Lecture 1

Comparison Trees: Sorting and Selection

Scribe: William Chen

1.1 Sorting

Definition 1.1.1 (The Sorting Problem). Given n items (x_1, x_2, \ldots, x_n) from an ordered universe, output a permutation $\sigma : [n] \to [n]$ such that $x_{\sigma(1)} < x_{\sigma(2)} \cdots < x_{\sigma(n)}$.

At present we do not know how to prove superlinear lower bounds for the Turing machine model for any problem in NP, so we instead restrict ourselves to a more limited model of computation, the comparison tree. We begin by considering deterministic sorting algorithms.

Deterministic Sorting Algorithms

Whereas the Turing machine is allowed to move heads, read and write symbols at every time step, in a comparison tree T we are only allowed to make comparisons and read the result. Without loss of generality we'll assume that the x_is are distinct, so every comparison results in either a "<" or ">". At each internal node of T we make a comparison, the result of which gives tells us the next comparison to make by directing us to either the left or the right child. At each leaf node we must have enough information to be able to output the sorted list of items. The cost of a sorting algorithm in this model is then just the height of such a comparison tree T, i.e., the maximum depth of a leaf of T.

Now note that T is in fact a binary tree, so we have

$$\ell \leq 2^h, \quad h \geq \lfloor \lg \ell \rfloor,$$

where ℓ is the number of leaves, and h is the height of T. But now we note that since there are $n!$ possible permutations, any correct tree must have at least $n!$ leaves, so then, by Stirling's formula, we have

$$h \geq \lfloor \lg n! \rfloor = \Omega(n \log n).$$

Open Problem. Prove that some language $L \in$ NP cannot be decided in $O(n)$ time on a Turing machine.

Randomized Sorting Algorithms

Now we turn our attention to randomized comparison-based sorting algorithms and prove that in this case access to a constant time random number generator does not give us any additional power. That is to say, it does not change our
lower bound. An example of such an algorithm is the variant of quicksort where, at each recursive call, the pivot is chosen uniformly at random. Note that the “randomness” in any randomized algorithm can be captured as an infinite binary “random string”, chosen at the beginning, such that at every call of the random number generator, we simply read off the next bit (or the next few bits) on the random string. Then, we can say that a randomized algorithm is just a probability distribution over deterministic algorithms (each obtained by fixing the random string). In other words, when calling the randomized algorithm, one can move all the randomness to the beginning, and simply pick at random a deterministic algorithm to call.

With this view of randomized algorithms in mind, we describe an extremely useful lemma due to Andrew Chi-Chih Yao (1979). But first, some preliminaries.

Suppose we have some notion of “cost” of an algorithm (for some function/problem \(f \)) on an input, i.e., a (non-negative) function cost : \(\mathcal{A} \times \mathcal{X} \rightarrow \mathbb{R}_+ \), where \(\mathcal{A} \) is a space of (deterministic) algorithms and \(\mathcal{X} \) is a space of inputs. An example of a useful cost measure is “running time.” In what follows, we will consider random algorithms \(A \sim \lambda \), where \(\lambda \) is a probability distribution on \(\mathcal{A} \). Note that, per our above remarks, a randomized algorithm is specified by such a distribution \(\lambda \). We will also consider a random input \(X \sim \mu \), for some distribution \(\mu \) on \(\mathcal{X} \).

Definition 1.1.2 (Distributional, worst-case and randomized complexity). In the above setting, the term \(\mathbb{E}_\mu [\text{cost}(a, X)] \) is then just the expected cost of a particular algorithm \(a \in \mathcal{A} \) on a random input \(X \sim \mu \). The quantity

\[
D_\mu(f) = \min_a \mathbb{E}_\mu [\text{cost}(a, X)],
\]

where \(f \) is the function we want to compute, is called the distributional complexity of \(f \) according to input distribution \(\mu \). We constrast this to the worst case complexity of \(f \), which we can write as follows

\[
C(f) = \min_a \max_x \text{cost}(a, x).
\]

Finally, we define \(R(f) \), the randomized complexity of \(f \) as follows:

\[
R(f) = \min_\lambda \max_x \mathbb{E}_\lambda [\text{cost}(A, x)].
\]

From the definitions above it follows easily that

\[
\forall \mu \ D_\mu(f) \leq C(f) \quad \text{and} \quad R(f) \leq C(f).
\]

To obtain the latter inequality, consider the trivial distributions \(\lambda \) that are each supported on a single algorithm \(a \in \mathcal{A} \).

Theorem 1.1.3 (Yao’s Minimax Lemma). We have

1. (The Easy Half) For all input distributions \(\mu \), \(D_\mu(f) \leq R(f) \).
2. (The Difficult Half) \(\max_\mu \{ D_\mu(f) \} = R(f) \).

The proof of part (2) is somewhat non-trivial and requires the use of the linear programming duality theorem. Moreover, we do not need part (2) at this point, so we shall only prove part (1). We note in passing that part (2) can be written as

\[
\max_\mu \min_a \mathbb{E}_\mu [\text{cost}(a, X)] = \min_\lambda \mathbb{E}_\lambda [\text{cost}(A, x)].
\]

Proof of Part (1). To visualize this proof, it helps to consider the following table, where \(\mathcal{X} = \{x_1, x_2, x_3, \ldots \} \), \(\mathcal{A} = \{a_1, a_2, a_3, \ldots \} \) and \(c_{ij} = \text{cost}(a_i, x_j) \):

<table>
<thead>
<tr>
<th>(\chi_1)</th>
<th>(\chi_2)</th>
<th>(\chi_3)</th>
<th>(\chi_4)</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>(c_{11})</td>
<td>(c_{12})</td>
<td>(c_{13})</td>
<td>\ldots</td>
</tr>
<tr>
<td>(a_2)</td>
<td>(c_{21})</td>
<td>(c_{22})</td>
<td>(c_{23})</td>
<td>\ldots</td>
</tr>
<tr>
<td>(a_3)</td>
<td>(c_{31})</td>
<td>(c_{32})</td>
<td>(c_{33})</td>
<td>\ldots</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>
While reading the argument below, think of row averages and column averages in the above table. Define $R_\lambda(f) = \max_x \mathbb{E}_\lambda[\text{cost}(A, x)]$. Then, for all x, we have

$$\mathbb{E}_\lambda[\text{cost}(A, x)] \leq R_\lambda(f),$$

whence

$$\mathbb{E}_\mu[\mathbb{E}_\lambda[\text{cost}(A, X)]] \leq R_\lambda(f).$$

Since expectation is essentially just summation, we can switch the order of summation to get

$$\mathbb{E}_\lambda[\mathbb{E}_\mu[\text{cost}(A, X)]] \leq R_\lambda(f).$$

which implies that there must be an algorithm a such that $\mathbb{E}_\mu[\text{cost}(a, X)] \leq R_\lambda(f)$. Since the distributional complexity $D_\mu(f)$ takes the minimum such a, it’s clear that

$$D_\mu(f) \leq R_\lambda(f).$$

Since this holds for any λ, we have $D_\mu(f) \leq \min_\lambda R_\lambda(f) = R(f)$. □

Before we returning to the issue of a lower bound for randomized sorting, we introduce another lemma.

Lemma 1.1.4 (Markov’s Inequality). If X is a random variable taking only nonnegative values, then for all $t > 0$, we have $\Pr[X \geq t] \leq \mathbb{E}[X]/t$.

Proof. An easy one-liner:

$$\mathbb{E}[X] = \mathbb{E}[X | X < t] \cdot \Pr[X < t] + \mathbb{E}[X | X \geq t] \cdot \Pr[X \geq t] \geq 0 + t \cdot \Pr[X \geq t].$$ □

Corollary 1.1.5. Under the above conditions, for any constant $c > 0$, $\Pr[X > c\mathbb{E}[X]] \leq 1/c$.

Let m denote the number of comparisons made on any particular run, or equivalently its runtime. Consider a randomized sorting algorithm a (i.e., a distribution over comparison trees), where we set

$$C = \max_{\text{input}} \{\mathbb{E}_\lambda[m]\}$$

note here that m is a function of both the algorithm and the input.

Theorem 1.1.6 (Randomized sorting lower bound). Let $T(x)$ denote the expected number of comparisons made by a randomized n-element sorting algorithm on input x. Let $C = \max_{\lambda} T(x)$. Then $C = \Omega(n \log n)$.

Proof. Let \mathcal{A} denote the space of all (deterministic) comparison trees that sort an n-element array and let \mathcal{A}' denote the space of all permutations of $[n]$. Consider a randomized sorting algorithm given by a probability distribution λ on \mathcal{A}'. As it stands, a “randomized sorting algorithm” is always correct on every input, but has a random runtime (between $\Omega(n)$ and $O(n^2)$) that depends on its input. (Such algorithms are called Las Vegas algorithms.)

We want to convert each $a \in \mathcal{A}'$ into a corresponding algorithm a' that has a nontrivially bounded runtime, but may sometimes spits out garbage. We do this by allowing at most $10C$ comparisons, and outputting some garbage if the sorted permutation is still unknown. Let A' denote a random algorithm corresponding to a random $A \sim \lambda$. Corollary 1.1.5 implies

$$\Pr[A' is wrong on $x] = \Pr[\text{NumComps}(A, x) > 10C] \leq \frac{1}{10}.$$

Now define

$$\text{cost}(a, x) = \begin{cases}
1, & \text{if a is wrong on input x} \\
0, & \text{otherwise}
\end{cases}$$

We can then rewrite the above inequality as

$$\max_x \mathbb{E}_\lambda[\text{cost}(A', x)] \leq \frac{1}{10}. $$
By Yao’s minimax lemma, for all input distributions μ, we have
\[D_\mu(\text{sorting with } \leq 10C \text{ comparisons}) \leq \frac{1}{10}. \]

Now pick μ to be the uniform distribution on \mathcal{X}. Pick any deterministic algorithm a with $\leq 10C$ comparisons that achieves the minimum in the definition of D_μ. Then, for $X \sim \mu$, we have $\Pr[a \text{ is wrong on } X] \leq 1/10$. Now the height of a’s tree is $10C$, so the number of leaves of a’s tree is 2^{10C}, and thus the number of distinct permutations that a can output is $\geq 2^{10C}$. But now we see that
\[\Pr[X \text{ is one of the permutations output by } a] \geq \frac{9}{10}, \]
so $2^{10C} \geq (9/10)n!$ and hence, by Stirling’s formula,
\[C \geq \frac{1}{10} \left(\lg \left(\frac{9}{10} n! \right) \right) = \Omega(n \lg n). \]

1.2 Selection

Definition 1.2.1 (The Selection Problem). Given n items (x_1, x_2, \ldots, x_n) from an ordered universe and an integer $k \in [n]$, the selection problem is to return the kth smallest element, i.e., x_i such that $|\{j : x_j < x_i\}| = k - 1$. Let $V(n, k)$ denote the height of the shortest comparison tree that solves this problem.

Special Cases. The minimum (resp. maximum) selection problems, where $k = 1$ (resp. $k = n$), and the median problem, where $k = \left[\frac{n}{2} \right]$. Minimum and maximum can clearly be done in $O(n)$ time. Other selection problems are less trivial.

1.2.1 Minimum Selection

Theorem 1.2.2. Let T be a comparison tree that finds the minimum of n elements. Then every leaf of T has depth at least $n - 1$. Since T is binary, it must therefore have at least 2^{n-1} leaves.

