf � of a decision tree for f ,

write a polynomial p� given as follows

p� D
Y

i Wbi D1

xi �
Y

i Wbi D0

.xi � 1/

Clearly each p� has degree r � D.f /, then the polynomial

p D
X

�

p�

represents f and also has degree� D.f /.

Example 2.1.15. We present an example to show that deg.f / can be much smaller than s.f /. Consider the function

on an input vector Ex with size n

R-NAE.Ex/ D
�

NAE.R-NAE.Ex1; : : : ; Exb n
3

c/; R-NAE.Exd n
3

e; : : : ; Exb 2n
3

c/; R-NAE.Exd 2n
3

e; : : : ; Exn// if j Exj > 3

NAE.Ex1; Ex2; Ex3/ if j Exj D 3

where we assume that n D 3k for some integer k, and NAE is defined as follows

NAE.x; y; z/ D
�

1 if x; y; z are not all equal

0 if x D y D z

In other words, this is the k-layer tree of NAE computations applied recursively to 3k initial inputs. For x D E0, we

have sx.R-NAE/ D 3k , since changing any single bit will flip the answer. Now observe that we can alternatively write

the NAE.x; y; z/ function as a degree 2 polynomial

NAE.x; y; z/ � x C y C z � xy � yz � zx

8
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Then, we can see that at the second lowest level we have 3k�1 polynomials, each of degree 2 (lowest level contains 3k

polynomials of degree 1 - coordinates of the input vector), but at the root, we have a single polynomial of degree 2k ,

but this is polynomially distinct to the sensitivity sx.R-NAE/ D 3k . Alternatively, writing this in terms of n, we have

deg.f / D nlog3 2 s.f / D n

Now returning to the example g D ANDp
n ı ORp

n, we have

deg.f / D n s.f / � pn D C.f /

To see why deg.f / D n, simply recall that no matter the input, we must always examine every bit of the input to get

a definitive answer. In other words, the decision tree has constant height D.g/ D n (refer to example 2.1.10).

Theorem 2.1.16 (Beals-Buhrman-Cleve-Marca-deWolf).

D.f / � C1.f / bs.f /

� C0.f / bs.f /

Proof. Without loss of generality we only consider the first case, that D.f / � C1.f / bs.f /, as the case for C0.f / bs.f /

is symmetric. We proceed to induct on the number of variables, or size of the input n.

The base case n D 1 is trivial. Before we continue with the induction step, we define a subfunction of f as follows

f j˛ W f0; 1gn�k ! f0; 1g; with bits in ˛ set to their values in ˛

where ˛ 2 f0; 1;�gn and exposes k bits, or has exactly k characters 2 f0; 1g. If f has no 1-certificate, then f D 0,

and D.f / D 0, so we’re done. FINISH BEALS BUHRMAN PROOF

Theorem 2.1.17 (Nisan). C.f / � s.f / bs.f /

Proof. Try it yourself.

Corollary 2.1.18. D.f / � C.f / bs.f / � s.f / bs.f /2 � bs.f /3

Proof. Direct result of theorems 2.1.17 and 2.1.16.

Corollary 2.1.19. D.f / � C.f /2

Proof.

D.f / � minfC0.f /; C1.f /g � bs.f /

� minfC0.f /; C1.f /g � C.f /

D minfC0.f /; C1.f /g �maxfC0.f /; C1.f /g
D C0.f / � C1.f /

� C.f /2

9
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Theorems:

1. S.f / � bs.f / � C.f / � D.f /

2. deg.f / � D.f /

3. C.f / � S.f /bs.f / � bs.f /2 [Nisan]

4. D.f / � C1.f /bs.f / [Beals et al]

5. Corollary: D.f / � C0.f /C1.f / � C.f /2 [Blum-Impagliazzo]

6. Corollary: D.f / � bs.f /3

7. bs.f / � 2 deg.f /2

8. D.f / � bs.f / deg.f /2 � 2 deg.f /4

Examples:

1. 9f W S.f / D ‚.
p

n/, bs.f / D ‚.n/

2. 9f W S.f / D bs.f / D C.f / D pn, deg.f / D D.f / D pn

3. 9f W deg.f / D nlog3 2, S.f / D n

Theorem 7:

Proof.

� Pick an input �!a .2 f0; 1gn/ and blocks B1; B2; : : : ; Bb that achieve the max in bs.f / D b.

� Let P.x1; : : : ; xn/ be a multi-linear polynomial representation of f . Create a new polynomial Q.y1; y2; : : : ; yb/

from P by setting xi ’s as follows
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– If i 62 B1 [ B2 : : : [ Bb , set xi D ai

– If i 2 Bj ,

� If ai D 1, set xi D yj

� If ai D 0, set xi D 1 � yj

� Multi-linearize the polynomial

deg.Q/ � deg.P / (Note: deg.Q/ � b)

Q.1; 1; 1; : : : ; 1/ D P.�!a / D f .�!a /

Q.0; 1; 1; : : : ; 1/ D Q.1; 0; 1; : : : ; 1/ D Q.1; 1; : : : ; 0/ D 1 � f .�!a / (Because each Bj is sensitive)

Q.�!c / 2 f0; 1g8�!c 2 f0; 1gb

[Trick by Minsky-Papert]

Define Qsym.k/ as follows:

Qsym.k/ D
P

j�!a jDk
Q.�!a /

�
b
k

� , k 2 f0; 1; 2; : : : ; bg

where j�!a j (weight of
�!a ) is the number of ones in �!a .

Note: deg.Qsym/ � b

These definitions define Qsym uniquely.

Qsym.k/ D f .�!a /, if k D b

D 1 � f .�!a /, if k D b � 1

2 Œ0; 1�, else

Markov’s Inequality:

Definition 3.0.20 (Interval Norm of a function). Define kf kS D supx2S jf .x/j, for f W R! R, S � R.

Suppose f is a polynomial of degree � n, then kf 0kŒ�1;1� � n2kf kŒ�1;1�

Corollary: If a � x � b, c � f .x/ � d , then kf 0kŒa;b� � n2 � d�c
b�a

Let � D k.Qsym/0kŒ0;b�

Let � D maxf.sup Qsym.x// � 1;� inf Qsym.x/; 0g
Then Qsym.x/, for x 2 Œ0; b� maps to Œ�k; 1C k�.

� If � D 0, Qsym maps Œ0; b� to Œ0; 1�. Markov’s Inequality implies

k.Qsym/0kŒ0;b� �
deg.Qsym/2.1 � 0/

.b � 0/
� deg.Qsym/2

bs.f /

However, Qsym.b � 1/ D 1� f .�!a / and Qsym.b/ D f .�!a /. By Mean-Value theorem, 9˛ 2 Œb � 1; b� such that

j.Qsym/0.˛/j D 1.

so, k.Qsym/0kŒ0;b� � 1) bs.f / � deg.Qsym/2

� If � > 0

11
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– If � D Qsym.x/�1 for some x D x0. Suppose x0 2 Œi; iC1�. Considering the smaller of the two intervals

Œi; x0�, Œx0; i C 1� and applying mean-value theorem,

k.Qsym/0kŒ0;b� �
�

1=2
D 2�

Qsym maps Œ0; b� to Œ�k; 1C k�. Markov’s Inequality implies,

2� � k.Qsym/0kŒ0;b� �
deg.Qsym/2.1C � � .��//

b � 0

So, 2� � deg.Qsym/2.1C 2�/

bs.f /

) bs.f / � deg.Qsym/2.
1

2�
C 1/ .1/

Using ˛ such that j.Qsym/0.˛/j D 1, we have

1 � k.Qsym/0kŒ0;b� �
deg.Qsym/2.1C 2�/

bs.f /

bs.f / � deg.Qsym/2.1C 2�/ .2/

.1/&.2/) bs.f / � deg.Qsym/2.1Cminf 1

2�
; 2�g/

� 2 � deg.Qsym/2

� 2 � deg.Q/2

� 2 � deg.P /2

D 2 � deg.f /2

– The proof is similar for the case where � D �Qsym.x/ for some x.

Theorem 8:

D.f / � bs.f / deg.f /2

Proof. Consider polynomial representation P of f .

Definition 3.0.21. Define “maxonomial” = maximum degree monomial of f

� There exists a set (size � bs.f / deg.f /) of variables that intersects every maxonomial.

� Query all these variables to get subfunction f j˛ with deg.f j˛/ � deg.f / � 1. Since all the maxonomials of

f vanish after exposing the variables, the degree of the resulting polynomial representation (f j˛) decreases at

least by 1.

If the above two statements hold, then we can prove the theorem by induction on the degree of the function f . If

f is a constant function, then the theorem holds trivially. Assume that it is true for all functions whose degree is less

than n D deg.f /.

D.f / � bs.f / deg.f /CD.f j˛/

� bs.f / deg.f /C bs.f j˛/ deg.f j˛/2 By induction hypothesis

� bs.f /.deg.f /C .deg.f / � 1/2/

� bs.f /deg.f /2 if deg.f / � 1

The algorithm to get those variables is

12
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� Start with an empty set S

� Pick all variables in any maxonomial that is not yet intersected and add these variables to S . (Number of

variables added is less than or equal to deg.f /.)

� If the current set intersects every maxonomial stop else repeat the above step.

Claim: Number of iterations in the algorithm is at most bs.f /

Proof: We claim that inside every maxonomial, there is a sensitive block for
�!
0 . Pick any maxonomial. Set xi

(i 62 maxonomial) to 0. The resulting function’s polynomial representation still contains the maxonomial. Thus, the

resulting boolean function is not a constant. This implies that there exists a sub-block inside the maxonomial such that

flipping it changes the value of the function. Thus, the number of maxonomials is at most bs.f /. Hence, the number

of iterations which can be at most the number of maxonomials is at most bs.f /.

13



D
R

A
FTLecture 4

Symmetric Functions and Monotone Functions

Scribe: Ranganath Kondapally

Definition 4.0.22. f W f0; 1gn ! f0; 1g is said to be symmetric if 8x 2 f0; 1gn 8� 2 Sn (Group of all permutations

on Œn�)

f .x/ D f .x�.1/; x�.2/; : : : ; x�.n//

This is the same as saying f .x/ depends only on jxj(number of ones in x).