Proof. Consider any leaf λ of T. If x_i is the output at λ, then every x_j ($j \neq i$) must have won at least one comparison on the path leading to λ (if not, we cannot know for sure that x_j is not the minimum). Since each comparison can be won by at most one element, we have depth$(\lambda) \geq n - 1$. \qed

Corollary 1.2.3. $V(n, 1) = n - 1$. \qed

1.2.2 General Selection

By an adversarial argument, Hyafil [Hya76] proved that $V(n, k) \geq n - k + (k - 1) \lceil \lg \frac{n}{k-1} \rceil$. This was strengthened by Fussenegger and Gabow [FG79] to the bound stated in the next theorem. Both these results give poor bounds for $k \approx n$. However, observe that $V(n, k) = V(n, n - k)$.

Note. For the special case where $k = 2$, we have $V(n, 2) = n - 2 + \lceil \lg n \rceil$. It is a good exercise to prove this: both the upper and the lower bound are interesting. Also, $k \in \{1, 2, n - 1, n\}$ are the only values for which we know $V(n, k)$ exactly.

Theorem 1.2.4 (Fussenegger & Gabow). $V(n, k) \geq n - k + \lceil \lg \binom{n}{k-1} \rceil$.

Proof. Let T be a comparison tree for selecting the kth smallest element. At a leaf λ of T, if we output x_i, then every $x_j (j \neq i)$ must be “settled” with respect to x_i, i.e., we must know whether or not $x_j < x_i$. In particular, we must know the set

$$S_\lambda = \{x_j : x_j < x_i\}.$$

Fix a particular set $U \subseteq \{x_1, \ldots, x_n\}$, with $|U| = k - 1$. Now consider the following set of leaves:

$$L_U = \{\lambda : S_\lambda = U\}.$$

Notice that the output at any leaf in L_U is the minimum of the elements in U. Therefore, if we treat U as “given,” and prune T accordingly, by eliminating any nodes that perform comparisons involving one or more elements of U, then the residual tree is one that has leaf set L_U and finds the minimum of the $n - k + 1$ elements of U.

By Theorem 1.2.2, the pruned tree must have at least 2^{n-k} leaves. Therefore, $|L_U| \geq 2^{n-k}$. The number of leaves of T is the sum of $|L_U|$ over all $\binom{n}{k-1}$ choices for the set U. Therefore, the height of T must be

$$\text{height}(T) \geq \left\lceil \lg \left(\binom{n}{k-1} \cdot 2^{n-k} \right) \right\rceil = n - k + \left\lceil \lg \left(\frac{n}{k-1} \right) \right\rceil.$$

This proves the theorem.

1.2.3 Median Selection

Turning now to the median selection special case, recall that by Stirling’s formula, we have

$$\binom{n}{n/2} = \Theta \left(\frac{2^n}{\sqrt{n}} \right),$$

which already gives us a good initial lower bound for median selection:

$$V(n, n/2) \geq \frac{n}{2} + \left\lceil \lg \left(\frac{n}{n/2 - 1} \right) \right\rceil \geq \frac{n}{2} + n - \frac{1}{2} \lg n - O(1) = \frac{3}{2} n - o(n).$$

Using more sophisticated techniques, one can prove the following stronger lower bounds:

$$V(n, \frac{n}{2}) \geq 2n - o(n).$$ \[\text{[BJ85]}\]

$$V(n, \frac{n}{2}) \geq (2 + 2^{-50})n - o(n).$$ \[\text{[DZ01]}\]

On the upper bound side, we again have nontrivial results, starting with the famous “groups of five” algorithm:

$$V(n, \frac{n}{4}) \leq 6n + o(n).$$ \[\text{[BFP73]}\]

$$V(n, \frac{n}{2}) \leq 3n + o(n).$$ \[\text{[SPP76]}\]

$$V(n, \frac{n}{2}) \leq 2.995n.$$ \[\text{[DZ99]}\]
2.1 Definitions and Basic Theorems

Definition 2.1.1 (Decision Tree Complexity). Let \(f : \{0, 1\}^n \rightarrow \{0, 1\} \) be some Boolean function. We sometimes write \(f_n \) when we want to emphasize the input size. A decision tree \(T \) models a computation that adaptively reads the bits of an input \(x \), branching based on each bit read. Thus, at each internal node of \(T \), we read a specific bit (indicated by the label of the node) and branch left or right depending upon whether the bit read was a ‘0’ or a ‘1’. At each leaf node we must have enough information to determine \(f(x) \). We define the deterministic decision tree complexity \(D(f) \) of \(f \) to be

\[
D(f) = \min \{ \text{height}(T) : T \text{ is a decision tree that evaluates } f \}.
\]

For example, easy adversarial arguments show that for the “or”, “and” and “parity” functions, we have \(D(\text{OR}_n) = D(\text{AND}_n) = D(\text{PAR}_n) = n \). It is convenient to introduce a term for functions that are maximally hard to evaluate in the decision tree model.

Definition 2.1.2 (Evasiveness). A function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \) is said to be evasive (a.k.a. elusive) if \(D(f) = n \).

We shall try to relate this algorithmically defined quantity \(D(f) \) to several more combinatorial measure of the hardness of \(f \), that we now define.

Definition 2.1.3 (Certificate Complexity). For a function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \), define a 0-certificate to be a string \(\alpha \in \{0, 1, \ast\}^n \) such that \(\forall x \in \{0, 1\}^n : x \text{ matches } \alpha \Rightarrow f(x) = 0 \). That is to say, for any input \(x \) that matches \(\alpha \) for all non-\(*\) bits, we have \(f(x) = 0 \), no matter the settings of the free variables given by the \(*\)’s. Define the size of a certificate \(\alpha \) to be the number of exposed (i.e., non-\(*\)) bits. Then, define the 0-certificate complexity of \(f \) as

\[
C_0(f) = \max_x \min \{ \text{size}(\alpha) : \alpha \text{ is a 0-certificate that matches } x \}.
\]

We define 1-certificates and \(C_1(f) \) similarly. We use the convention that \(C_0(f) = \infty \) if \(f \equiv 1 \), and similarly for \(C_1(f) \). Finally, we define the certificate complexity \(C(f) \) of a function \(f \) to be the larger of the two, that is

\[
C(f) = \max \{ C_0(f), C_1(f) \}.
\]

Example 2.1.4. \(C_1(\text{OR}_n) = 1 \), whereas \(C_0(\text{OR}_n) = n \), so \(C(\text{OR}_n) = n \).

The quantity \(C(f) \) is sometimes called the nondeterministic decision tree complexity.

Note that for any decision tree for \(f \), any leaf giving an answer \(p \in \{0, 1\} \) must be of depth at least \(C_p(f) \), so we have \(C(f) \leq D(f) \).
Definition 2.1.5 (Sensitivity). For a function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \), define the sensitivity \(s_x(f) \) for \(f \) on a particular input \(x \) as follows
\[
s_x(f) = |\{i \in [n] : f(x^{(i)}) \neq f(x)\}|
\]
where we write \(x^{(i)} \) to denote the string \(x \) with the \(i \)th bit flipped. We then define the sensitivity of \(f \) as
\[
s(f) = \max_x s_x(f).
\]

Definition 2.1.6 (Block Sensitivity). For a block \(B \subseteq [n] \) of bit positions and \(n = |x| \), let \(x^{(B)} \) be the string \(x \) with all bits indexed by \(B \) flipped. Define the block sensitivity \(\text{bs}_x(f) \) for \(f \) on a particular input \(x \) as
\[
\text{bs}_x(f) = \max|\{B_1, B_2, \ldots, B_k\}| \text{ such that } \forall i \in [k] : f(x) \neq f(x^{(B_i)})
\]
That is to say, \(\text{bs}_x(f) \) is the maximum number of disjoint blocks that are each sensitive for \(f \) on input \(x \). We then define the block sensitivity of \(f \) as
\[
\text{bs}(f) = \max_x \text{bs}_x(f).
\]

Note that since block sensitivity is just a generalization of sensitivity (which requires that the “blocks” be of size 1 each), we have \(\text{bs}_x(f) \geq s_x(f) \), and thus \(\text{bs}(f) \geq s(f) \). Before we go on to develop some of the theory behind this, consider the following example.

Example 2.1.7. Consider a function \(f(x) \) defined as follows, where the input \(x \) is of length \(n \) and is arranged in a \(\sqrt{n} \times \sqrt{n} \) matrix. Assume \(\sqrt{n} \) is an even integer. Define
\[
f(x) = \begin{cases} 1, & \text{if some row of the matrix matches } 0*110* \\
0, & \text{otherwise.}
\end{cases}
\]
Since each row can have at most 2 sensitive bits, we have \(s(f) = 2\sqrt{n} = O(\sqrt{n}) \). However, for block sensitivity we have \(\text{bs}(f) \geq \text{bs}_x(f) \geq \frac{\sqrt{n}}{2} \) where \(z = 0^n \) and we have \(\frac{\sqrt{n}}{2} \) blocks each consisting of 2 consecutive bits, which makes every block sensitive. This gives a quadratic gap between \(s(f) \) and \(\text{bs}(f) \).

Theorem 2.1.8. \(s(f) \leq \text{bs}(f) \leq C(f) \leq D(f) \).

Proof. The leftmost and rightmost inequalities have already been established above. To see that the middle inequality holds, observe that every certificate must expose at least one bit per sensitive block.

Here we note that there could be at least a quadratic gap between \(s(f) \) and \(\text{bs}(f) \) as evidenced by example 2.1.7. It turns out that there is a maximum of a quadratic gap between \(C(f) \) and \(D(f) \), which leads us to the next theorem, whose proof we will see as a corollary later in this section.

Theorem 2.1.9 (Blum–Impagliazzo). \(D(f) \leq C(f)^2 \)

Example 2.1.10. Consider a function \(g = \text{AND}_{\sqrt{n}} \circ \text{OR}_{\sqrt{n}} \). That is to say, \(g \) divides the input \(x \) with \(|x| = n \) into \(\sqrt{n} \) groups, feeds each group into the subfunction \(\text{OR}_{\sqrt{n}} \), and then feeds the results of each \(\text{OR}_{\sqrt{n}} \) into \(\text{AND}_{\sqrt{n}} \). To certify 0, we need only expose all \(\sqrt{n} \) of the inputs in one \(\text{OR}_{\sqrt{n}} \)-subtree to show that they are all 0. To certify 1, we need only expose one input in each of the \(\sqrt{n} \) \(\text{OR}_{\sqrt{n}} \)-subtrees to show that there is at least a single 1 going into every \(\text{OR} \). Then, we have
\[
C(g) = \sqrt{n}
\]
however, it’s easy to see that given any subset of the input, the final answer still depends on the rest of the input, and thus \(D(g) = n \). Therefore, \(g \) is evasive.

2.1.1 Degree of a Boolean Function

Definition 2.1.11 (Representative Polynomial). For a function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \), we say that a polynomial \(p(x_1, x_2, \ldots, x_n) \) represents \(f \) if for all \(\vec{a} \in \{0, 1\}^n \), we have \(p(\vec{a}) = f(\vec{a}) \).
Definition 2.1.12 (Degree of a Boolean Function). For a function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \) and a representative polynomial \(p \) for \(f \), the degree of \(f \) is then just the degree of \(p \).

Theorem 2.1.13. For any such \(f \), there exists a unique multilinear polynomial that represents \(f \).

Proof. Let \(\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_k\} \) be the set of all inputs that make \(f = 1 \). Then, we claim that for all \(\vec{b}, \vec{c} \in \{0, 1\}^n \), there exists a polynomial \(p_{\vec{b}}(x_1, \ldots, x_n) \) such that

\[
 p_{\vec{b}}(\vec{c}) = \begin{cases}
 1 & \text{if } \vec{c} = \vec{b} \\
 0 & \text{otherwise}
\end{cases}
\]

To see this, for any such vector \(\vec{b} \), consider the polynomial

\[
 p_{\vec{b}}(x_1, \ldots, x_n) = \prod_{i=1}^n (x_i + \vec{b}_i - 1)
\]

Clearly this polynomial is 1 if and only if every \(x_i = \vec{b}_i \). Then, it follows that the polynomial that represents \(f \) is just the polynomial

\[
 p = \sum_{i=1}^k p_{\vec{a}_i}
\]

Since each \(\vec{a}_i \) is distinct, at most one \(p_{\vec{a}_i} \) will evaluate to 1, but since that implies that the input is one of the accepting inputs for \(f \), \(p \) behaves as desired. To prove uniqueness, suppose 2 multilinear polynomials \(p, q \) both represent \(f \), then the polynomial \(r = p - q \) satisfies \(r(\vec{a}) = 0 \) for all \(\vec{a} \in \{0, 1\}^n \).

Consider the smallest monomial \(x_{i_1}, x_{i_2}, \ldots, x_{i_k} \) in \(r \). \(\blacksquare \)

Theorem 2.1.14. For a Boolean function \(f \), let \(p \) be its representative polynomial. Then we have \(\deg(p) \leq D(f) \)

Proof. For any leaf \(\lambda \) of a decision tree, without loss of generality let \(x_1, x_2, \ldots, x_r \) be the queries made along the path to that leaf, and let \(b_1, b_2, \ldots, b_r \) be the results of the queries. Then for every leaf \(\lambda \) of a decision tree for \(f \), write a polynomial \(p_{\lambda} \) given as follows

\[
 p_{\lambda} = \prod_{i:b_i=1} x_i \prod_{i:b_i=0} (x_i - 1)
\]

Clearly each \(p_{\lambda} \) has degree \(r \leq D(f) \), then the polynomial

\[
 p = \sum_{\lambda} p_{\lambda}
\]

represents \(f \) and also has degree \(\leq D(f) \). \(\blacksquare \)

Example 2.1.15. We present an example to show that \(\deg(f) \) can be much smaller than \(s(f) \). Consider the function on an input vector \(\vec{x} \) with size \(n \)

\[
 R:\text{NAE}(\vec{x}) = \begin{cases}
 \text{NAE}(R:\text{NAE}(\vec{x}_1, \ldots, \vec{x}_{|\vec{x}|}), R:\text{NAE}(\vec{x}_{|\vec{x}|}, \ldots, \vec{x}_2), R:\text{NAE}(\vec{x}_1, \ldots, \vec{x}_{|\vec{x}|})) & \text{if } |\vec{x}| > 3 \\
 \text{NAE}(\vec{x}_1, \vec{x}_2, \vec{x}_3) & \text{if } |\vec{x}| = 3
\end{cases}
\]

where we assume that \(n = 3^k \) for some integer \(k \), and \(\text{NAE} \) is defined as follows

\[
 \text{NAE}(x, y, z) = \begin{cases}
 1 & \text{if } x, y, z \text{ are not all equal} \\
 0 & \text{if } x = y = z
\end{cases}
\]

In other words, this is the \(k \)-layer tree of \(\text{NAE} \) computations applied recursively to \(3^k \) initial inputs. For \(x = \vec{0} \), we have \(s_k(R:\text{NAE}) = 3^k \), since changing any single bit will flip the answer. Now observe that we can alternatively write the \(\text{NAE}(x, y, z) \) function as a degree 2 polynomial

\[
 \text{NAE}(x, y, z) = x + y + z - xy - yz - zx
\]
Then, we can see that at the second lowest level we have $3k-1$ polynomials, each of degree 2 (lowest level contains $3k$ polynomials of degree 1 - coordinates of the input vector), but at the root, we have a single polynomial of degree 2^k, but this is polynomially distinct to the sensitivity $s_x(R-NAE) = 3^k$. Alternatively, writing this in terms of n, we have

$$\deg(f) = n^{\log_3 2}, \quad s(f) = n$$

Now returning to the example $g = \text{AND}_{\pi} \circ \text{OR}_{\pi}$, we have

$$\deg(f) = n \quad s(f) \leq \sqrt{n} = C(f)$$

To see why $\deg(f) = n$, simply recall that no matter the input, we must always examine every bit of the input to get a definitive answer. In other words, the decision tree has constant height $D(g) = n$ (refer to example 2.1.10).

Theorem 2.1.16 (Beals-Buhrman-Cleve-Marca-deWolf).

$$D(f) \leq C_1(f) \cdot \text{bs}(f) \leq C_0(f) \cdot \text{bs}(f)$$

Proof. Without loss of generality we only consider the first case, that $D(f) \leq C_1(f) \cdot \text{bs}(f)$, as the case for $C_0(f) \cdot \text{bs}(f)$ is symmetric. We proceed to induct on the number of variables, or size of the input n.

The base case $n = 1$ is trivial. Before we continue with the induction step, we define a subfunction of f as follows

$$f|_{\alpha} : \{0, 1\}^{n-k} \rightarrow \{0, 1\}, \text{ with bits in } \alpha \text{ set to their values in } \alpha$$

where $\alpha \in \{0, 1, \ast\}^k$ and exposes k bits, or has exactly k characters $\in \{0, 1\}$. If f has no 1-certificate, then $f = 0$, and $D(f) = 0$, so we’re done. FINISH BEALS BUHRMAN PROOF

Theorem 2.1.17 (Nisan). $C(f) \leq s(f) \cdot \text{bs}(f)$

Proof. Try it yourself.

Corollary 2.1.18. $D(f) \leq C(f) \cdot \text{bs}(f) \leq s(f) \cdot \text{bs}(f)^2 \leq \text{bs}(f)^3$

Proof. Direct result of theorems 2.1.17 and 2.1.16.

Corollary 2.1.19. $D(f) \leq C(f)^2$

Proof.

$$D(f) \leq \min\{C_0(f), C_1(f)\} \cdot \text{bs}(f) \leq \min\{C_0(f), C_1(f)\} \cdot C(f) = C_0(f) \cdot C_1(f) \cdot \max\{C_0(f), C_1(f)\} \leq C_0(f) \cdot C_1(f) \cdot C(f)^2$$
The Degree of a Boolean Function

Scribe: Ranganath Kondapally

Theorems:

1. \(S(f) \leq bs(f) \leq C(f) \leq D(f) \)
2. \(\deg(f) \leq D(f) \)
3. \(C(f) \leq S(f)bs(f) \leq bs(f)^2 \) [Nisan]
4. \(D(f) \leq C_1(f)bs(f) \) [Beals et al]
5. Corollary: \(D(f) \leq C_0(f)C_1(f) \leq C(f)^2 \) [Blum-Impagliazzo]
6. Corollary: \(D(f) \leq bs(f)^3 \)
7. \(bs(f) \leq 2 \deg(f)^2 \)
8. \(D(f) \leq bs(f) \deg(f)^2 \leq 2 \deg(f)^4 \)

Examples:

1. \(\exists f : S(f) = \Theta(\sqrt{n}), bs(f) = \Theta(n) \)
2. \(\exists f : S(f) = bs(f) = C(f) = \sqrt{n}, \deg(f) = D(f) = \sqrt{n} \)
3. \(\exists f : \deg(f) = n^{\log_2 2}, S(f) = n \)

Theorem 7:

Proof.

- Pick an input \(\overrightarrow{a} \in \{0, 1\}^n \) and blocks \(B_1, B_2, \ldots, B_b \) that achieve the max in \(bs(f) = b \).
- Let \(P(x_1, \ldots, x_n) \) be a multi-linear polynomial representation of \(f \). Create a new polynomial \(Q(y_1, y_2, \ldots, y_b) \) from \(P \) by setting \(x_i \)'s as follows
If \(i \notin B_1 \cup B_2 \ldots \cup B_b \), set \(x_i = a_i \)
If \(i \in B_j \),
 - If \(a_i = 1 \), set \(x_i = y_j \)
 - If \(a_i = 0 \), set \(x_i = 1 - y_j \)

Multi-linearize the polynomial

\[
\deg(Q) \leq \deg(P) \quad \text{(Note: } \deg(Q) \leq b) \]

\[Q(1, 1, 1, \ldots, 1) = P(\overline{a}) = f(\overline{a})\]
\[Q(0, 1, 1, \ldots, 1) = Q(1, 0, 1, \ldots, 1) = Q(1, 1, \ldots, 0) = 1 - f(\overline{a})\] (Because each \(B_j \) is sensitive)
\[Q(\overline{c}) \in \{0, 1\} \forall \overline{c} \in \{0, 1\}^b\]

[Trick by Minsky-Papert]

Define \(Q_{\text{sym}}(k) \) as follows:

\[
Q_{\text{sym}}(k) = \sum_{|\overline{a}|=k} Q(\overline{a}) \binom{b}{k}, \quad k \in \{0, 1, 2, \ldots, b\}
\]
where \(|\overline{a}|\) (weight of \(\overline{a} \)) is the number of ones in \(\overline{a} \).

Note: \(\deg(Q_{\text{sym}}) \leq b \)

These definitions define \(Q_{\text{sym}} \) uniquely.

\[
Q_{\text{sym}}(k) = f(\overline{a}), \text{if } k = b
\]
\[= 1 - f(\overline{a}), \text{if } k = b - 1\]
\[\in [0, 1], \text{else}\]

Markov’s Inequality:

Definition 3.0.20 (Interval Norm of a function). Define \(\|f\|_S = \sup_{x \in S} |f(x)| \), for \(f : \mathbb{R} \to \mathbb{R}, S \subseteq \mathbb{R} \).

Suppose \(f \) is a polynomial of degree \(\leq n \), then \(\|f'\|_{[-1, 1]} \leq n^2 \|f\|_{[-1, 1]} \)

Corollary: If \(a \leq x \leq b, c \leq f(x) \leq d \), then \(\|f'\|_{[a, b]} \leq n^2 \cdot \frac{d-c}{b-a} \)

Let \(\lambda = \|Q_{\text{sym}}'\|_{[0, b]} \)
Let \(\kappa = \max\{\sup Q_{\text{sym}}(x) - 1, -\inf Q_{\text{sym}}(x), 0\} \)
Then \(Q_{\text{sym}}(x) \), for \(x \in [0, b] \) maps to \([-k, 1 + k]\).