Recall the proof of bs.f / � 2 deg.f /2. We used symmetrizing trick.

Can prove: For any symmetric f , deg.f / D n � O.n˛/ where ˛.D 0:548/ < 1 is a constant. [Von Zur Gathen

& Roche]

Then, D.f / � deg.f / D n �O.n/

For x; y 2 f0; 1gn write x � y if 8i.xi � yi /

Definition 4.0.23. f is monotone if x � y ) f .x/ � f .y/

Example of monotone functions: ORn; ANDn; ANDp
n �ORp

n.

Non-examples: PARn;:ORn.

Theorem 4.0.24. If f is monotone, then S.f / D bs.f / D C.f /

Proof. We already have S.f / � bs.f / � C.f /.

Remains to prove: C.f / � S.f /.

Let x 2 f0; 1gn. Let ˛ be a minimal 0-certificate matching x (suppose f .x/ D 0).

Claim: All exposed bits of ˛ are zeros.

Proof: If not, we can change an exposed bit (which is 1) in ˛ and still have f .xj˛/ D 0 as f is monotone. So, we

don’t need to expose that bit. So, ˛ can’t be minimal 0-certificate.

Claim: Every exposed bit in ˛ is sensitive for Œ˛ W 1�� D y (the input obtained by setting *=1 everywhere in ˛)

Proof: Suppose i th bit is exposed by ˛ but f .y.i// D f .y/ D 0. By monotonicity, any other setting of *’s in ˛

causes f D 0. So, i th bit is not necessary, contradicting the minimality of ˛.

By second claim: S.f / � number of exposed bits in ˛. Thus, S.f / � C0.f /. Similarly, S.f / � C1.f /.

Therefore, S.f / � maxfC0.f /; C1.f /g D C.f /

Theorem 4.0.25. If f is monotone, D.f / � bs.f /2 D S.f /2

14



D
R

A
FT

LECTURE 4. SYMMETRIC FUNCTIONS AND MONOTONE FUNCTIONS
CS 239, Fall 2011, Dartmouth College

Lower Bounds in Computer Science

[Using an earlier theorem: D.f / � C.f /bs.f / D S.f /2]

The above bounds are tight, considering f D ANDp
n �ORp

n.

The only possible symmetric monotone functions are THRn;k where

THRn;k.x/ D1; if jxj � k

0; Otherwise

D.THRn;k/ D n.k 6D 0/ (by a simple adversarial argument).

Definition 4.0.26. f W f0; 1gn! f0; 1g is evasive if D.f / D n.

Definition 4.0.27. A boolean function f .x1;2; x1;3; : : : ; xn�1;n/ is a graph property if f .�!x / depends only on the

graph described by �!x .

Every � 2 Sn induces a permutation on
�

Œn�
2

�

. f is a graph property iff it is invariant with respect to these

permutations.

Theorem 4.0.28. Every monotone non-constant graph property f on n-vertex graph has D.f / D �.n2/ [Rivest &

Vuillemin]

Conjecture: D.f / D
�

n
2

�

, i.e f is evasive! [Richard Karp].

Theorem 4.0.29. If n D p˛ for a prime p; ˛ 2 N, then f is evasive. [Kahn-Saks-Sturtevant]

Theorem 4.0.30. If f is invariant under edge-deletion or contraction (minor closed property) and n � n0, then f is

evasive. [Amit-Khot-Shi]

Theorem 4.0.31. Any monotone bipartite graph property is evasive. [Yao]

Proof. Let f W f0; 1gN ! f0; 1g where N D
�

n
2

�

be a non-constant monotone graph property. f is invariant under a

group G � SN of permutations (G Š Sn).

G is a transitive on f1; : : : ; N g i.e, for any i; j 2 ŒN �; 9� 2 G such that �.i/ D j .

Lemma 1: Suppose f W f0; 1gd ! f0; 1g is monotone ( 6D constant), invariant under a transitive group and d D 2˛

for some ˛ 2 N, then f is evasive.

Corollary to Lemma 1: If n D 2k, then D.f / � n2=4.

Hierarchically cluster Œn� into subclusters of size n=2 and recurse. Consider the subfunction of f obtained the

following way: gi W A! f0; 1g and g.x/ D f .x/, where

A D fx is a graph on Œn� where there is an edge between l; j

if l ^ 1i0n�k D j ^ 1i0n�k and no edge if l ^ 01i�10n�k 6D j ^ 01i�10n�kg
Number of inputs to subfunction D .2k�1/2 D n2=4. By Lemma 1, D.f / � D.subfunction/ D n2=4. There are

k subfunctions, depending on how deep we take the clustering: g1 (stop after one level of clustering),g2; : : : ; gk (go

down to singleton clusters).

gk.
�!
0 / D f .

�!
0 / D 0

g1.
�!
1 / D f .

�!
1 / D 1

gi .
�!
1 / D gi�1.

�!
0 /

9i such that gi .
�!
0 / D 0 and gi .

�!
1 / D 1 [i.e gi is non-constant]

Corollary 2: For all n 2 N, D.f / � n2=16

Proof of Lemma 1: Consider Sk D fx 2 f0; 1g� W jxj D k and f .x/ D 1g
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Definition 4.0.32. orb.x/ D fy W y is obtained from x by applying some � 2 Gg

Sk is partitioned into orbits.

Claim: If k 6D 0, k 6D d ( i.e x 6D �!0 ; x 6D �!1 ), then every orbit has even size. Therefore, jSkj is even.

Number of ones in resulting matrix = k � jorb.x/j D d �(#1’s in any column)

jorb.x/j D d � . #1’s in any col/

k
D 2˛.some integer/

k
D even

as 0 < k < d .

By Claim:

jfx W f .x/ D 1gj D jS0j C jS1j C : : :C jSd�1j C jSd j

jS0j D 0 as f .
�!
0 / D 0 and jSd j D 1.

D 0C even number C 1

D odd

Consider all x 2 f0; 1gn that reach leaf � of decision tree at depth < d . An even number of x’s reach here.

Therefore, if all leaves whose output is f .x/ D 1 have depth < d , then number of x W f .x/ D 1, is even. This is a

contradiction and hence, there exists a leaf whose depth is d . Thus, D.f / D d and f is evasive.
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We saw this type of complexity earlier for the sorting problem.

Definition 5.0.33 (Cost of a randomized decision tree on input x). cost.t; x/ D number of bits of x queried by t .

Let randomized decision tree T � � (probability distribution over decision trees).

From Yao’s minimax lemma we have: R.f / � D�.f /, for any input distribution �. So, it is enough to prove a

lower bound on D�.f /. Unlike what we did in sorting, here we won’t convert to a Monte Carlo algorithm. We will

strictly use Las Vegas algorithm.

Theorem 5.0.34. Let f be a non-constant monotone graph property on N D
�

n
2

�

bits, i.e., n vertices. Then, R.f / D
�.n4=3/ D �.N 2=3/.

This is saying something more involved than the easy thing you can prove: for any monotone f : R.f / �
p

D.f /.

Last time we showed that D.f / � n2=16 D �.n2/ [Rivest-Vuiellemin].

Yao’s conjecture: R.f / D �.n2/ D �.N /.

Theorem 5.0.34 is not the best result known, we state below (without proof) the best result known:

R.f / D �.n4=3 log1=3 n/ [Chakrabarti-Khot], this is a strengthening of Hajnal’s proof.

Today we will prove something that implies Theorem 5.0.34.

Recall that graph properties are invariant under certain permutations (not all permutations) and these permutations

form a transitive group.

Note: From now on, number of inputs = n (not N ).

Theorem 5.0.35. If f W f0; 1gn is invariant under a transitive group of permutations, then R.f / D �.n2=3/.

Match the R.f / bound in Theorem 5.0.34 to that in Theorem 5.0.35! Proof of Theorem 5.0.35 using probabilistic

analysis.

Proof.
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Definition 5.0.36 (Influence of a coordinate on a function). Let f W f0; 1gn �! f0; 1g. Define the influence of the i th

coordinate on f as: Ii .f / D PrxŒf .x/ ¤ f .x.i//�.

In words: choose a random x and what is the chance that flipping the i th bit will change the output.

Note that Ii .f / looks like sx.f /.

Because of invariance under the transitive group, we have: I1.f / D I2.f / D � � � D In.f / D I.f /=n, where

I.f / DPn
iD1 Ii .f /.

We will also make use of another technique:

Definition 5.0.37 (Great Notational Shift). TRUE: 1! �1; FALSE: 0! 1

So, old x �! new 1 � 2x, and old 1�y
2
 � new y

Why are we doing this? Given function f W f�1; 1gn �! f�1; 1g, this is a sign vector instead of a bit vector. In

this notation also we have a unique multilinear polynomial. It is important to note that this notation does not change

the degree of the multilinear polynomial, though it might change the coefficients and the number of monomials.

Example 5.0.38. AND(x; y; z) = xyz (old)

In the new notation we have:

AND.x; y; z/ D 1� 2

2

6
6
6
4

�
1 � x

2

��
1 � y

2

��
1 � z

2

�

„ ƒ‚ …

new�!old

3

7
7
7
5

„ ƒ‚ …

old�!new

D 3

4
C x

4
C y

4
C z

4
� xy

4
� yz

4
� xz

4
C xyz

4

Notice that the coefficients of the linear terms = 2n.

Given that x takes˙1 values, we can say something specific about Ii .f /: If f W f�1; 1gn �! f�1; 1g, then:

Ii .f / D Ex

�
1

2
jf .x j xi D 1/� f .x j xi D �1/j

�

D 1

2
ExŒjDi f .x/j�

Let �.x; y; z/ D 3
4
C x

4
C y

4
C z

4
� xy

4
� yz

4
� xz

4
C xyz

4

D1�.y; z/ D 2:1
4

+ higher degree terms

Ey;z ŒD1�.y; z/� D 2:1
4
C 0

1
2
EŒ�.y; z/� D coefficient of x

For monotone f :

Ii .f / D 1

2
ExŒDi f .x/�

D coefficient of xi in polynomial representation of f

Lemma1: For any f W f�1; 1gn �! f�1; 1g and deterministic decision tree T evaluating f , we have:

VarxŒf � �Pn
iD1 ıiIi .f /, where ıi D PrxŒT queries xi on input x�.