- If \(\kappa = 0 \), \(Q_{\text{sym}} \) maps \([0, b]\) to \([0, 1]\). Markov’s Inequality implies

\[
\|(Q_{\text{sym}}')\|_{[0, b]} \leq \frac{\deg(Q_{\text{sym}})^2 (1 - 0)}{(b - 0)} \leq \frac{\deg(Q_{\text{sym}})^2}{bs(f)}
\]

However, \(Q_{\text{sym}}(b - 1) = 1 - f(\overline{a}) \) and \(Q_{\text{sym}}(b) = f(\overline{a}) \). By Mean-Value theorem, \(\exists \alpha \in [b - 1, b] \) such that \(|(Q_{\text{sym}}')(\alpha)| = 1 \).

so, \(\|(Q_{\text{sym}}')\|_{[0, b]} \geq 1 \Rightarrow bs(f) \leq \deg(Q_{\text{sym}})^2 \)

- If \(\kappa > 0 \)
– If \(\kappa = Q_{\text{sym}}(x) - 1 \) for some \(x = x_0 \). Suppose \(x_0 \in [i, i + 1] \). Considering the smaller of the two intervals \([i, x_0], [x_0, i + 1]\) and applying mean-value theorem,
\[
\| (Q_{\text{sym}}') \|_{[0,b]} \geq \frac{\kappa}{1/2} = 2\kappa
\]

\(Q_{\text{sym}} \) maps \([0, b]\) to \([-k, 1 + k]\). Markov’s Inequality implies,
\[
2\kappa \leq \| (Q_{\text{sym}}') \|_{[0,b]} \leq \frac{\deg(Q_{\text{sym}})^2 (1 + \kappa - (-\kappa))}{b - 0}
\]

So,
\[
bs(f) \leq \frac{\deg(Q_{\text{sym}})^2 (1 + 2\kappa)}{bs(f)}
\]

\[
\Rightarrow bs(f) \leq \deg(Q_{\text{sym}})^2 \left(1 + \frac{1}{2\kappa} + 1 \right)
\]

Using \(\alpha \) such that \(|(Q_{\text{sym}}')(\alpha)| = 1 \), we have
\[
1 \leq \| (Q_{\text{sym}}') \|_{[0,b]} \leq \frac{\deg(Q_{\text{sym}})^2 (1 + 2\kappa)}{bs(f)}
\]

\[
bs(f) \leq \deg(Q_{\text{sym}})^2 (1 + 2\kappa)
\]

(1)\&(2) \Rightarrow
\[
bs(f) \leq \deg(Q_{\text{sym}})^2 (1 + \min\{\frac{1}{2\kappa}, 2\kappa\})
\]
\[
\leq 2 \cdot \deg(Q_{\text{sym}})^2
\]
\[
\leq 2 \cdot \deg(Q)^2
\]
\[
= 2 \cdot \deg(f)^2
\]

– The proof is similar for the case where \(\kappa = -Q_{\text{sym}}(x) \) for some \(x \).

\[
\square
\]

Theorem 8:

\[D(f) \leq bs(f) \deg(f)^2 \]

Proof. Consider polynomial representation \(P \) of \(f \).

Definition 3.0.21. Define “maxonomial” = maximum degree monomial of \(f \)

- There exists a set (size \(\leq bs(f) \deg(f) \)) of variables that intersects every maxonomial.
- Query all these variables to get subfunction \(f|_\alpha \) with \(\deg(f|_\alpha) \leq \deg(f) - 1 \). Since all the maxonomials of \(f \) vanish after exposing the variables, the degree of the resulting polynomial representation \((f|_\alpha) \) decreases at least by 1.

If the above two statements hold, then we can prove the theorem by induction on the degree of the function \(f \). If \(f \) is a constant function, then the theorem holds trivially. Assume that it is true for all functions whose degree is less than \(n = \deg(f) \).

\[
D(f) \leq bs(f) \deg(f) + D(f|_\alpha)
\]
\[
\leq bs(f) \deg(f) + bs(f|_\alpha) \deg(f|_\alpha)^2 \quad \text{By induction hypothesis}
\]
\[
\leq bs(f)(\deg(f) + (\deg(f) - 1)^2)
\]
\[
\leq bs(f)\deg(f)^2 \quad \text{if } \deg(f) \geq 1
\]

The algorithm to get those variables is
• Start with an empty set \(S \)

• Pick all variables in any maxonomial that is not yet intersected and add these variables to \(S \). (Number of variables added is less than or equal to \(\deg(f) \).)

• If the current set intersects every maxonomial stop else repeat the above step.

Claim: Number of iterations in the algorithm is at most \(bs(f) \)

Proof: We claim that inside every maxonomial, there is a sensitive block for \(\vec{0} \). Pick any maxonomial. Set \(x_i \) (\(i \) \(\not\in \) maxonomial) to 0. The resulting function’s polynomial representation still contains the maxonomial. Thus, the resulting boolean function is not a constant. This implies that there exists a sub-block inside the maxonomial such that flipping it changes the value of the function. Thus, the number of maxonomials is at most \(bs(f) \). Hence, the number of iterations which can be at most the number of maxonomials is at most \(bs(f) \). \(\sqcup \)
Symmetric Functions and Monotone Functions

Scribe: Ranganath Kondapally

Definition 4.0.22. \(f : \{0, 1\}^n \rightarrow \{0, 1\} \) is said to be symmetric if \(\forall x \in \{0, 1\}^n \ \forall \pi \in S_n \) (Group of all permutations on \([n]\))

\[
f(x) = f(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)})
\]

This is the same as saying \(f(x) \) depends only on \(|x| \) (number of ones in \(x \)).

Recall the proof of \(bs(f) \leq 2 \deg(f)^2 \). We used symmetrizing trick.

Can prove: For any symmetric \(f \), \(\deg(f) = n - O(n^\alpha) \) where \(\alpha = 0.548 < 1 \) is a constant. [Von Zur Gathen & Roche]

Then, \(D(f) \geq \deg(f) = n - O(n) \)

For \(x, y \in \{0, 1\}^n \) write \(x \leq y \) if \(\forall i \ (x_i \leq y_i) \)

Definition 4.0.23. \(f \) is monotone if \(x \leq y \Rightarrow f(x) \leq f(y) \)

Example of monotone functions: \(OR_n, AND_n, \) \(AND \sqrt{n} \cdot OR \sqrt{n} \).

Non-examples: \(PAR_n, \) \(\neg OR_n \).

Theorem 4.0.24. If \(f \) is monotone, then \(S(f) = bs(f) = C(f) \)

Proof. We already have \(S(f) \leq bs(f) \leq C(f) \).

Remains to prove: \(C(f) \leq S(f) \).

Let \(x \in \{0, 1\}^n \). Let \(\alpha \) be a minimal 0-certificate matching \(x \) (suppose \(f(x) = 0 \)).

Claim: All exposed bits of \(\alpha \) are zeros.

Proof: If not, we can change an exposed bit (which is 1) in \(\alpha \) and still have \(f(x|\alpha) = 0 \) as \(f \) is monotone. So, we don’t need to expose that bit. So, \(\alpha \) can’t be minimal 0-certificate.

Claim: Every exposed bit in \(\alpha \) is sensitive for \(\alpha \) = \(y \) (the input obtained by setting *\(\) everywhere in \(\alpha \))

Proof: Suppose \(i^{th} \) bit is exposed by \(\alpha \) but \(f(y^{(i)}) = f(y) = 0 \). By monotonicity, any other setting of *’s in \(\alpha \) causes \(f = 0 \). So, \(i^{th} \) bit is not necessary, contradicting the minimality of \(\alpha \).

By second claim: \(S(f) \geq \text{number of exposed bits in } \alpha \). Thus, \(S(f) \geq C_0(f) \). Similarly, \(S(f) \geq C_1(f) \).

Therefore, \(S(f) \geq \max\{C_0(f), C_1(f)\} = C(f) \)

Theorem 4.0.25. If \(f \) is monotone, \(D(f) \leq bs(f)^2 = S(f)^2 \)
Proof. Let θ.

Theorem 4.0.30. If f is invariant under edge-deletion or contraction (minor closed property) and $n \geq n_0$, then f is evasive. [Amit-Khot-Shi]

Theorem 4.0.31. Any monotone bipartite graph property is evasive. [Yao]

Proof. Let $f : \{0,1\}^N \to \{0,1\}$ where $N = \binom{n}{2}$ be a non-constant monotone graph property. f is invariant under a group $G \leq S_N$ of permutations ($G \cong S_\alpha$).

G is a transitive on $\{1,\ldots,N\}$ i.e., for any $i,j \in [N], \exists \pi \in G$ such that $\pi(i) = j$.

Lemma 1: Suppose $f : \{0,1\}^d \to \{0,1\}$ is monotone (\neq constant), invariant under a transitive group and $d = 2^\alpha$ for some $\alpha \in \mathbb{N}$, then f is evasive.

Corollary to Lemma 1: If $n = 2^k$, then $D(f) \geq n^2/4$.

Hierarchically cluster $[n]$ into subclusters of size $n/2$ and recurse. Consider the subfunction of f obtained the following way: $g_1 : A \to \{0,1\}$ and $g(x) = f(x)$, where

$A = \{ x \text{ is a graph on } [n] \text{ where there is an edge between } l, j \}$

$\text{if } l \wedge 1^l0^{n-k} = j \wedge 1^l0^{n-k} \text{ and no edge if } l \wedge 01^{l-1}0^{n-k} \neq j \wedge 01^{l-1}0^{n-k} \}$

Number of inputs to subfunction $= (2^{k-1})^2 = n^2/4$. By Lemma 1, $D(f) \geq D(\text{subfunction}) = n^2/4$. There are k subfunctions, depending on how deep we take the clustering: g_1 (stop after one level of clustering), g_2, \ldots, g_k (go down to singleton clusters).

$$g_k(\vec{0}) = f(\vec{0}) = 0$$
$$g_{i-1}(\vec{1}) = 1$$
$$g_i(\vec{1}) = g_{i-1}(\vec{0})$$

$\exists i$ such that $g_i(\vec{0}) = 0$ and $g_i(\vec{1}) = 1$ [i.e g_i is non-constant]

Corollary 2: For all $n \in \mathbb{N}$, $D(f) \geq n^2/16$

Proof of Lemma 1: Consider $S_k = \{ x \in \{0,1\}^* : |x| = k \text{ and } f(x) = 1 \}$
Definition 4.0.32. \(\text{orb}(x) = \{ y : y \text{ is obtained from } x \text{ by applying some } \pi \in G \} \)

\(S_k \) is partitioned into orbits.

Claim: If \(k \neq 0, k \neq d \) (i.e., \(x \neq \overrightarrow{0}, x \neq \overrightarrow{1} \)), then every orbit has even size. Therefore, \(|S_k| \) is even.

Number of ones in resulting matrix = \(k \cdot |\text{orb}(x)| = d \cdot (\text{#1’s in any column}) \)

\[
|\text{orb}(x)| = \frac{d \cdot (\text{#1’s in any col})}{k} = \frac{2^k \text{(some integer)}}{k} = \text{even}
\]
as \(0 < k < d \).

By Claim:

\[
|\{x : f(x) = 1\}| = |S_0| + |S_1| + \ldots + |S_{d-1}| + |S_d|
\]

\(|S_0| = 0 \) as \(f(\overrightarrow{0}) = 0 \) and \(|S_d| = 1 \).

\[
= 0 + \text{even number} + 1
\]

\(= \text{odd} \)

Consider all \(x \in \{0, 1\}^n \) that reach leaf \(\lambda \) of decision tree at depth \(< d \). An even number of \(x \)'s reach here. Therefore, if all leaves whose output is \(f(x) = 1 \) have depth \(< d \), then number of \(x : f(x) = 1 \), is even. This is a contradiction and hence, there exists a leaf whose depth is \(d \). Thus, \(D(f) = d \) and \(f \) is evasive. \(\square \)
Randomized Decision Tree Complexity: Boolean functions

Scribe: Priya Natarajan

We saw this type of complexity earlier for the sorting problem.

Definition 5.0.33 (Cost of a randomized decision tree on input \(x\)). \(\text{cost}(t, x) = \text{number of bits of } x \text{ queried by } t.\)

Let randomized decision tree \(T \sim \lambda\) (probability distribution over decision trees).

From Yao’s minimax lemma we have: \(R(f) \geq D_\mu(f)\), for any input distribution \(\mu\). So, it is enough to prove a lower bound on \(D_\mu(f)\). Unlike what we did in sorting, here we won’t convert to a Monte Carlo algorithm. We will strictly use Las Vegas algorithm.

Theorem 5.0.34. Let \(f\) be a non-constant monotone graph property on \(N = \binom{n}{2}\) bits, i.e., \(n\) vertices. Then, \(R(f) = \Omega(n^{4/3}) = \Omega(N^{2/3}).\)

This is saying something more involved than the easy thing you can prove: for any monotone \(f\): \(R(f) \geq \sqrt{D(f)}\).

Last time we showed that \(D(f) \geq n^2/16 = \Omega(n^2)\) [Rivest-Vuillemin].

Yao’s conjecture: \(R(f) = \Omega(n^2) = \Omega(N)\).

Theorem 5.0.35 is not the best result known, we state below (without proof) the best result known:

\(R(f) = \Omega(n^{4/3} \log^{1/3} n)\) [Chakrabarti-Khot], this is a strengthening of Hajnal’s proof.

Today we will prove something that implies Theorem 5.0.34.

Recall that graph properties are invariant under certain permutations (not all permutations) and these permutations form a transitive group.

Note: From now on, number of inputs = \(n\) (not \(N\)).

Theorem 5.0.35. If \(f : \{0, 1\}^n\) is invariant under a transitive group of permutations, then \(R(f) = \Omega(n^{2/3})\).

Match the \(R(f)\) bound in Theorem 5.0.34 to that in Theorem 5.0.35. Proof of Theorem 5.0.35 using probabilistic analysis.

Proof.
Definition 5.0.36 (Influence of a coordinate on a function). Let $f : \{0, 1\}^n \rightarrow \{0, 1\}$. Define the influence of the i^{th} coordinate on f as: $I_i(f) = \Pr_x[f(x) \neq f(x^{(i)})]$.

In words: choose a random x and what is the chance that flipping the i^{th} bit will change the output.

Note that $I_i(f)$ looks like $s_x(f)$.

Because of invariance under the transitive group, we have: $I_1(f) = I_2(f) = \cdots = I_n(f) = I(f)/n$, where $I(f) = \sum_{i=1}^{n} I_i(f)$.

We will also make use of another technique:

Definition 5.0.37 (Great Notational Shift). TRUE: $1 \not\rightarrow 1$; FALSE: $0 \not\rightarrow 1$

So, old $x \rightarrow$ new $1 - 2x$, and old $\frac{1+y}{2} \leftarrow$ new y

Why are we doing this? Given function $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$, this is a sign vector instead of a bit vector. In this notation also we have a unique multilinear polynomial. It is important to note that this notation does not change the degree of the multilinear polynomial, though it might change the coefficients and the number of monomials.

Example 5.0.38. $\text{AND}(x, y, z) = xyz$ (old)

In the new notation we have:

$$\text{AND}(x, y, z) = 1 - 2 \left[\frac{1 - x}{2} \left(\frac{1 - y}{2} \left(\frac{1 - z}{2} \right) \right) \right]$$

$$= \frac{3}{4} \frac{x}{4} + \frac{y}{4} + \frac{z}{4} - \frac{xy}{4} - \frac{xz}{4} - \frac{yz}{4} + \frac{xyz}{4}$$

Notice that the coefficients of the linear terms = 2^n.

Given that x takes ± 1 values, we can say something specific about $I_i(f)$: If $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$, then:

$$I_i(f) = E_x \left[\frac{1}{2} |f(x') \upharpoonright x_i = 1 - f(x') \upharpoonright x_i = -1) \right]$$

$$= \frac{1}{2} E_x[|D_i f(x)|]$$

Let $\phi(x, y, z) = \frac{3}{4} + \frac{x}{4} + \frac{y}{4} + \frac{z}{4} - \frac{xy}{4} - \frac{xz}{4} - \frac{yz}{4} + \frac{xyz}{4}$

$D_1\phi(y, z) = 2.\frac{1}{4} + \text{higher degree terms}$

$E_y,z[D_1\phi(y, z)] = 2.\frac{1}{4} + 0$

$\frac{1}{2} E[\phi(y, z)] = \text{coefficient of } x$

For monotone f:

$$I_i(f) = \frac{1}{2} E_x[D_i f(x)]$$

= coefficient of x_i in polynomial representation of f

Lemma 1: For any $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ and deterministic decision tree T evaluating f, we have:

$\text{Var}_x[f] \leq \sum_{i=1}^{n} \delta_i I_i(f)$, where $\delta_i = \Pr_x[T \text{ queries } x_i \text{ on input } x]$.

$$\text{Var}_x[f] = E_x[f(x)^2] - (E[f(x)])^2$$

$$= 1 - E_x[f(x)]^2$$
Note: If f is balanced (i.e., if $\Pr[f(x) = 1] = \Pr[f(x) = -1]$), then $\text{Var}[f] = 1$. For example, PARITY function is balanced, AND is not.

We will prove Theorem 5.0.35 assuming f is balanced; we will fix this later.

Recall that Lemma 1 makes no assumptions about the function f. If f is invariant under a transitive group, then $I_t(f) = \frac{I(f)}{n}$, so from Lemma 1 we get:

$$\text{Var}[f] \leq \frac{I(f)}{n} \sum_{i=1}^{n} \delta_i$$
$$= \frac{I(f)}{n} E[\# \text{ variables queried}]$$
$$= \frac{I(f)}{n} D_{\text{uniform}}(f) \text{[by picking optimal deterministic decision tree for uniform distribution].}$$

Lemma 2 [O’Donnell-Servedio]: For any monotone $f : \{-1, 1\}^n \to \{-1, 1\}$, $I(f) \leq \sqrt{D_{\text{uniform}}(f)}$.

From Lemma 1 and Lemma 2, we get that if f is monotone, transitive, and balanced, then:

$$1 \leq \frac{I(f)}{n} D_{\text{uniform}}(f) \leq \frac{D_{\text{uniform}}(f)^{3/2}}{n}$$
$$\Rightarrow R(f) \geq D_{\text{uniform}}(f) \geq n^{2/3}$$

So now we will prove lemmas 1 and 2.

Proof of Lemma 1:

$$\text{Var}[f] \leq \sum_{i=1}^{n} \delta_i I_i(f)$$
$$\text{Var}[f] = 1 - E[f(x)]^2$$
$$= 1 - E_x[f(x)] E_y[f(y)]$$
$$= 1 - E_{x,y}[f(x)f(y)]$$
$$= E_{x,y}[1 - f(x)f(y)]$$
$$= E_{x,y}[f(x) - f(y)]$$

That is, for any sequence of random variables $\in \{0, 1\}^n$, $x = u[0], u[1], \ldots, u[d] = y$:

$$\text{Var}[f] \leq \sum_{i=0}^{d-1} E[|f(u[i]) - f(u[i+1])|] \text{ (by triangle inequality)}$$

For example:

Start: $f(x_1, x_2, x_3, x_4, x_5) = x = u[0]$
$f(x_1, y, x_3, x_4, x_5)$ [tree T read x_2 in the above step]
$f(x_1, y_2, x_3, y_4, x_5)$ [tree T read x_4 above]

And now suppose the tree has reached a leaf so it outputs a value of f and stops. When the tree stops, replace the remaining x’s with y’s. So we get $f(y_1, y_2, y_3, y_4, y_5)$

Note that going from $u[i]$ to $u[i+1]$ is just “re-randomizing”, there is no conditioning involved because the variable which was queried (whose value got known) got replaced by a random variable.

Expression in summation above is just $E_{u}[|f(u) - f(u^{\sim j})|]$ where x_j is the variable queried by T at this step. Note that this looks a lot like the definition of influence, without the $1/2$.

$E_{u}[|f(u) - f(u^{\sim j})|]$: read this as “take a random variable u and re-randomize u by replacing the j^{th} variable by tossing a coin again”. Since with probability $1/2$, the value of the j^{th} variable got flipped or remained the same,
we get:

\[E_u[|f(u) - f(u^{(i)})|] = \frac{1}{2} E_u[|f(u) - f(u^{(j)})|] \]

\[= I_j(u) \]

So, if \(x_{j_1}, x_{j_2}, \ldots, x_{j_d} \) is the random sequence of variables read (note that \(d \) is also random), then:

\[\text{Var}[f] \leq (I_{j_1}(f) + I_{j_2}(f) + \ldots + I_{j_d}(f)) \cdot \Pr[j_1, j_2, \ldots, j_d \text{ occurs}] \]

\[= \sum_{i=1}^{n} I_i(f) \cdot \Pr[T \text{ queries } x_i] \]

Proof of Lemma 2:

Recall that for monotone \(f \), \(I_i(f) = \frac{1}{2} E_x[D_i f(x)] \), which is also the coefficient of \(x_i \) in the representing polynomial.

Let \(T \) be a deterministic decision tree for \(f \) and suppose \(T \) outputs \pm 1 values. Let \(L = \{ \text{leaves of } T \} \) and \(L^+ = \{ \text{leaves of } T \text{ that output } +1 \} \), i.e., accepting leaves.

For each leaf \(\lambda \in L \), we have a polynomial \(p_\lambda(x_1, x_2, \ldots, x_n) \) such that

\[p_\lambda(x_1, x_2, \ldots, x_n) = \begin{cases}
1, & \text{if } (x_1, x_2, \ldots, x_n) \text{ reaches } \lambda \\
0, & \text{otherwise}
\end{cases} \]

\[\deg(p_\lambda) = \text{depth of } \lambda. \quad |\text{coefficient of } x_i \text{ in } p_\lambda| = \frac{1}{2^{\text{depth}(\lambda) - 1}}. \]

\[\text{Sign of coefficient} = \begin{cases}
+1, & \text{if upon reading } x_i \text{ on path to } \lambda, \text{ we branch right} \\
-1, & \text{otherwise}
\end{cases} \]

Notations:

\[d(\lambda) = \text{depth}(\lambda) \]

\[s(\lambda) = \text{skew of } \lambda = (\# \text{left branches} - \# \text{right branches}) \text{ on path to } \lambda \]

Using the above definitions, we have:

\[I(p_\lambda) = \sum_{i=1}^{n} \text{(coefficient of } x_i \text{ in } p_\lambda) \]

\[= \frac{-s(\lambda)}{2^{d(\lambda) - 1}} \]

Observe that representing polynomial of \(f = 1 - 2 \sum_{\lambda \in L} p_\lambda \). Therefore,

\[I(f) = \sum_{i=1}^{n} \text{(coefficient of } x_i \text{ in representing polynomial of } f) \]

\[= \sum_{\lambda \in L^+} \frac{s(\lambda)}{2^{d(\lambda)}} \]

\[\leq \sum_{\lambda \in L} \left| \frac{s(\lambda)}{2^{d(\lambda)}} \right| \]

\[= E_{\text{random branching}}[|s(\lambda)|] \]

\[\Rightarrow I(f) \leq \sqrt{\sum_{\lambda} \frac{d(\lambda)}{2^{d(\lambda)}}} = \sqrt{D_{\text{unif}}(f)}. \] The first inequality is due to drunkard’s walk in probability theory.
Lecture dated 04/25/2008 follows:

Today we will prove something for graph properties, which will sometimes be stronger than what we proved last time:

\[1 - E[f(x)]^2 = \text{Var}[f(x)] \leq \sum_{i=1}^{n} \delta_i^2 I_i(f) \leq \frac{R(f)}{n} \text{D}_{\text{uni}}(f) \leq \frac{2^{n/2}}{n},\]

The first inequality is due to Lemma 1 of last time, the second inequality is due to symmetry, and the last inequality is due to monotonicity and Lemma 2. If \(f \) is balanced, we get \(\text{D}_{\text{uni}}(f) \geq n^{1/3} \).

In the proof we did last time, we did not use the full power of uniform distribution; we just used the fact that individual points are independent. If \(f \) is not balanced, we get \(\text{D}_{\text{uni}}(f) \geq (\text{some value close to 0}) \), which is not a good lower bound. For general \(f \), instead of assuming \(\text{uni} \), we use \(X_{\mu_p} \), where \(\mu_p \) means “choose each \(x_i = 1 \) with probability \(p \) \(-1\) with probability \(1 - p \) independently”.

\[\mu_p(x_1, x_2, \ldots, x_n) = p^{N_1(x)}(1 - p)^{N_1(x)}\]

Now, we will need to have the following modifications:

\[1 - E[f(x)]^2 = \text{Var}[f(x)] \leq \sum_{i=1}^{n} \delta_i^2 I_i, p(f) \leq \frac{R(f)}{n} \text{D}_{\mu_p}(f) \leq \frac{2^{n/2}}{n}, \]

where we get the last inequality due to generalized drunkard walk.