VarxŒf � D ExŒf .x/2� � .EŒf .x/�/2

D 1 �ExŒf .x/�2
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Note: If f is balanced (i.e., if PrŒf .x/ D 1� D PrŒf .x/ D �1�), then VarŒf � D 1. For example, PARITY function

is balanced, AND is not.

We will prove Theorem 5.0.35 assuming f is balanced; we will fix this later.

Recall that Lemma1 makes no assumptions about the function f . If f is invariant under a transitive group, then

Ii .f / D I.f /
n

, so from Lemma1 we get:

VarŒf � � I.f /

n

nX

iD1

ıi

D I.f /

n
EŒ# variables queried�

D I.f /

n
Duniform.f /Œby picking optimal deterministic decision tree for uniform distribution�:

Lemma2 [O’Donnell-Servedio]: For any monotone f W f�1; 1gn! f�1; 1g; I.f / �
p

Dunif.f /.

From Lemma1 and Lemma2, we get that if f is monotone, transitive, and balanced, then:

1 � I.f /

n
Dunif.f / � Dunif.f /3=2

n

) R.f / � Dunif.f / � n2=3

So now we will prove lemmas 1 and 2.

Proof of Lemma1:

VarŒf � �
n
X

iD1

ıiIi .f /

VarŒf � D 1 � EŒf .x/�2

D 1 � ExŒf .x/�:Ey Œf .y/�

D 1 � Ex;yŒf .x/f .y/�

D Ex;y Œ1 � f .x/f .y/�

D Ex;y Œjf .x/ � f .y/j�

That is, for any sequence of random variables 2 f0; 1gn, x D uŒ0�; uŒ1�; : : : ; uŒd � D y:

VarŒf � �Pd�1
iD0 EŒjf .uŒi �/ � f .uŒiC1�/j� (by triangle inequality)

For example:

Start: f .x1; x2; x3; x4; x5/ [D x D uŒ0�]

f .x1; y2; x3; x4; x5/ [tree T read x2 in the above step]

f .x1; y2; x3; y4; x5/ [tree T read x4 above]

And now suppose the tree has reached a leaf so it outputs a value of f and stops. When the tree stops, replace the

remaining x0s with y0s. So we get f .y1; y2; y3; y4; y5/

Note that going from uŒi � to uŒiC1� is just “re-randomizing”, there is no conditioning involved because the variable

which was queried (whose value got known) got replaced by a random variable.

Expression in summation above is just EuŒjf .u/ � f .u.�j //j� where xj is the variable queried by T at this step.

Note that this looks a lot like the definition of influence, without the 1=2.

EuŒjf .u/ � f .u.�j //j�: read this as “take a random variable u and re-randomize u by replacing the j th variable

by tossing a coin again”. Since with probability 1=2, the value of the j th variable got flipped or remained the same,
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we get:

EuŒjf .u/ � f .u.�j //j� D 1

2
EuŒjf .u/ � f .u.j //j�

D Ij .u/

So, if xj1
; xj2

; : : : ; xjd
is the random sequence of variables read (note that d is also random), then:

VarŒf � � .Ij1
.f /C Ij2

.f /C : : :C Ijd
.f // � PrŒj1; j2; : : : ; jd occurs�

D
n
X

iD1

Ii .f / � PrŒT queries xi�

Proof of Lemma2:

Recall that for monotone f , Ii .f / D 1
2
ExŒDi f .x/�, which is also the coefficient of xi in the representing poly-

nomial.

Let T be a deterministic decision tree for f and suppose T outputs ˙1 values. Let L D fleaves of T g and

LC D fleaves of T that output �1g, i.e., accepting leaves.

For each leaf � 2 L, we have a polynomial p�.x1; x2; : : : ; xn/ such that

p�.x1; x2; : : : ; xn/ D
�

1; if (x1; x2; : : : ; xn) reaches �

0; otherwise

deg.p�/ = depth of �. jcoefficient of xi in p�j = 1

2depth.�/�1 .

Sign of coefficient D
� C1; if upon reading xi on path to �, we branch right

�1; otherwise

Notations:

d.�/ D depth.˘/

s.�/ D skew of ˘

D .#left branches � #right branches/ on path to ˘

Using the above definitions, we have:

I.p�/ D
n
X

iD1

.coefficient of xi in p˘/

D �s.�/

2d.�/�1

Observe that representing polynomial of f = 1 � 2
P

�2LC p�. Therefore,

I.f / D
n
X

iD1

.coefficient of xi in representing polynomial of f/

D
X

�2LC

s.�/

2d.�/

�
X

�2L

js.�/j
2d.�/

D Erandom branchingŒjs.�/j�

) I.f / �
q
P

�
d.�/

2d.�/ D
p

Dunif .f /. The first inequality is due to drunkard’s walk in probability theory.
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Lecture dated 04/25/2008 follows:

Today we will prove something for graph properties, which will sometimes be stronger than what we proved last

time:

1 � EŒf .x/�2 D VarŒf .x/� � Pn
iD1 ıT

i Ii .f / � I.f /
n

Dunif .f / � Dunif .f /3=2

n
. The first inequality is due to

Lemma1 of last time, the second inequality is due to symmetry, and the last inequality is due to monotonicity and

Lemma2. If f is balanced, we get Dunif .f / � n2=3.

In the proof we did last time, we did not use the full power of uniform distribution; we just used the fact that

individual points are independent. If f is not balanced, we get Dunif .f / � (some value close to 0), which is not a

good lower bound. For general f , instead of assuming X unif , we use X �p , where �p means “choose each xi D 1

with probability p / �1 with probability 1 � p independently”.

�p.x1; x2; : : : ; xn/ D pN1.x/.1 � p/N�1.x/

Now, we will need to have the following modifications:

1 � EŒf .x/�2 D VarŒf .x/� � Pn
iD1 ıT

i;pIi;p.f / � I.f /
n

D�p
.f / �

p
p.1�p/�D�p .f /3=2

n
, where we get the last

inequality due to generalized drunkard walk.

If p D 0; EŒf .x/� D �1; if p D 1; EŒf .x/� D 1. So, intermediate value theorem tells us that 9p such that

EŒf .x/� D 0. So we pick this p and we get a bound for D�p
� n2=3. Although this bound is for D�p

, Yao’s minimax

lemma tells us that for any distribution, D�p
is a lower bound for R.f /. This probability p where EŒf .x/� D 0 is

called “critical probability” of f . Every monotone function has a well-defined critical probability. Today’s theorem

will be in terms of this critical probability.

Theorem 5.0.39. If f is a non-constant, monotone graph property on n-vertex graphs, then R.f / D �.minf n
p� ; n2

log n
g/,

where p� is the critical probability of f .

Note that we can always assume p� � 1
2

. Why? Because if the critical probability of f > 1=2, we can always

consider g.�!x / D 1 � f .1 ��!x /, then p�.g/ D 1 � p�.f /.

Critical probability p� is the probability that makes EŒf .x/� D 1=2.

Let us now define the key graph theoretic property “graph packing” that we need for the proof. Graph packing is

the basis for a lot of lower bounds for graph properties.

Definition 5.0.40 (Graph Packing). Given graphs G; H with jV.G/j D jV.H/j, we say that G and H pack if

9bijection � W V.G/! V.H/ such that 8fu; vg 2 E.G/; f�.u/; �.v/gnotinE.H/. � is called a packing.

We state the following theorem, but we will not prove it:

Theorem 5.0.41 (Sauer-Spencer theorem). If jV.G/j D jV.H/j D n and 4.G/ � 4.H/ � n
2

, then G and H pack.

Here4.G/ = max degree in G.

Note: you can never pack a 0-certificate and a 1-certificate. What is the graph of a 0-certificate? It is a bunch of

things that are not edges in the input graph.

Intuition: Sauer-Spencer theorem says that if two graphs are small, you can pack them. Since we cannot pack a

0-certificate and a 1-certificate, it implies that either of the two has to be big so that certificate complexity is big which

gives you a handle on the lower bound.

Consider a decision tree; pick a random input x 2 f0; 1gn according to �p and run the decision tree on x. Let Y =

#10s read in the input, and Z = #00s read in the input.

Then, cost of the tree on random input = Y CZ.

D�p
.f / D EŒcost� D EŒY �C EŒZ�

By Yao’s minimax lemma, it is enough to prove that either EŒY � or EŒZ� is �.minf n
p� ; n2

log n
g/. Note that Y and Z

are non-negative random variables (since they represent the number of 00s and 10s read), so it is enough to prove the

lower bound on one of them.
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Proof outline (remember we can assume p� � 1=2):

Claim 1: EŒZ�jEŒY � D 1�p
p

.

) if EŒY � � n
64

then:

EŒZ� D 1 � p

p
� n

64

� n

128p

D �.n=p/

� �.minf n
p

;
n2

log n
g/

) we may assume EŒY � � n
64

.

) EŒY jf .x/ D 1 ^ 4.Gx/ � np C
p

4np log n� � EŒY �

PrŒf .x/D1^4.Gx /�npCp
4np log n�

, where Gx = graph repre-

sented by 10s in the input x (so other edges are “off”).

Theorem 5.0.42. EŒX jc� � EŒX�
PrŒc�

Proof.

EŒX� D EŒX jc� � PrŒc�C EŒX j:c� � PrŒ:c�

� EŒX jc� � PrŒc�

PrŒA ^ B� D 1 � PrŒA _ B�

� 1 � PrŒA� � PrŒB�

D PrŒA� � PrŒB�

Using our assumption, and the inequality above, we get:

EŒY jf .x/ D 1 ^4.Gx/ � np C
p

4np log n� � EŒY �

PrŒf .x/D1^:::�
� n=64

1
2

� 1
n

� n=32C o.n/

Later: The constant 4 above is chosen so that

P rŒ�.Gx/ � np C
p

4np log n� � 1 � 1

n
.Chernoff bound/

This implies that there exists an input, x, satisfying f .x/ D 1 and �.Gx/ � np C
p

4np log n, such that y �
n=32C o.n/. Therefore, there exists a 1-certificate with � � np C

p

4np log n and #edges � n=32C o.n/. This

means that we are touching at most n=16 vertices, and so at least n=2 vertices are isolated.

Claim 2: All 0-certificates must have at least n2

16.npCp
4np log n/

edges.