If \(p = 0 \), \(E[f(x)] = -1 \); if \(p = 1 \), \(E[f(x)] = 1 \). So, intermediate value theorem tells us that \(\exists p \) such that \(E[f(x)] = 0 \). So we pick this \(p \) and get a bound for \(\text{D}_{\mu_p} \geq n^{2/3} \). Although this bound is for \(D_{\mu_p} \), Yao’s minimax lemma tells us that for any distribution, \(D_{\mu_p} \) is a lower bound for \(R(f) \). This probability \(p \) where \(E[f(x)] = 0 \) is called “critical probability” of \(f \). Every monotone function has a well-defined critical probability. Today’s theorem will be in terms of this critical probability.

Theorem 5.0.39. If \(f \) is a non-constant, monotone graph property on \(n \)-vertex graphs, then \(R(f) = \Omega(\min\{\frac{n}{p^*}, \frac{n^2}{\log n}\}) \), where \(p^* \) is the critical probability of \(f \).

Note that we can always assume \(p^* \leq \frac{1}{2} \). Why? Because if the critical probability of \(f > 1/2 \), we can always consider \(g(x) = 1 - f(1-x) \), then \(p^*(g) = 1 - p^*(f) \).

Critical probability \(p^* \) is the probability that makes \(E[f(x)] = 1/2 \).

Let us now define the key graph theoretic property “graph packing” that we need for the proof. Graph packing is the basis for a lot of lower bounds for graph properties.

Definition 5.0.40 (Graph Packing). Given graphs \(G, H \) with \(|V(G)| = |V(H)| \), we say that \(G \) and \(H \) pack if \(\exists \) bijection \(\phi : V(G) \rightarrow V(H) \) such that \(\forall \{u, v\} \in E(G), \{\phi(u), \phi(v)\} \notin E(H) \). \(\phi \) is called a packing.

We state the following theorem, but we will not prove it:

Theorem 5.0.41 (Sauer-Spencer theorem). If \(|V(G)| = |V(H)| = n \) and \(\Delta(G) \cdot \Delta(H) \leq \frac{n^2}{2} \), then \(G \) and \(H \) pack.

Here \(\Delta(G) = \text{max degree in } G \).

Note: you can never pack a 0-certificate and a 1-certificate. What is the graph of a 0-certificate? It is a bunch of things that are not edges in the input graph.

Intuition: Sauer-Spencer theorem says that if two graphs are small, you can pack them. Since we cannot pack a 0-certificate and a 1-certificate, it implies that either of the two has to be big so that certificate complexity is big which gives you a handle on the lower bound.

Consider a decision tree; pick a random input \(x \in \{0, 1\}^n \) according to \(\mu_p \) and run the decision tree on \(x \). Let \(Y = \#1\text{'s read in the input, and } Z = \#0\text{'s read in the input.} \)

Then, cost of the tree on random input = \(Y + Z \).

\[D_{\mu_p}(f) = E[\text{cost}] = E[Y] + E[Z]\]

By Yao’s minimax lemma, it is enough to prove that either \(E[Y] \) or \(E[Z] \) is \(\Omega(\min\{\frac{n}{p^*}, \frac{n^2}{\log n}\}) \). Note that \(Y \) and \(Z \) are non-negative random variables (since they represent the number of 0's and 1's read), so it is enough to prove the lower bound on one of them.
Proof outline (remember we can assume \(p^* \leq 1/2 \)):

Claim 1: \(E[Z]/E[Y] = \frac{1-p}{p} \).

\[E[Y] \geq \frac{n}{64} \]

\(\Rightarrow \) we may assume \(E[Y] \leq \frac{n}{64} \).

\[E[Y] f(x) = 1 \land \Delta(G_x) \leq np + \sqrt{4np \log n} \leq E[Y] \frac{E[Y]}{Pr[f(x)=1 \land \Delta(G_x) \leq np + \sqrt{4np \log n}]} \]

Later: The constant 4 above is chosen so that

\[Pr[\Delta(G_x) \leq np + \sqrt{4np \log n}] \geq 1 - \frac{1}{n} \] (Chernoff bound)

This implies that there exists an input, \(x \), satisfying \(f(x) = 1 \) and \(\Delta(G_x) \leq np + \sqrt{4np \log n} \), such that \(y \leq n/32 + o(n) \). Therefore, there exists a 1-certificate with \(\Delta \leq np + \sqrt{4np \log n} \) and \#edges \(\leq n/32 + o(n) \). This means that we are touching at most \(n/16 \) vertices, and so at least \(n/2 \) vertices are isolated.

Claim 2: All 0-certificates must have at least \(n^2/16(np + \sqrt{4np \log n}) \) edges.

Now we have a lower bound on the number of edges of any 0-certificate. As we did \(E[Y] \), we can say

\[E[Z] \geq E[Z|f(x) = 0] \cdot Pr[f(x) = 0] \]

\[\geq \frac{n^2}{16(np + \sqrt{4np \log n})} \cdot \frac{1}{2} \]

\[= \frac{n^2}{32(np + \sqrt{4np \log n})} \]

\[\geq \min \left\{ \frac{n^2}{64np}, \frac{n^2}{256 \log n} \right\} \]

\[\geq \min \left\{ \frac{n}{64p}, \frac{n}{256 \log n} \right\} \]
Claim 2 Proof: This proof amounts to showing that if the claim were false, we could pack a 1-certificate and 0-certificate.

We will show that if $\Delta(G) \leq k$ and G has more that $n/2$ isolated vertices and $|E(H)| \leq \frac{n^2}{16\Delta(G)}$, then G and H pack.

Number of edges in a graph equals half the sum of the degrees of the vertices, i.e.,

$$|E(H)| = \frac{1}{2} \cdot \sum_{v \in H} \deg(v)$$

$$= \frac{d_{avg}(H) \cdot n}{2}$$

$$\Rightarrow d_{avg}(H) = \frac{2}{n} \cdot |E(H)|$$

$$= \frac{n}{8\Delta(G)}.$$

If H' is a subgraph of H spanned by $n/2$ lowest degree vertices, then

$$\Delta(H') \leq 2 \cdot d_{avg}(H).$$

Now, if you have an upper bound on the average, you can bound the max of $n/2$ smallest items.

By packing $H - H'$ with the isolated vertices of G, we can extend a packing of H' and G' to one one H and G.

We can get a packing of H' and G' because,

$$\Delta(G') \Delta(H') \leq \frac{n}{4} \Delta(G) \Delta(H')$$

$$= \frac{n}{2}.$$

Apply Sauer-Spencer theorem.

Claim 1 Proof: Define a bunch of indicator variables. Let,

$$Y_i = \begin{cases}
1, & \text{if } x_i \text{ is read as a '1'} \\
0, & \text{otherwise}
\end{cases}$$

$$Z_i = \begin{cases}
1, & \text{if } x_i \text{ is read as a '0'} \\
0, & \text{otherwise}
\end{cases}$$

Then,

$$Y = \sum_{i=1}^{\binom{n}{2}} Y_i; \quad Z = \sum_{i=1}^{\binom{n}{2}} Z_i$$

Then it is enough to show that:

$$\forall i : \begin{cases}
either E[Y_i] = E[Z_i] = 0 \\
or E[Z_i] = \frac{1-p}{p}
\end{cases}$$

Enough to show the same under an arbitrary conditioning on $x_j (j \neq i)$ – because x_i's are independent.

Apply an arbitrary conditioning of $x_j (j \neq i)$. If this conditioning implies that the i-th coordinate is not read, it implies $Y_i = Z_i = 0$. Otherwise this is the only coordinate that is left to be read; and we know $\Pr[1] = p$ and
\[\Pr[0] = 1 - p, \text{ i.e.,} \]
\[
\frac{E[Z_i]}{E[Y_i]} = \frac{\Pr[X_i = 0]}{\Pr[X_i = 1]} = \frac{1 - p}{p}.
\]

What do you mean by “enough to show under arbitrary conditioning”? If you have conditioning on rest of \(N - 1 \) variables then we have \(C_1, C_2, \ldots, C_{2N-1} \) conditions. This implies,
\[
E[Z_i] = E[Z_i|C_1] \cdot \Pr[C_1] + E[Z_i|C_2] \cdot \Pr[C_2] + \ldots
\]
\[
E[Y_i] = E[Y_i|C_1] \cdot \Pr[C_1] + E[Y_i|C_2] \cdot \Pr[C_2] + \ldots
\]

We used a property of decision trees that whether or not you read \(i \)th variable is independent of the value of the \(i \)th variable; it may depend on what the values of other variables are.
Lecture 6

Linear and Algebraic Decision Trees

Scribe: Umang Bhaskar

6.1 Models for the Element Distinctness Problem

Definition 6.1.1 (The Element Distinctness Problem). Given n items (x_1, x_2, \cdots, x_n) from a universe U not necessarily ordered, does \(\exists i \neq j \in [n] : x_i \neq x_j \)?

The complexity of the problem depends on the model of computation used.

Model 0. Equality testing only. This is a very weak model with no non-trivial solutions. The element distinctness problem would require $\Theta(n^2)$ comparisons.

Model 1. Assume universe U is totally ordered. We can compare any two elements x_i and x_j and take either of 3 branches depending on whether $x_i > x_j$, $x_i = x_j$, or $x_i < x_j$. Note that in a computer science context this makes sense, as it is always possible to compare two objects by comparing their binary representations.

In this model, the problem reduces to sorting, hence the element distinctness problem can be solved in $O(n \log n)$ comparisons. In fact we have a matching lower bound $\Omega(n \log n)$ for this problem, through a complicated adversarial argument.

Instead of describing the adversarial argument we describe a stronger model. We then use this model to give us a lower bound, since a lower bound for the problem in the stronger model is also a lower bound in this model.

Model 2. We assume w.l.o.g. that the universe $U = \mathbb{R}$ with the usual ordering. Then the comparison of two elements x_i and x_j is equivalent to deciding if $x_i - x_j$ is $<$, $>$ or $= 0$. For this model we allow more general tests, such as

\[
\text{is } x_1 - 2x_3 + 4x_5 - x_7 \begin{cases}
> 0, \\
= 0, \\
< 0
\end{cases}
\]

In general at an internal node v in the decision tree, we can decide whether $p_v(x_1, x_2, \cdots, x_n) \begin{cases}
> 0 \\
= 0, \\
< 0
\end{cases}$, and branch accordingly. Here $p_v(x_1, x_2, \cdots, x_n) = a_v(0) + \sum_{i=1}^{n} a_i^{(v)} x_i$.
6.2 Linear Decision Trees

For model 2 as described above, we have the following definition.

Definition 6.2.1 (Linear Decision Trees). A linear decision tree is a 3-ary tree such that each internal node v can decide whether $p_v(x_1, x_2, \cdots, x_n) \begin{cases} > 0 \\ = 0 \\ < 0 \end{cases}$, and branch accordingly. The depth of such a tree is defined as usual.

If we assume that our tree tests membership in a set, we can consider the output to be $\{0, 1\}$. Then we can think of two subsets $W_0, W_1 \subseteq \mathbb{R}^n$ where:

1. $W_i = \{ \bar{x} \in \mathbb{R}^n : \text{tree outputs } i \}$
2. $W_0 \cap W_1 = \emptyset$
3. $W_0 \cup W_1 = \mathbb{R}^n$

Consider a leaf λ of the tree. Then the set $S_\lambda = \{ x \in \mathbb{R}^n : x \text{ reaches } \lambda \}$ is described by a set of linear equality / inequality constraints, corresponding to the nodes on the path from the root to the leaf. Then S_λ is a convex polytope, since each linear equality / inequality defines a convex set, and the intersection of convex sets is itself a convex set.