Now we have a lower bound on the number of edges of any 0-certificate. As we did EŒY �, we can say

EŒZ� � EŒZjf .x/ D 0� � P rŒf .x/ D 0�

� n2

16.np C
p

4np log n/
� 1

2

D n2

32.npC
p

4np log n/

� min

�
n2

64np
;

n2

256 log n

�

� min

�
n

64p
;

n2

256 log n

�
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Claim 2 Proof: This proof amounts to showing that if the claim were false, we could pack a 1-certificate and

0-certificate.

We will show that if �.G/ � k and G has more that n=2 isolated vertices and jE.H/j � n2

16�.G/
, then G and

Hpack.

Number of edges in a graph equals half the sum of the degrees of the vertices, i.e.,

jE.H/j D 1

2
�
X

v2H

deg.v/

D davg.H/ � n
2

) davg.H/ D 2

n
� jE.H/j

D n

8�.G/
:

If H 0 is a subgraph of H spanned by n=2 lowest degree vertices , then

�.H 0/ � 2 � davg.H/

.

Now, if you have an upper bound on the average, you can bound the max of n=2 smallest items.

By packing H �H 0 with the isolated vertices of G, we can extend a packing of H 0 and G0 to one one H and G.

We can get a packing of H 0 and G0 because,

�.G0/�.H 0/ � �.G/�.H 0/

� n

4

D n=2

2
:

Apply Sauer-Spencer theorem.

Claim 1 Proof: Define a bunch of indicator variables. Let,

Yi D
�

1; if xi is read as a 010 :

0; otherwise

Zi D
�

1; if xi is read as a 000 :

0; otherwise

Then,

Y D
.n

2/X

iD1

Yi I Z D
.n

2/X

iD1

Zi

Then it is enough to show that:

8i W
(

either EŒYi � D EŒZi � D 0

or
EŒZi �
EŒYi �

D 1�p
p

Enough to show the same under an arbitrary conditioning on xj .j ¤ i/ – because xi ’s are independent.

Apply an arbitrary conditioning of xj .j ¤ i/. If this conditioning implies that the i -th coordinate is not read,

it implies Yi D Zi D 0. Otherwise this is the only coordinate that is left to be read; and we know PrŒ1� D p and
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PrŒ0� D 1 � p, i.e.,

EŒZi �

EŒYi �
D PrŒXi D 0�

PrŒXi D 1�

D 1 � p

p
:

What do you mean by “enough to show under arbitrary conditioning”?

If you have conditioning on rest of N � 1 variables then we have C1; C2; : : : ; C2N �1 conditions. This implies,

EŒZi � D EŒZi jC1� � PrŒC1�C EŒZi jC2� � PrŒC2�C : : :

EŒYi � D EŒYi jC1� � PrŒC1�C EŒYi jC2� � PrŒC2�C : : :

We used a property of decision trees that whether or not you read i th variable is independent of the value of the

i th variable; it may depend on what the values of other variables are.
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6.1 Models for the Element Distinctness Problem

Definition 6.1.1 (The Element Distinctness Problem). Given n items .x1; x2; � � � ; xn/ from a universe U not neces-

sarily ordered, does 9i ¤ j 2 Œn� W xi ¤ xj ?

The complexity of the problem depends on the model of computation used.

Model 0. Equality testing only. This is a very weak model with no non-trivial solutions. The element distinctness

problem would require ‚.n2/ comparisons.

Model 1. Assume universe U is totally ordered. We can compare any two elements xi and xj and take either of 3

branches depending on whether xi > xj , xi D xj , or xi > xj . Note that in a computer science context this

makes sense, as it is always possible to compare two objects by comparing their binary representations.

In this model, the problem reduces to sorting, hence the element distinctness problem can be solved in O.n log n/

comparisons. In fact we have a matching lower bound �.n log n/ for this problem, through a complicated

adversarial argument.

Instead of describing the adversarial argument we describe a stronger model. We then use this model to give us

a lower bound, since a lower bound for the problem in the stronger model is also a lower bound in this model.

Model 2. We assume w.l.o.g. that the universe U D R with the usual ordering. Then the comparison of two elements

xi and xj is equivalent to deciding if xi � xj is <; > or D 0. For this model we allow more general tests, such

as

is x1 � 2x3 C 4x5 � x7

8

<

:

> 0;

D 0;

< 0

‹

In general at an internal node v in the decision tree, we can decide whether pv.x1; x2; � � � ; xn/

8

<

:

> 0

D 0

< 0

, and

branch accordingly. Here pv.x1; x2; � � � ; xn/ D a
.v/
0 C

n
X

iD1

a
.v/
i xi .
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6.2 Linear Decision Trees

For model 2 as described above, we have the following definition.

Definition 6.2.1 (Linear Decision Trees). A linear decision tree is a 3-ary tree such that each internal node v can

decide whether pv.x1; x2; � � � ; xn/

8

<

:

> 0

D 0

< 0

, and branch accordingly. The depth of such a tree is defined as usual.

If we assume that our tree tests membership in a set, we can consider the output to be f0; 1g. Then we can think of

two subsets W0; W1 � R
n where:

1. Wi D fEx 2 R
n W tree outputs ig

2. W0

T
W1 D ;

3. W0

S
W1 D R

n

Consider a leaf � of the tree. Then the set S� D fx 2 R
n W x reaches �g is described by a set of linear equality /

inequality constraints, corresponding to the nodes on the path from the root to the leaf. Then S� is a convex polytope,

since each linear equality / inequality defines a convex set, and the intersection of convex sets is itself a convex set.

Convex sets are connected, in the following sense:

Definition 6.2.2 (Connected Sets). A set S � R
n is said to be (path-) connected if 8a; b 2 S , 9 a function pab W

Œ0; 1�! S such that:

� pab is continuous

� pab.0/ D a

� pab.1/ D b

Suppose a linear decision tree T has L1 leaves that output 1 and L0 leaves that 0. Then

W1 D
[

� outputs 1

S�

For a set S , define #S to be the number of connected components of S . Then, since each leaf outputs at most a

single connected component,

#W1 � L1

and similarly,

#W0 � L0

For a given function f W Rn ! f0; 1g (for example, element distinctness) we define f �1.1/ D W1 D fEx W f .x/ D
1g, and f �1.0/ is similarly defined. Then,

L1 � #f �1.1/

and,

L0 � #f �1.0/
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This implies for any decision tree that computes f , the number of leaves L satisfies

L D L1 C L0

� #f �1.1/C #f �1.0/

and hence,

height.T / � log3.#f �1.1/C #f �1.0//

We now return to the element distinctness problem. Remember that

f .x1; x2; � � � ; xn/ D
�

1; if 8i ¤ j; xi ¤ xj

0; o.w.

It turns out that f �1.1/ has at least nŠ connected components. Actually the correct number is nŠ, but we are only

interested in the lower bound which we will prove.

Lemma 6.2.3. 8�; � 2 Sn, the group of all permutations, � ¤ � , the points x� D .�.1/; �.2/; : : : ; �.n// and

x� D .�.1/; �.2/; : : : ; �.n// lie in distinct connected components of f �1.1/.

Proof. The proof is by contradiction. Suppose not, then there exists a path from x� to x� lying entirely inside f �1.1/.

Then, for permutations �; � ,

9i ¤ j s.t. �.i/ < �.j /

�.i/ > �.j /

Now x.�/ and x.�/ lie on opposite sides of the hyperplane xi D xj . Hence any path from x.�/ to x.�/ must

contain a point x� s.t. x�
i D x�

j , by the Intermediate Value Theorem and f .x�/ D 0, which gives us the required

contradiction.

Suppose a linear decision tree T solves element distinctness. Then

D(element distinctness) � height(T )

� log3.#f �1.0/C #f �1.1//

� log3.nŠ/

= �.n log n/

Note that very little of this proof actually uses the linearity of the nodes. We can as well use other functions e.g.

quadratic functions and get the same results.

6.3 Algebraic Decision Trees

An algebraic decision tree of order d is similar to a linear decision tree, except the internal nodes evaluate polynomials

of degree � d , and branch accordingly.

The problem now is that the components may no longer be connected, e.g. .xC y/.x � y/ > 0. However, it turns

out that low degree polynomials aren’t too “bad”, as evidenced by the following theorem:

Theorem 6.3.1 (Milnor-Thom). Let p1.x1; x2; : : : ; xm/; p2.x1; x2; : : : ; xm/; : : : ; pt .x1; x2; : : : ; xm/ be polynomials

with real coefficients of degree � k each. Let V D fEx 2 R
m W p1.Ex/ D p2.Ex/ D � � � D pt .Ex/ D 0g (called an

algebraic variety. Then the number of connected components in V D #V � k.2k � 1/m�1.

Milnor conjectured that the lower bound for the number of connected components in V should be km. As an

example, consider the equalities
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p1.x/ D .x1 � 1/.x1 � 2/ : : : .x1 � k/ D 0

p2.x/ D .x2 � 1/.x2 � 2/ : : : .x2 � k/ D 0

: : :

pm.x/ D .xm � 1/.xm � 2/ : : : .xm � k/ D 0

Then p1.x/ D p2.x/ D � � � D pm.x/ is satisfied at exactly km points, each of which forms a connected compo-

nent.

It follows from the theorem that each leaf gives at most k.2k�1/m�1 components. However, internal nodes are not

restricted to equalities and can evaluate inequalities. In the next lecture we introduce Ben-Or’s lemma, which handles

this case. We use this to get a lower bound for tree depth in such a model, i.e. where the internal nodes are allowed to

perform algebraic computations and compute inequalities.
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7.1 Introduction

Last time we saw the Milnor-Thom theorem, which says that the following

Theorem 7.1.1 (Milnor-Thom). Let p1.x1; x2; : : : ; xm/; p2.x1; x2; : : : ; xm/; : : : ; pt .x1; x2; : : : ; xm/ be polynomials

with real coefficients of degree� k each. Let W D fEx 2 R
m W p1.Ex/ D p2.Ex/ D � � � D pt .Ex/ D 0g. Then the number

of connected components in W D #W � k.2k � 1/.m�1/.