Convex sets are connected, in the following sense:

Definition 6.2.2 (Connected Sets). A set $S \subseteq \mathbb{R}^n$ is said to be (path-) connected if $\forall a, b \in S, \exists$ a function $p_{ab} : [0, 1] \rightarrow S$ such that:

- p_{ab} is continuous
- $p_{ab}(0) = a$
- $p_{ab}(1) = b$

Suppose a linear decision tree T has L_1 leaves that output 1 and L_0 leaves that 0. Then

$$W_1 = \bigcup_{\lambda \text{ outputs } 1} S_\lambda$$

For a set S, define $\#S$ to be the number of connected components of S. Then, since each leaf outputs at most a single connected component,

$$\#W_1 \leq L_1$$

and similarly,

$$\#W_0 \leq L_0$$

For a given function $f : \mathbb{R}^n \rightarrow \{0, 1\}$ (for example, element distinctness) we define $f^{-1}(1) = W_1 = \{ \bar{x} : f(x) = 1 \}$, and $f^{-1}(0)$ is similarly defined. Then,

$$L_1 \geq \#f^{-1}(1)$$

and,

$$L_0 \geq \#f^{-1}(0)$$
This implies for any decision tree that computes \(f \), the number of leaves \(L \) satisfies

\[
L = L_1 + L_0 \geq \# f^{-1}(1) + \# f^{-1}(0)
\]

and hence,

\[
\text{height}(T) \geq \log_3(\# f^{-1}(1) + \# f^{-1}(0))
\]

We now return to the element distinctness problem. Remember that

\[
f(x_1, x_2, \ldots, x_n) = \begin{cases}
1, & \text{if } \forall i \neq j, x_i \neq x_j \\
0, & \text{o.w.}
\end{cases}
\]

It turns out that \(f^{-1}(1) \) has at least \(n! \) connected components. Actually the correct number is \(n^m \), but we are only interested in the lower bound which we will prove.

Lemma 6.2.3. \(\forall \sigma, \pi \in S_n \), the group of all permutations, \(\sigma \neq \pi \), the points \(x^\sigma = (\sigma(1), \sigma(2), \ldots, \sigma(n)) \) and \(x^\pi = (\pi(1), \pi(2), \ldots, \pi(n)) \) lie in distinct connected components of \(f^{-1}(1) \).

Proof. The proof is by contradiction. Suppose not, then there exists a path from \(x^\sigma \) to \(x^\pi \) lying entirely inside \(f^{-1}(1) \). Then, for permutations \(\sigma, \pi \),

\[
\exists i \neq j \text{ s.t. } \begin{align*}
\sigma(i) &< \sigma(j) \\
\pi(i) &> \pi(j)
\end{align*}
\]

Now \(x^\sigma \) and \(x^\pi \) lie on opposite sides of the hyperplane \(x_j = x_j \). Hence any path from \(x^\sigma \) to \(x^\pi \) must contain a point \(x^* \) s.t. \(x_i^* = x_j^* \), by the Intermediate Value Theorem and \(f(x^*) = 0 \), which gives us the required contradiction.

Suppose a linear decision tree \(T \) solves element distinctness. Then

\[
D(\text{element distinctness}) \geq \log_3(\# f^{-1}(0) + \# f^{-1}(1)) \\
\geq \log_3(n!) \\
= \Omega(n \log n)
\]

Note that very little of this proof actually uses the linearity of the nodes. We can as well use other functions e.g. quadratic functions and get the same results.

6.3 Algebraic Decision Trees

An algebraic decision tree of order \(d \) is similar to a linear decision tree, except the internal nodes evaluate polynomials of degree \(\leq d \), and branch accordingly.

The problem now is that the components may no longer be connected, e.g. \((x + y)(x - y) > 0 \). However, it turns out that low degree polynomials aren’t too “bad”, as evidenced by the following theorem:

Theorem 6.3.1 (Milnor-Thom). Let \(p_1(x_1, x_2, \ldots, x_m), p_2(x_1, x_2, \ldots, x_m), \ldots, p_k(x_1, x_2, \ldots, x_m) \) be polynomials with real coefficients of degree \(\leq k \) each. Let \(V = \{ \bar{x} \in \mathbb{R}^m : p_1(\bar{x}) = p_2(\bar{x}) = \cdots = p_k(\bar{x}) = 0 \} \) (called an algebraic variety. Then the number of connected components in \(V = \# V \leq k(2k - 1)^{m-1} \).

Milnor conjectured that the lower bound for the number of connected components in \(V \) should be \(k^m \). As an example, consider the equalities

\[
10 x^2 + 7 y + 2 z = 0, \quad 3 x + 4 y + 5 z = 0, \quad 7 x^2 + 12 y^2 + 5 z^2 = 0
\]
Then \(p_1(x) = p_2(x) = \cdots = p_m(x) \) is satisfied at exactly \(k^m \) points, each of which forms a connected component.

It follows from the theorem that each leaf gives at most \(k(2k-1)^{m-1} \) components. However, internal nodes are not restricted to equalities and can evaluate inequalities. In the next lecture we introduce Ben-Or’s lemma, which handles this case. We use this to get a lower bound for tree depth in such a model, i.e. where the internal nodes are allowed to perform algebraic computations and compute inequalities.
Algebraic Computation Trees and Ben-Or’s Theorem

7.1 Introduction

Last time we saw the Milnor-Thom theorem, which says that the following

Theorem 7.1.1 (Milnor-Thom). Let \(p_1(x_1, x_2, \ldots, x_m), p_2(x_1, x_2, \ldots, x_m), \ldots, p_t(x_1, x_2, \ldots, x_m) \) be polynomials with real coefficients of degree \(\leq k \) each. Let \(W = \{ \vec{x} \in \mathbb{R}^m : p_1(\vec{x}) = p_2(\vec{x}) = \cdots = p_t(\vec{x}) = 0 \} \). Then the number of connected components in \(W = \#W \leq k(2k-1)^{m-1} \).

If instead of constant-degree polynomials we allowed arbitrary degree polynomials then it turns out that the element distinctness problem could be done in \(O(1) \) time! Consider the expression

\[
x = \prod_{i < j} (x_i - x_j)
\]

Then \(x = 0 \iff \exists i \neq j : x_i = x_j \). Hence, this is obviously too powerful a model.

In general such problems can be posed as “set recognition problems”, e.g. the element distinctness can be posed as recognising the set \(W \) where \(W = \{ \vec{x} \in \mathbb{R}^m : \forall i, j(i \neq j \Rightarrow x_i \neq x_j) \} \). Define \(D_{lin}(W) \) as the height of the shortest linear decision tree that recognizes \(W \). We saw in the last lecture that for this particular problem, \(D_{lin}(W) \geq \log_3(\#W) \).

7.2 Algebraic Computation Trees

Definition 7.2.1 (Algebraic Computation Trees). An algebraic computation tree (abbreviated “ACT”) is one with two types of internal nodes:

1. Branching Nodes: labelled “\(v:0 \)” where \(v \) is an ancestor of the current node
2. Computation Nodes: labelled “\(v \) [op] v’” where \(v, v’ \) are
 (a) ancestors of the current node,
(b) input variables, or
(c) constants

and \(\text{op} \) is one of +, −, ×, ÷. The leaves are labelled “ACCEPT” or “REJECT”. The computation nodes in an algebraic computation tree have 1 child, while branching nodes have 3 children.

For a set \(W \subseteq \mathbb{R}^n \), we define \(D_{al}(W) \) = minimum height of an algebraic computation tree recognizing \(W \). Note that in this model, every computation is being individually charged, hence an operation such as computing \(\prod_{i < j} (x_i - x_j) \) would be charged \(O(n^2) \).

The Milnor-Thom theorem is applicable to polynomials of low degree, and it turns out that we still do not exactly have that. For example, consider a path of length \(h \) in a tree. Then the degree of the polynomial computed can be \(2^h \).

\[
\begin{align*}
w_1 &= x_1 x_1 \\
w_2 &= w_1 w_1 \\
w_3 &= w_2 w_2 \\
\vdots \\
w_h &= w_{h-1} w_{h-1}
\end{align*}
\]

We need to somehow bound the degree of the polynomial obtained from such a path. Let \(v \) be a node in an ACT and let \(w \) denote its parent. In order to do this, with each node \(v \) of an ACT, we associate a polynomial equality / inequality as follows:

1. If \(w = \text{parent}(v) \) is a branching node, then \(p_v = p_w \land \forall y \neq 0 \), where the inequality contains \(<, =, \) or \(> \) depending on the branch taken from \(w \) to reach \(v \).

2. If \(w = \text{parent}(v) \) is a computation node of the form \(v_1 \text{op} v_2 \), then
 (a) If \(\text{op} = +, -, \text{or} \times \), then \(p_v = p_{v_1} \text{op} p_{v_2} \)
 (b) if \(\text{op} = \div \), then \(p_v p_{v_2} = p_{v_2} \).

At this point, we can even introduce the square root operator for our algebraic computation tree so that if the node is labelled \(\sqrt{v} \), then the corresponding polynomial inequality is \(p_v^2 = p_w \).

Let \(\lambda \) be a leaf of the ACT, and we define as usual \(S_\lambda = \{ \vec{x} \in \mathbb{R}^n : \vec{x} \text{ reaches } \lambda \} \). Let \(w_i \) denote the variable introduced at node \(i \) in the tree for obtaining the polynomial equalities and inequalities. Then we can write

\[
S_\lambda = \left\{ \vec{x} \in \mathbb{R}^n : \exists w_1, w_2, \ldots, w_h \in \mathbb{R} \text{ s.t. } \bigwedge_{v \text{ ancestor of } \lambda} \text{(condition at } v\text{)} \right\}
\]

where “condition at \(v \)” is of the form \(p(\vec{x}, \vec{w}) = 0, > 0 \) or \(< 0 \) for some polynomial \(p \) of degree \(\leq 2 \). In fact we do not require inequalities of the form \(p(\vec{x}, \vec{w}) < 0 \), since we can always negate them.

Now that we have bounded-degree polynomials, in order to apply Milnor-Thom’s theorem we need to remove the inequalities. For this, conditions of the form \(p(\vec{x}, \vec{w}) \geq 0 \) can be rewritten as

\[
\exists y : p(\vec{x}, \vec{w}) = y^2
\]

This does not increase the degree of the polynomial, although now we are moving the equation to a higher dimension space (through the introduction of more variables). We can move back to the lower dimension space by simply projecting the solution space to the lower dimension. Note that this projection function is a continuous map.

But we still don’t know how to handle strict inequalities, which is all we have. In order to handle strict inequalities, we proceed as follows. Suppose that the subset \(v \subseteq \mathbb{R}^m \) is defined by a number of polynomial equations and strict inequalities i.e.
\[
V = \{ \bar{z} \in \mathbb{R}^m : p_1(\bar{z}) = p_2(\bar{z}) = \cdots = p_t(\bar{z}) \\
q_1(\bar{z}) > 0, q_2(\bar{z}) > 0, \ldots, q_u(\bar{z}) > 0 \}
\]

Then \(S_\lambda = \{ \bar{z} \in \mathbb{R}^n : \exists \bar{w} \in \mathbb{R}^h(\bar{z}, \bar{w}) \in V_1 \} \), where \(V \) is of the the above form. Further, \(S_\lambda \) is the projection of \(V \) onto the first \(n \) coordinates. Since projection is a continuous function,

\[
\#S_\lambda \leq \#V
\]

Suppose \(V = V_1 \cup V_2 \cup \cdots \cup V_l \), where the \(V_\lambda \) are the connected components of \(V \). Pick a point \(\bar{z}_i \in V_i \), for each \(V_i \), then we have a point in each connected component of \(V \). Each \(\bar{z}_i \) is also in \(V \), so it satisfies the equality and inequality constraints, and \(q_1(\bar{z}_i), q_2(\bar{z}_i), \ldots, q_u(\bar{z}_i) \) are all \(> 0 \).