If instead of constant-degree polynomials we allowed arbitrary degree polynomials then it turns out that the element

distinctness problem could be done in O.1/ time! Consider the expression

x D …i<j .xi � xj /

Then x D 0, 9i ¤ j W xi D xj . Hence, this is obviously too powerful a model.

In general such problems can be posed as “set recognition problems”, e.g. the element distinctness can be posed

as recognising the set W where W D fEx 2 R
m W 8i; j.i ¤ j ) xi ¤ xj /g. Define Dlin.W / as the height

of the shortest linear decision tree that recognizes W . We saw in the last lecture that for this particular problem,

Dlin.W / � log3.#W /.

7.2 Algebraic Computation Trees

Definition 7.2.1 (Algebraic Computation Trees). An algebraic computation tree (abbreviated “ACT”) is one with two

types of internal nodes:

1. Branching Nodes: labelled “v:0” where ‘v’ is an ancestor of the current node

2. Computation Nodes: labelled “v op v”’ where v, v’ are

(a) ancestors of the current node,
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(b) input variables, or

(c) constants

and op is one of +, �, �, �. The leaves are labelled “ACCEPT” or “REJECT”. The computation nodes in an

algebraic computation tree have 1 child, while branching nodes have 3 children.

For a set W � R
n, we define Dalg .W / D minimum height of an algebraic computation tree recognizing W .

Note that in this model, every computation is being individually charged, hence an operation such as computing

…i<j .xi � xj / would be charged O.n2/.

The Milnor-Thom theorem is applicable to polynomials of low degree, and it turns out that we still do not exactly

have that. For example, consider a path of length h in a tree. Then the degree of the polynomial computed can be 2h.

w1 D x1x1

w2 D w1w1

w3 D w2w2

: : :

wh D wh�1wh�1

We need to somehow bound the degree of the polynomial obtained from such a path. Let v be a node in an ACT

and let w denote its parent. In order to do this, with each node v of an ACT, we associate a polynomial equality /

inequality as follows:

1. If w = parent(v) is a branching node, then pv D pw T 0, where the inequality contains <, D, or > depending

on the branch taken from w to reach v.

2. If w = parent(v) is a computation node of the form v1 op v2, then

(a) If op = +, �, or �, then pv D pv1
op pv2

(b) if op =�, then pvpv2
D pv2

.

At this point, we can even introduce the square root operator for our algebraic computation tree so that if the node

is labelled
p

v0, then the corresponding polynomial inequality is p2
v D pv0 .

Let � be a leaf of the ACT, and we define as usual S� D fEx 2 R
n W Ex reaches �g. Let wi denote the variable

introduced at node i in the tree for obtaining the polynomial equalities and inequalities. Then we can write

S� D

8

<

:
Ex 2 R

n W 9w1; w2; : : : ; wh 2 R s.t.
_

v ancestor of �

. condition at v/

9

=

;

where “condition at v” is of the form p.Ex; Ew/ D 0; > 0 or < 0 for some polynomial p of degree � 2. In fact we

do not require inequalities of the form p.Ex; Ew/ < 0, since we can always negate them.

Now that we have bounded-degree polynomials, in order to apply Milnor-Thom’s theorem we need to remove the

inequalities. For this, conditions of the form p.Ex; Ew/ � 0 can be rewritten as

9y W p.Ex; Ew/ D y2

This does not increase the degree of the polynomial, although now we are moving the equation to a higher dimen-

sion space (through the introduction of more variables). We can move back to the lower dimension space by simply

projecting the solution space to the lower dimension. Note that this projection function is a continuous map.

But we still don’t know how to handle strict inequalities, which is all we have. In order to handle strict inequalities,

we proceed as follows. Suppose that the subset v � R
m is defined by a number of polynomial equations and strict

inequalities i.e.
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V D fEz 2 R
m W p1.Ez/ D p2.Ez/ D � � � D pt .Ez/

q1.Ez/ > 0; q2.Ez/ > 0; : : : ; qu.Ez/ > 0/g

Then S� D fEx 2 R
n W 9 Ew 2 R

h.Ex; Ew/ 2 V g, where V is of the the above form. Further, S� is the projection of V

onto the first n coordinates. Since projection is a continuous function,

#S� � #V

Suppose V D V1 [ V2 [ � � � [ Vl , where the Vis are the connected components of V . Pick a point Ezi 2 Vi , for

each Vi , then we have a point in each connected component of V . Each Ezi is also in V , so it satisfies the equality and

inequality constraints, and q1. Ezi /; q2. Ezi /; : : : ; qu. Ezi / are all > 0.

Let " D min
i;j

qj . Ezi /. Let

V" D fEz 2 R
m W p1.Ez/ D p2.Ez/ D � � � D pt .Ez/ D 0

q1.Ez/ � "; q2.Ez/ � "; : : : ; qu.Ez/ � "g

Clearly V" � V . Also, V" contains every . Ezi /, i.e., V" contains a point in each component Vi of V .

Therefore,

#V" � #V

Now we can replace the inequalities, and we obtain the set V 0
" as

V 0 D fEz 2 R
m W 9y 2 R

u
^

(polynomial equations of degree at most 2) g

and note that V" is the projection of .Ez; Eu/ 2 R
mCu onto R

m. Then,

#S� � #V � #V" � #V 0 � 2.2:2 � 1/nChCu�1

dimension: n nC h nC h nC hC u

and the last inequality is obtained by applying the Milnor-Thom theorem, since the constraints in V 0 are equations

of degree 2, as required by Milnor-Thom. Also, h = number of computation nodes, and u � number of branching

nodes, hence hC u � height of the tree.

So,

#S� � 2:3nCht.T / � 1 � 3nCht.T /

Using the fact that #.A[ B/ � #AC #B and W D
[

� accepts

S�, we get that

#W �
X

� accepts

#S�

and since the number of leaves � 3ht.T /,

#W � 3ht.T /3nCht.T / D 3nC2 ht.T /

or,

ht.T / � log3.#W / � n

2
D �.log.#W / � n/
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which is Ben-Or’s theroem.

From this we can derive a number of results, such as,

� For element distinctness since #W D nŠ, Dalg .W / D �.log nŠ � n/ D �.n log n/

� Set equality, set inclusion, “convex hull” are all �.n log n/

� Knapsack is �.n2/
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We have previously looked at decision trees that allow us to prove lower bounds on “data access” for a problem.

We saw that the best possible lower bound provable in this setting is �.n/ (or n if you care about constants).

We now look at a different model of computation called a circuit, that allows us to prove lower bounds on “data

movement”. Loosely speaking, this is the amount of data we will need to move around in order to solve a problem.

We will see that in this model, an �.n/ lower bound is in fact trivial.

Circuits attempt to address the issus of the lack of super-constant lower bounds with the Turing Machine (TM)

model, where the only technique available is simulation and diagonalization and we do not know how to “analyze” the

computation. Using circuits we will be able to look into the innards of computation.

A circuit is built out of AND (^), OR (_) and NOT (:) gates alongwith wires and has special designated input

and output gates. More formally,

Definition 8.0.2 (Boolean Circuit). A Boolean circuit on n Boolean variables x1; x2; : : : ; xn is a directed acyclic graph

(DAG) with a designated “type” for each vertex:

1. Input vertices with indegree (fan-in)D 0. These are labelled with: x1;:x1; x2;:x2; : : : ; xn;:xn.

2. An output vertex with outdegree (fan-out)D 0.

3. AND (^), OR (_) gates with indegreeD 2, and NOT (:) gates with indegreeD 1.

Since a circuit is a DAG, we can have a topological sort x1; : : : ; xn; g1 D xnC1; g2 D xnC2; : : : ; gs D xnCs D y

of the graph with the input vertices as the first few vertices in the sort and the output gate as the last vertex in the sort.

Then we can inductively define the value computed by the circuit as follows:

1. Value of input vertex xi is the assignment to variable xi .

2. Value of xj for (j > n) is:

� value.xj1
/ ^ value.xj2

/, if xj is an AND gate with inputs xj1
and xj2

.

� value.xj1
/ _ value.xj2

/, if xj is an OR gate with inputs xj1
and xj2

.

� :value.xj1
/ if xj is a NOT gate with input xj1

.

3. Value computed by the circuit on a given input assignment is value(y).
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Every Boolean circuit computes a Boolean function and provides a computationally efficient encoding of the

function.

To compute f W f0; 1g� ! f0; 1g (i.e. language Lf � f0; 1g�), we need a circuit family hCni1nD1, where Cn

computes f on inputs of length n.

Definition 8.0.3 (Size of a circuit). For a circuit C , we define its size as

size(C ) = # edges (wires) in C D ‚(# gates in C ).

Since we have indegree� 2, the number of wires is within a factor of 2 of the number of gates.

Definition 8.0.4 (Depth of a circuit). For a circuit C , we define its depth as

depth(C )D maximum length of an input-output path.

We will see later that size and depth can be traded off. We will look at lower bounds on size, depth and size-depth

tradeoffs.

Theorem 8.0.5. If L 2 P, then L has a polynomial sized circuit family i.e.

9hCni1nD1such that 8n8x 2 f0; 1gn Cn.x/ D 1, x 2 L;

and size(Cn) = poly(n).

Proof. Proof idea Build a circuit to simulate the Turing Machine for L. In fact, we get a circuit of size

O..runtime of TM/2/. (See Sipser [Sip06], Chapter 9, pages 355–356).

With this we have a plan to show P ¤ NP:

1. Pick your favorite NP-complete problem L.

2. By the above theorem, L has polynomial-size circuits if P D NP:

3. Prove a super-polynomial circuit size lower bound for L.

However, around 25 years of effort in this line of work has not produced even a super-linear lower bound for an

NP-complete problem. The best known lower bound for a problem in NP is � 5n� o.n/.

What we can prove however is that polynomial circuits of some restricted types cannot solve “certain” problems

“efficiently”.

Theorem 8.0.6 (Shannon’s Theorem). Almost all functions f W f0; 1gn ! f0; 1g require circuit size � �
�

2n

n

�

. (The

bound can be improved to 2n

n

�

1C�
�

1p
n

��

).

Proof. We can assume that the circuit does not use NOT gates. We can get the effect of a NOT gate somewhere in the

circuit by using DeMorgan’s Laws and having all inputs as well as their negations.

We can lay down any circuit in a topological sort, so that any edge is from a vertex u to a vertex v that is after u in

the sorted order. With this in mind, we can count the number of circuits (DAGs) of size s. For each gate we have two

choices for the type of the gate and � s2 choices for inputs that feed the gate. So the total number of such circuits is

� .2s2/s � s3s .

Each circuit computes a unique Boolean function, so that the number of functions that have a circuit of size � 2n

10n

is

�
�

2n

10n

�3� 2n

10n

D 23�2n=10

.10n/3�2n=10n
D 2

3�2n

10
� 3�2n

10n
log 10n D 22n. 3

10
� 3 log 10n

10n
/ < 22n� 3

10

But the total number of functions f W f0; 1gn! f0; 1g is 22n
, so that limn!1 2

2n � 3
10

22n D 0.
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Observe that every function f W f0; 1gn ! f0; 1g has a circuit of size O.n � 2n/. We can get this by writing f as

an OR of minterms (DNF). We will need at most 2n minterms.

It is possible to improve the above bound to O
�

2n

n

�

.

We will now prove our first concrete lower bound. This bound is for the function THRk
n W f0; 1gn ! f0; 1g defined

as

THR
k
n.x/ D

�

1; if the number of 1s in x is � k

0; otherwise
:

Theorem 8.0.7. Any circuit for THR2
n must have � 2n � 3 gates.

Proof. Note that we have the trivial lower bound of � n � 1. The lower bound in the theorem is proved by the

technique of “gate elimination”.

We will prove the theorem by induction on n. For the base case (n D 2), we have THR
2
2 D AND2 for which we

need a circuit of size 1 D 2n � 3.

Now, let C be a minimal circuit for THR2
n. Then C does not have any gate that reads inputs .xi ; xi / or (xi ;:xi ) or

(:xi ;:xi ) for i 2 Œn�.

Pick a gate in C such that its inputs are zi D xi (or :xi ) and zj D xj (or :xj ), for some i ¤ j . Then we can

claim that either zi or zj must have fan-out at least 2. To see this, note that by suitably setting zi and zj , we can get

three different subfunctions on the remaining n � 2 variables: THR2
n�2, THR1

n�2 and THR0
n�2. But if both zi and zj

have fan-out only 1, the settings of zi and zj can create only two different subcircuits, which gives us a contradiction.

Suppose xi (or :xi ) has fan-out � 2. Then, setting xi D 0 eliminates at least two gates. So we have a circuit for

THR2
n�1 (the resulting subfunction) with size � (original size) �2.

Now by our induction hypothesis, (new size) � 2.n � 1/ � 3 D 2n � 5. This implies that the original size was

� 2C (new size) � 2n � 3.

8.1 Unbounded Fan-in Circuits

We study the class of functions that are computable by unbounded fan-in circuits. Here the DAG representing a circuit

is allowed to have unbounded indegree for vertices representing AND, OR and NOT gates.

Definition 8.1.1. AC
0

is the class of O.1/-depth, polynomial size circuits with unbounded fan-in for AND, OR and

NOT gates.

8.2 Lower Bound via Random Restrictions

There are some assumptions we can make about AC
0

circuits:

1. We do not have any NOT gates. As before, if a NOT gate is indeed required somewhere in a circuit, we can

get an equivalent circuit using DeMorgan’s Laws that does not have any NOT gates, but uses the negations of

variables as input gates.

2. The vertices (gates) of the circuit are partitioned into d C 1 layers 0; 1; : : : ; d such that: any edge (wire) .u; v/

is from vertex u in layer i to vertex v in layer i C 1 for some i , inputs xi ;:xi ; i 2 Œn� are at layer 0, the output

is at layer d , each layer consists of either all AND gates or all OR gates and layers alternate between AND gates

and OR gates. d is the depth of the circuit.

We can convert the DAG for the circuit into this form after a topological sort. First group the AND gates and OR

gates together into layers. If there is an edge from a vertex u in layer i to a vertex v in layer j > i C 1, then we can
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replace the edge with a path from u to v having a vertex in each intermediate layer. Each new vertex represents an

appropriate gate for the layer it is in. For each edge in the original circuit the number of gates (wires) we add is at

most the (constant) depth of the original circuit.

Note that constant-depth polynomial-sized circuits remain so even after the above transformations, so we can

assume that AC
0

circuits have these properties.

Now we are ready to prove our first lower bound on AC
0
.

Theorem 8.2.1 (Håstad [Hås86]). PARn … AC
0
.

Proof. We will prove this by induction on the depth of the circuit. Suppose there exists a depth d , size nc circuit for

PARn. We will show that there exists a restriction (partial assignment) such that after applying it

� the resulting subfunction which is either PAR or :PAR depends on n1=4 variables.

� there exists a depth d � 1, size O.nc/ circuit for the resulting subfunction.

But by our induction hypothesis this will not be possible.

For the base case, we will show that a circuit of depth 2 computing PAR or :PAR must have > 2n�1 gates. This

will complete the proof.

For the base, case let’s assume without loss of generality that level 1 is composed of OR gates and level 2 of an

AND gate producing the output. We claim that each OR gate must depend on every input xi . For suppose this is not

the case. Some OR gate is independent of (say) x1. Then set x2; x3; : : : ; xn so as to make that OR gate output 0. Then

the circuit outputs 0, but the remaining subfunction is not constant. This gives a contradiction. Now, for each OR gate

there is a unique input that makes it output 0. For each 0-input to PAR there must be an OR-gate that outputs 0. So the

number of OR gates is at least the number of 0-inputs to PAR which is 2n�1

To prove the induction step, consider the following random restriction on the PAR function. For each i 2 Œn�,

independently set

xi  �

8

<̂

:̂

0; with probability 1
2
� 1

2
p

n

1; with probability 1
2
� 1

2
p

n

�; with probability 1p
n

:

Here � means that the variable is not assigned a value and is free. Repeat this random experiment with the resulting

subfunction. After one restriction we get that

EŒ# of free variables� D 1p
n
� n D pn:

Then by applying a Chernoff bound we see that with probability � 1 � 2�O.n/, we have �
p

n

2
free variables. After

two restrictions, with probability� 1� exp .�n/, we have � n1=4

4
free variables. Let BAD0 denote the event that this

is not the case.

We make two claims:

Claim 1: After the first random restriction, with probability � 1 � O
�

1
n

�

, every layer-1 OR gate depends on � 4c

variables.

Claim 2: If every layer-1 OR gate depends on � b variables, then after another random restriction, with probability

� 1 �O
�

1
n

�

, every layer-2 AND gate depends on � `b variables (where `b is a constant depending on b alone).

Now, we make the observation that for a function g W f0; 1gn ! f0; 1g that depends only on ` of its inputs, we

have a depth-2 AND-of-OR’s circuit and a depth-2 OR-of-AND’s circuit computing g both of size � ` � 2`.

Let BAD1 and BAD2 respectively denote the events that Claim 1 and Claim 2 do not hold. Then with probability

� 1 � O
�

1
n

�

none of the bad events BAD0, BAD1 and BAD2 occur. So there exists a restriction of the variables

such that none of the bad events occur. That restriction leaves us with a circuit on � n1=4

4
variables and by the above

switching argument, we can make layer-2 use only OR gates and layer-1 use only AND gates. Then we can combine

layers 2 and 3 to reduce depth by 1, completing the induction step.
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Proof of Claim 1. Consider a layer-1 OR gate G. We have two cases:

Fat case: Fan-in of G is � 4c log n.

Then with high probability G is set to be constant 1. To be precise,

PrŒG is not set to 1� �
�

1

2
C 1

2
p

n

�4c log n

�
�

2

3

�4c log n

D n4c log 2
3 D n�c log 81

16 < n�2c :

Thin case: Fan-in of G is � 4c log n.

PrŒG depends on � 4c variables� �
 

4c log n

4c

!�
1p
n

�4c

� .4c log n/4cn�2c � n�1:5c :

Applying the Union bound,

PrŒ9G that depends on � 4c variables� � nc � n�1:5c � O

�
1

n

�

:

Proof of Claim 2. The proof is by induction on b. For the base case b D 1, every layer-2 gate is “really” a layer-1

gate. So this case reduces to Claim 1 and we can set `1 D 4c.

For the induction step, consider a layer-2 AND gate G. Let M be a maximal set of non-interacting OR-gates that

are in G, where by interacting we mean that two gates share an input variable. Let V be the set of inputs read by gates

in M . We again have two cases:

Fat case: jV j > a log n.

In this case, jM j � jV j
b

>
a log n

b
, so that

PrŒa particular OR-gate in M is set to 0� �
�

1

2
� 1

2
p

n

�b

�
�

1

3

�b

:

Then

PrŒno OR-gate in M is set to 0� �
�

1 � 1

3b

�jM j
�
�

1 � 1

3b

� a log n

b

� e
�a log n

b�3b � n�a=.b�3b/ � O

�
1

n

�

; for a D b�3b:

Thin case: jV j � a log n.

In this case we have

PrŒafter restriction V has � i free variables� �
 

jV j
i

!�
1p
n

�i

�
 

a log n

i

!

� n�i=2

� .a log n/i � n�i=2 � n�i=3 :

Choose i D 4c. Then with probability� 1 � n�4c=3, there are � 4c free variables remaining in V .

This implies that for every one of the 24c settings of these free variables, the resulting circuit computes an AND-

of-ORs with bottom fan-in � b � 1. This is because all OR gates that are not in M interact with V .

This further implies that every one of these 24c subfunctions will (after restriction) depend on � `b�1 variables.

So the whole function under G depends on � 4cC 24c � `b�1 variables. Set `b D 4cC 24c � `b�1, to complete the

induction step.

If we do our calculations carefully through the steps of the induction above, we could prove a lower bound of

2n�.1=d/
. On the other hand, we can also construct a depth-d circuit of size O.n � 2n1=.d�1/

/.
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8.3 Lower Bound via Polynomial Approximations

We will now look at the Razborov-Smolensky Theorem which gives an alternate proof of PARn … AC
0

but also tells us

more. This proof also takes a more holistic view of the circuit, rather than looking at just the gates at the lower layers.

Theorem 8.3.1 (Razborov-Smolensky [Raz87, Smo87]). PARn … AC
0

(but we will show more).

Proof. Since p ^ q D :.:p _:q/, we can assume that our circuit consists of OR and NOT gates alone. We will not

count NOT gates towards depth.

We will associate with each gate G of the depth-d circuit, a polyomial pG.x1; x2; : : : ; xn/ 2 F3Œx1; x2; : : : ; xn�

(F3 is the field of elements f0; 1; 2g under addition and multiplication modulo 3). pG will approximate the Boolean

function calculated by G in the following sense: for all Ea 2 f0; 1gn; pG.Ea/ 2 f0; 1g and PrEa2f0;1gn ŒpG.Ea/ ¤ G.Ea/� �
small.`/ � 1

2` , where ` is a parameter to be fixed later.

Eventually, we will get a polynomial that approximates parity and has “low” degree, which we will see is a

contradiction.

We define a polynomial that approximates an OR gate in the following manner. We want to know if the input

Ex to the OR gate is E0. Take a random vector Er 2R f0; 1gn and compute Er � Ex mod 3 D P

i2Œn� rixi mod 3 D
P

i2Œn�;riD1 xi mod 3. If Ex D 0, then Er � Ex mod 3 D 0 always. If Ex ¤ E0, then PrEr ŒEr � Ex mod 3 D 0� � 1
2

.

Pick S � Œn�, uniformly at random (this is equivalent to picking Er 2R f0; 1gn as above). Consider the polynomial
P

i2S xi 2 F3Œx1; x2; : : : ; xn�. If Ex D E0, this polynomial is always 0. Otherwise, this polynomial is not 0 with

probability 1
2

, that is, the square of the polynomial is 1 with probability� 1
2

.

If we pick S1; S2; : : : ; S` � Œn� uniformly and independently and construct the polynomial

1 �

0

B
@1 �

0

@
X

i2S1

xi

1

A

2
1

C
A

0

B
@1 �

0

@
X

i2S2

xi

1

A

2
1

C
A : : :

0

B
@1 �

0

@
X

i2S`

xi

1

A

2
1

C
A ;

then this is a polynomial of degree 2` and for a particular input, this choice is bad with probability � 1

2` . Now, by

Yao’s Minimax Lemma, we have that there exists a polynomial of degree 2` that agrees with ORn except at � 1=2`

fraction of the inputs.

Now we topologically sort the circuit C to get the order: x1 D g1; x2 D g2; : : : ; xn D gn; gnC1; gnC2; : : : ; gs ,

where s D size.C /. For i D 1 to s, we write a polynomial pgi
corresponding to gate gi that approximates the Boolean

function computed at gi :

� For i � n; pgi
D xi .

� If gi is a NOT gate with input gj , then pgi
D 1 � pgj

.

� If gi is an OR gate with inputs h1; h2; : : : ; hk , then

pgi
D 1 �

Ỳ

j D1

0

B
@1 �

0

@
X

m2Sj

phm

1

A

2
1

C
A ;

where S1; : : : ; S` are as obtained above (using Yao’s Lemma).

Let f D pgs
be the polynomial corresponding to the output gate. Then,

Pr
Ea2f0;1gn

Œf .Ea/ ¤ PAR.Ea/� � .number of OR gates/ � 1

2`
� s

2`
:

Also, deg.pgi
/ � .2`/depth.gi /. So, deg.f / � .2`/d .
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Set ` such that .2`/d D pn, that is ` D 1
2
� n 1

2d . Then we know that f .Ea/ D PAR.Ea/ for � 2n
�

1 � s

2`

�

vectors

Ea 2 f0; 1gn and deg.f / � pn.

Now we make the great notational change:

0 �! FALSE �! C1

1 �! TRUE �! �1 :

Then we have that there exists A � f�1; 1gn and a polynomial Of 2 F3Œx1; : : : ; xn� such that:

1. def. Of / = def.f / � pn, and

2. 8Ea 2 A W Of .Ea/ D ˙1PAR.Ea/ DQn
iD1 ai .

Consider FA
3 D fall functions W A! F3g, so that jFA

3 j D jF3jjAj D 3jAj. Pick a function � W A! F3. Then � has

a multilinear polynomial representation g.x1; : : : ; xn/ that agrees with � on f�1; 1gn (hence on A). The polynomial

g.x1; : : : ; xn/ is of the form
P

.monomials/ � .coefficients/, where each monomial is of the form
Q

i2I xi for some

I � Œn�.

Note that, in F3,
Y

i2I

xi D
Y

i2Œn�

xi �
Y

i2Œn�nI

xi D Of .x1; : : : ; xn/ �
Y

i2Œn�nI

xi

for Ex 2 A (required for the last equality). The LHS above has degree jI j, while the RHS has degree
p

nC n � jI j.
Applying this to every monomial of degree > n

2
C pn, we get a polynomial Og such that g.x1; : : : ; xn/ D

Og.x1; : : : ; xn/ for Ex 2 A with deg. Og/ � n
2
Cpn.

Now, the number of multinomial polynomials in F3Œx1; : : : ; xn� of degree� n
2
Cpn is

3.#monomials of degree�n=2Cp
n/ D 3

Pn=2C
p

n

iD0 .n
i / � 30:98�2n

;

where the final inequality follows from concentration results. We have that for a random variable X having Binomial

distribution with parameters n and p D 1
2

, the interval
�

n
2
�pn; n

2
Cpn

�

is a 95% confidence interval. That is

Pr
�

n
2
�pn � X � n

2
Cpn

�

D 0:95. Then, because of the symmetric distribution around the mean n
2

, we have that
�

0; n
2
Cpn

�

is an interval of confidence 97.5%. This gives us that
P n

2
Cp

n

iD0

�
n
i

�

� 0:98 � 2n.

Now, comparing the two expressions for the number of functions, jAj � 0:98 � 2n. But jAj � 2n
�

1 � s

2`

�

, so

that 1 � s
2` � 0:98. This implies that s � 0:02 � 2` D 0:02 � 2

1
2

�n 1
2d D 2n�.1=d/

.

In a circuit we can also have MOD3 gates. A MOD3 gate taking inputs x1; : : : ; xn produces output y D 1 if
P

i xi mod 3 ¤ 0 and y D 0 otherwise. If we denote the class of such circuits as AC
0Œ3� then the above proof also

shows that PARn … AC
0
Œ3�.

In general, if we have MODm gates taking inputs x1; : : : ; xn and producing output y D 1 if
P

i xi mod m ¤ 0

and y D 0 otherwise then we have the following definition.

Definition 8.3.2. AC
0
Œm� is the class of O.1/-depth, polynomial size circuits with unbounded fan-in using AND, OR

and NOT and MODm gates.

Note that PARn 2 AC
0Œ2�.

The “same” proof as above also shows that MODq … AC
0Œp�, for primes p ¤ q. This proof is due to Smolen-

sky [Smo87].

We do not have any idea of the computational power of AC
0
Œ6�. For instance we do not know whether or not

AC
0Œ6� D NEXP.

We also define the class ACC
0

as
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Definition 8.3.3. ACC
0 is the class of O.1/-depth, polynomial size circuits with unbounded fan-in using AND, OR

and NOT and MODm1
; MODm2

; : : : ; MODmk
gates, for some constants m1; m2; : : : ; mk .

We can think of ACC
0

as the class of AC
0

circuits but with “counters”.
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9.1 The Clique Function

Let CLQk
n W f0; 1g.n

2/ ! f0; 1g denote the k-clique function. The input is interpreted as an n-vertex graph, and the

output is 1 iff this graph contains a k-clique, where k is an integer in Œ1; n�.

Theorem 9.1.1 (Razborov). Set k D dn1=4e. Then every monotone circuit for CLQ
k
n has size at least n

1
12

n1=8

.

The proof of this theorem is ingenious and is based on several constructions that may at first appear to be rabbits

pulled out of a hat but in hindsight are natural, indeed “inevitable” given the high-level plan of the proof. Let C be a

monotone circuit for CLQk
n, whose output gate is o. The proof plan is as follows.

1. We shall associate, with each gate w of C , a certain set system Fw , which will in turn implicitly define a certain

Boolean function ˆŒFw �. In this way, we will end up associating a Boolean function ˆŒFo� with C .

2. We shall construct a set of positive examples, which are inputs x such that CLQk
n.x/ D 1, and a set of negative

examples, which are inputs x such that CLQ
k
n.x/ D 0.

3. The function ˆŒFw � will approximate the function computed at w in the sense that the two functions will agree

on a “large” fraction of examples. This fraction will degrade as we move “up” the circuit in topological order.

As a result, if jC j is “small,” then ˆŒFo� will approximate C rather well.

4. Our construction shall ensure that each Fw is simple in the sense that both jFw j and the size of each set in Fw

are upper bounded.

5. Separately, we shall show that the function defined by a simple set system must approximate CLQk
n rather poorly:

it can agree with CLQk
n on at most a “small” fraction of examples.

The tension between (S3) and (S5) then gives us a lower bound on jC j.

9.2 Set Systems and the Boolean Functions They Define

A set system over a ground set X is a subset of 2X . Our proof will involve set systems over the ground set Œn�, which

we identify with the vertex set of our input graph. Each subset of Œn� is a potential clique, and a set system naturally

defines a Boolean function that tests a number of such potential cliques for presence of an acutal clique in the input
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graph. To make this precise, label the input variables xij , with 1 � i < j � n. A set system F � 2Œn� defines a

function ˆŒF � on these variables as follows:

ˆŒF � WD
_

W 2F

^

i<j 2W

xij : (9.1)

Thus, ˆŒF � expresses the condition “at least one of the sets W 2 F is a clique in the input graph.” Two corner cases

are worth explicating. If F D ¿, then the outer OR in (9.1) is empty and ˆŒF � is always 0. If F contains a singleton

set, then the term in (9.1) corresponding to this set is empty and becomes a constant 1, as does ˆŒF �.

Definition 9.2.1. The set system F is said to be .M; `/-simple if jF j �M and jW j � ` for all W 2 F .

To carry out step (S1) of our proof plan, we need to define certain operations on set systems. The most important

of these operations involves the combinatorial notion of a sunflower.

Define a sunflower with p petals to be a collection of p distinct sets Z1; : : : ; Zp that have a common intersection

(possibly empty), but are otherwise pairwise disjoint. Formally, for all 1 � i < j � p, we have Zi \Zj D
Tp

rD1 Zr .

The common intersection is called the core of the sunflower. If a set system F contains a sunflower S with core Z,

then plucking S is defined as the operation of replacing the sets in S with the single set Z. Thus, after such a plucking,

we are left with the set system .F n S/ [ fZg.
Lemma 9.2.2 (Sunflower). Let p; ` � 1 be integers and let F be a set system consisting of sets of size ` such that

jF j > .p � 1/``Š. Then F contains a sunflower with p petals.

Proof. Induction on `. The base case is trivial. For the induction step, consider a maximal pairwise disjoint subsytem

F 0 � F . If jF 0j � p, we are done; otherwise, one of the elements in W WD S

A2F 0 A lies in at least jF j=jW j >

.p � 1/`�1.` � 1/Š of the sets in F . Delete this element from these sets and apply the induction hypothesis.

We now set our parameters as follows (ignoring ceilings and floors for convenience), for the entirety of the proof.

k WD n1=4 ;

` WD
p

k ;

p WD ` log n ;

M WD .p � 1/``Š :

Suppose F and G are two set systems. Impose an ordering on the ground set of F , and use this to canonically order

the sets in F and collections of such sets. Then define

meld.F ;G/ WD fV [W W V 2 F ; W 2 Gg ;
drop.F/ WD fW 2 F W jW j � `g ;

pluck.F/ WD the set system obtained from F by plucking its first sunflower with p petals,

trim.F/ WD
(

F ; if jF j �M ,

trim.pluck.F//; otherwise.

Notice that, by our choice of M and Lemma 9.2.2, the trim operation is well-defined: it only invokes the pluck

operation on set systems that allow it. Finally, for each gate w of C , we define its associated set system Fw , according

to the following rules.

1. If w is an input gate, xij , then Fw D ffi; j gg.

2. If w is an OR gate with inputs u and v, then Fw D trim.Fu [Fv/.

3. If w is an AND gate with inputs u and v, then Fw D trim.drop.meld.Fu;Fv///.

The definitions make it clear that each Fw is .M; `/-simple.

42



D
R

A
FT

LECTURE 9. MONOTONE CIRCUIT SIZE
CS 239, Fall 2011, Dartmouth College

Lower Bounds in Computer Science

9.3 Positive and Negative Examples

We now address step (S2) of our proof plan. Our examples will in fact be not graphs themselves, but rather certain

combinatorial structures that implicitly define input graphs.

A positive example is defined to be a subset W � Œn� with jW j D k. It implicitly represents the input x, where

xij D 1 iff i 2 W and j 2 W . Clearly, such an input satisfies CLQk
n.x/ D 1. The total number of positive examples

is
�

n
k

�

.

A negative example is defined to be a function � W Œn� ! Œk � 1�, to be thought of as a .k � 1/-coloring of the

vertices Œn�. It implicitly represents the input x, where xij D 1 iff �.i/ ¤ �.j /. Notice that the coloring � is a valid

coloring of the graph represented by this input x, whence it certifies that CLQk
n.x/ D 0. Note also that several distinct

colorings � could represent the same input x; we do consider these to be distinct negative examples. The total number

of negative examples is .k � 1/n.

For a coloring � W Œn�! Œk � 1� and a subset W � Œn�, we say that � repeats in W if there exist i ¤ j 2 W such

that �.i/ D �.j /. Notice that the graph represented by � has a clique on the vertices in W iff � does not repeat in W .

Let f W f0; 1g.n
2/ ! f0; 1g be a function. A false positive for f is defined to be a negative example that represents

an input x such that f .x/ D 1. A false negative for f is a positive example representing an input x such that f .x/ D 0.

The next lemma addresses step (S5) of our proof plan.

Lemma 9.3.1. Suppose F � 2Œn� is .M; `/-simple. Then ˆŒF � has either
�

n
k

�

false negatives, or at least 1
2
.k � 1/n

false positives.

Proof. If F D ¿, then ˆŒF � � 0, for which every positive example is a false negative.

Otherwise, suppose W 2 F . Consider a coloring � W Œn� ! Œk � 1� chosen uniformly at random. If � does not

define a false positive for ˆŒF �, then � repeats in W . By a union bound, the probability of this latter event is at most

X

i<j 2W

PrŒ�.i/ D �.j /� �
 

`

2

!

1

k � 1
� 1

2
:

9.4 The Introduction of False Positives and False Negatives

For this entire section, fix a non-input gate w of our circuit C , and let u and v be the gates that feed in to w.

A false positive, x, for ˆŒFw � is said to be introduced at w if either (1) w is an OR gate, and x is not a false

positive for ˆŒFu� _ˆŒFv�, or else (2) w is an AND gate, and x is not a false positive for ˆŒFu� ^ˆŒFv�. Similarly,

we talk about false negatives introduced at w, and about false positives and false negatives introduced by a meld, drop,

pluck, or trim operation. We shall need to upper bound the “damage” done by each of these operations.

We begin by observing some basic properties of the operations on set systems that we have defined.

Lemma 9.4.1. For all F ;G � 2Œn�, the following relations hold.

1. ˆŒdrop.F/� � ˆŒF �.

2. ˆŒpluck.F/� � ˆŒF �, whenever pluck.F/ is defined.

3. ˆŒtrim.F/� � ˆŒF �.

4. ˆŒF [ G� D ˆŒF � _ˆŒG�.

5. ˆŒmeld.F ;G/� � ˆŒF � ^ˆŒG�.

6. ˆŒmeld.F ;G/�.x/ D ˆŒF �.x/ ^ˆŒG�.x/, for every positive example x.
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Proof. Parts 1 through 5 are immediate from our definitions. For Part 6, we note that the inequality

^

i<j 2V

xij ^
^

i<j 2W

xij �
^

i<j 2V [W

xij ;

which holds for all inputs x 2 f0; 1g.n
2/, is in fact an equality if x represents a clique plus isolated vertices, as is the

case in our positive examples.

Lemma 9.4.2. A pluck operation introduces no false negatives and at most 2�p.k � 1/n false positives.

Proof. The statement about false negatives is immediate from Lemma 9.4.1, Part 2.

To estimate the number of false positives, let F � 2Œn�, let S D fW1; : : : ; Wpg be its first sunflower with p petals,

and let Z DTp
rD1 Wr be the core of S. Choose a coloring � W Œn�! Œk� 1� uniformly at random. Let G be the graph

implicitly defined by this coloring, and let E be the event that � is a false positive introduced by plucking S. Then

E ” each of W1; : : : ; Wp is not a clique in G, but Z is

” R.W1/ ^ � � � ^R.Wp/ ^ :R.Z/ ;

where R.W / denotes the event that � repeats in W . Therefore,

PrŒE � � PrŒR.W1/ ^ � � � ^R.Wp/ j :R.Z/� D
p
Y

rD1

PrŒR.Wr / j :R.Z/� �
p
Y

rD1

PrŒR.Wr /� � 2�p ;

where the equality holds because, by the definition of a sunflower, the events fR.Wr/gprD1 are independent conditioned

on :R.Z/, and the final inequality holds by the same reasoning as in Lemma 9.3.1.

We can now upper bound the damage done at each gate of C .

Lemma 9.4.3. The number of false positives introduced at w is at most M 22p.k � 1/n.

Proof. First, suppose w is an OR gate, so that Fw D trim.Fu [ Fv/. By Lemma 9.4.1, Part 4, the union operation

introduces no false positives. Since Fu [ Fv is .2M; `/-simple, the number of pluckings performed by the trim

operation is at most M=.p � 1/ �M 2. The bound now follows from Lemma 9.4.2.

Next, suppose w is an AND gate, so that Fw D trim.drop.meld.Fu;Fv///. By Part 5 of Lemma 9.4.1, the meld

operation introduces no false positives, and by Part 1, neither does the drop operation. Since drop.meld.Fu;Fv// is

.M 2; `/-simple, the number of pluckings performed by the trim operation is at most .M 2 � M /=.p � 1/ � M 2.

Again, the bound follows from Lemma 9.4.2.

Lemma 9.4.4. The number of false negatives introduced at w is at most M 2
�

n�`�1
k�`�1

�

.

Proof. By Parts 4 and 3 of Lemma 9.4.1, we see that if w is an OR gate then no false negatives are introduced at w.

Next, suppose w is an AND gate, so that Fw D trim.drop.meld.Fu;Fv///. By Parts 6 and 3 of Lemma 9.4.1, the

meld and trim operations introduce no false negatives. The drop operation deletes at most M 2 sets from meld.Fu;Fv/

and could introduce false negatives in the following way. When a set Z � Œn� is deleted, a positive example W could

be introduced as a false negative only if W � Z. To complete the proof, we note that Z is deleted only if jZj � `C1,

and in that case, we have

jfW � Œn� W jW j D k; W � Zgj D
 

n � jZj
k � jZj

!

�
 

n � ` � 1

k � ` � 1

!

:
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9.5 The Final Lower Bound

All the pieces are now in place for the proof of our final lower bound.

Proof of Theorem 9.1.1. Following the proof plan, let C be a monotone circuit for CLQk
n, whose output gate is o. Let

set systems Fw , and associated Boolean functions ˆŒFw � be defined for each gate w of C . If w is an input gate, then

ˆŒFw � has no false positives and no false negatives. Applying Lemmas 9.4.3 and 9.4.4 to each gate of C , we see that

ˆŒFo� has at most jC jM 22�p.k � 1/n false positives and at most jC jM 2

 

n � ` � 1

k � ` � 1

!

false negatives.

On the other hand, Fo is .M; `/-simple and so Lemma 9.3.1 says that

ˆŒFo� has either at least
1

2
.k � 1/n false positives or at least

 

n

k

!

false negatives.

Therefore, either we have that jC jM 22�p.k � 1/n � 1
2
.k � 1/n, whence jC j � 2p�1=M 2 > 1

2
n

1
3

n1=8
, or we have

that jC jM 2
�

n�`�1
k�`�1

� � �n
k

�

, whence

jC j �
�

n
k

�

M 2
�

n�`�1
k�`�1

� D 1

M 2
� n

k
� n � 1

k � 1
� � � n � `

k � `
� .n � ` � 1/Š � 1

M 2

�
n � `

k

�`

� n
1

12
n1=8

:
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