Let \(\varepsilon = \min_{i,j} q_j(\bar{z}_i) \). Let

\[
V_\varepsilon = \{ \bar{z} \in \mathbb{R}^m : p_1(\bar{z}) = p_2(\bar{z}) = \cdots = p_t(\bar{z}) = 0 \\
q_1(\bar{z}) \geq \varepsilon, q_2(\bar{z}) \geq \varepsilon, \ldots, q_u(\bar{z}) \geq \varepsilon \}
\]

Clearly \(V_\varepsilon \subseteq V \). Also, \(V_\varepsilon \) contains every \((\bar{z}_i), i.e., \(V_\varepsilon \) contains a point in each component \(V_i \) of \(V \).

Therefore,

\[
\#V_\varepsilon \geq \#V
\]

Now we can replace the inequalities, and we obtain the set \(V' \) as

\[
V' = \{ \bar{z} \in \mathbb{R}^m : \exists y \in \mathbb{R}^u \cap (\text{polynomial equations of degree at most 2}) \}
\]

and note that \(V_\varepsilon \) is the projection of \((\bar{z}, \bar{w}) \in \mathbb{R}^{m+u} \) onto \(\mathbb{R}^m \). Then,

\[
\text{dimension: } \frac{\#S_\lambda}{n} \leq \frac{\#V}{n + h} \leq \frac{\#V'}{n + h} \leq \frac{\#V'}{n + h + u} \leq 2(2.2 - 1)^{n + h + u - 1}
\]

and the last inequality is obtained by applying the Milnor-Thom theorem, since the constraints in \(V' \) are equations of degree 2, as required by Milnor-Thom. Also, \(h = \) number of computation nodes, and \(u \leq \) number of branching nodes, hence \(h + u \leq \) height of the tree.

So,

\[
\#S_\lambda \leq 2.2^{n + h + \text{ht}(T)} - 1 \leq 3^{n + h + \text{ht}(T)}
\]

Using the fact that \(\#(A \cup B) \leq \#A + \#B \) and \(W = \bigcup_{\lambda} S_\lambda \), we get that

\[
\#W \leq \sum_{\lambda} \#S_\lambda
\]

and since the number of leaves \(\leq 3^{h + \text{ht}(T)} \),

\[
\#W \leq 3^{h + \text{ht}(T)} 3^{n + h + \text{ht}(T)} = 3^{n + h + 2 \text{ht}(T)}
\]

or,

\[
\text{ht}(T) \geq \frac{\log_3(\#W) - n}{2} = \Omega(\log(\#W) - n)
\]
which is Ben-Or’s theorem.
From this we can derive a number of results, such as,

- For element distinctness since \(\#W = n! \), \(D_{alg}(W) = \Omega(\log n! - n) = \Omega(n \log n) \)
- Set equality, set inclusion, “convex hull” are all \(\Omega(n \log n) \)
- Knapsack is \(\Omega(n^2) \)
We have previously looked at decision trees that allow us to prove lower bounds on “data access” for a problem. We saw that the best possible lower bound provable in this setting is $\Omega(n)$ (or n if you care about constants).

We now look at a different model of computation called a circuit, that allows us to prove lower bounds on “data movement”. Loosely speaking, this is the amount of data we will need to move around in order to solve a problem. We will see that in this model, an $\Omega(n)$ lower bound is in fact trivial.

Circuits attempt to address the issue of the lack of super-constant lower bounds with the Turing Machine (TM) model, where the only technique available is simulation and diagonalization and we do not know how to “analyze” the computation. Using circuits we will be able to look into the innards of computation.

A circuit is built out of AND (\wedge), OR (\vee) and NOT (\neg) gates along with wires and has special designated input and output gates. More formally,

Definition 8.0.2 (Boolean Circuit). A Boolean circuit on n Boolean variables x_1, x_2, \ldots, x_n is a directed acyclic graph (DAG) with a designated “type” for each vertex:

1. Input vertices with indegree (fan-in) = 0. These are labelled with: $x_1, \neg x_1, x_2, \neg x_2, \ldots, x_n, \neg x_n$.
2. An output vertex with outdegree (fan-out) = 0.
3. AND (\wedge), OR (\vee) gates with indegree = 2, and NOT (\neg) gates with indegree = 1.

Since a circuit is a DAG, we can have a topological sort $x_1, \ldots, x_n, g_1 = x_{n+1}, g_2 = x_{n+2}, \ldots, g_s = x_{n+s} = y$ of the graph with the input vertices as the first few vertices in the sort and the output gate as the last vertex in the sort.

Then we can inductively define the value computed by the circuit as follows:

1. Value of input vertex x_i is the assignment to variable x_i.
2. Value of x_j for ($j > n$) is:
 - $\text{value}(x_{j_1}) \wedge \text{value}(x_{j_2})$, if x_j is an AND gate with inputs x_{j_1} and x_{j_2}.
 - $\text{value}(x_{j_1}) \vee \text{value}(x_{j_2})$, if x_j is an OR gate with inputs x_{j_1} and x_{j_2}.
 - $\neg \text{value}(x_{j_1})$, if x_j is a NOT gate with input x_{j_1}.
3. Value computed by the circuit on a given input assignment is $\text{value}(y)$.
Every Boolean circuit computes a Boolean function and provides a computationally efficient encoding of the function.

To compute \(f : \{0,1\}^* \to \{0,1\} \) (i.e. language \(L_f \subseteq \{0,1\}^* \)), we need a circuit family \(\{C_n\}_{n=1}^\infty \), where \(C_n \) computes \(f \) on inputs of length \(n \).

Definition 8.0.3 (Size of a circuit). For a circuit \(C \), we define its size as

\[
\text{size}(C) = \# \text{edges (wires) in } C = \Theta(\# \text{ gates in } C).
\]

Since we have indegree \(\leq 2 \), the number of wires is within a factor of 2 of the number of gates.

Definition 8.0.4 (Depth of a circuit). For a circuit \(C \), we define its depth as

\[
\text{depth}(C) = \text{maximum length of an input-output path}.
\]

We will see later that size and depth can be traded off. We will look at lower bounds on size, depth and size-depth tradeoffs.

Theorem 8.0.5. If \(L \in \mathbf{P} \), then \(L \) has a polynomial sized circuit family i.e.

\[
\exists \{C_n\}_{n=1}^\infty \text{such that } \forall n \forall x \in \{0,1\}^n \, C_n(x) = 1 \iff x \in L,
\]

and \(\text{size}(C_n) = \text{poly}(n) \).

Proof. Proof idea Build a circuit to simulate the Turing Machine for \(L \). In fact, we get a circuit of size \(O(\text{runtime of TM}^2) \). (See Sipser [Sip06], Chapter 9, pages 355–356).

With this we have a plan to show \(\mathbf{P} \neq \mathbf{NP} \):

1. Pick your favorite \(\mathbf{NP} \)-complete problem \(L \).
2. By the above theorem, \(L \) has polynomial-size circuits if \(\mathbf{P} = \mathbf{NP} \).
3. Prove a super-polynomial circuit size lower bound for \(L \).

However, around 25 years of effort in this line of work has not produced even a super-linear lower bound for an \(\mathbf{NP} \)-complete problem. The best known lower bound for a problem in \(\mathbf{NP} \) is \(\geq 5n - o(n) \).

What we can prove however is that polynomial circuits of some restricted types cannot solve “certain” problems “efficiently”.

Theorem 8.0.6 (Shannon’s Theorem). Almost all functions \(f : \{0,1\}^n \to \{0,1\} \) require circuit size \(\geq \Omega\left(\frac{2^n}{n}\right) \). (The bound can be improved to \(\frac{2^n}{n} \left(1 + \Omega\left(\frac{1}{\sqrt{n}}\right)\right) \)).

Proof. We can assume that the circuit does not use NOT gates. We can get the effect of a NOT gate somewhere in the circuit by using DeMorgan’s Laws and having all inputs as well as their negations.

We can lay down any circuit in a topological sort, so that any edge is from a vertex \(u \) to a vertex \(v \) that is after \(u \) in the sorted order. With this in mind, we can count the number of circuits (DAGs) of size \(s \). For each gate we have two choices for the type of the gate and \(2^s \) choices for inputs that feed the gate. So the total number of such circuits is \((2^2)^s \leq s^{3s} \).

Each circuit computes a unique Boolean function, so that the number of functions that have a circuit of size \(\leq \frac{2^n}{10n} \) is

\[
\leq \left(\frac{2^n}{10n}\right)^{\frac{3}{10n}2^n} = \frac{2^{3\cdot2^n/10}}{(10n)^{3\cdot2^n/10}} = 2^{2n/10 - 3\cdot2^n/10 - \log 10n} = 2^{2n/10 - 3\log 10n} < 2^{2n/10 - \log 10n} < 2^n.
\]

But the total number of functions \(f : \{0,1\}^n \to \{0,1\} \) is \(2^{2^n} \), so that \(\lim_{n \to \infty} \frac{2^n}{2^{2^n}} = 0. \)
Observe that every function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ has a circuit of size $O(n \cdot 2^n)$. We can get this by writing f as an OR of minterms (DNF). We will need at most 2^n minterms.

It is possible to improve the above bound to $O\left(\frac{2^n}{n}\right)$.

We will now prove our first concrete lower bound. This bound is for the function $\text{THR}^2_n : \{0, 1\}^n \rightarrow \{0, 1\}$ defined as

$$\text{THR}^k_n(x) = \begin{cases} 1, & \text{if the number of 1s in } x \text{ is } \geq k \\ 0, & \text{otherwise} \end{cases}$$

Theorem 8.0.7. Any circuit for THR^2_n must have $\geq 2n - 3$ gates.

Proof. Note that we have the trivial lower bound of $\geq n - 1$. The lower bound in the theorem is proved by the technique of “gate elimination”.

We will prove the theorem by induction on n. For the base case ($n = 2$), we have $\text{THR}^2_2 = \text{AND}_2$ for which we need a circuit of size $1 = 2n - 3$.

Now, let C be a minimal circuit for THR^2_n. Then C does not have any gate that reads inputs (x_i, x_i) or $(x_j, \neg x_i)$ or $(\neg x_i, \neg x_j)$ for $i \in [n]$.

Pick a gate in C such that its inputs are $z_i = x_i$ (or $\neg x_i$) and $z_j = x_j$ (or $\neg x_j$), for some $i \neq j$. Then we can claim that either z_i or z_j must have fan-out at least 2. To see this, note that by suitably setting z_i and z_j, we can get three different subfunctions on the remaining $n - 2$ variables: THR^2_{n-2}, THR^1_{n-2} and THR^0_{n-2}. But if both z_i and z_j have fan-out only 1, the settings of z_i and z_j can create only two different subcircuits, which gives us a contradiction.

Suppose x_i (or $\neg x_i$) has fan-out ≥ 2. Then, setting $x_i = 0$ eliminates at least two gates. So we have a circuit for THR^2_{n-1} (the resulting subfunction) with size $\leq (\text{original size}) - 2$.

Now by our induction hypothesis, (new size) $\geq 2(n - 1) - 3 = 2n - 5$. This implies that the original size was $\geq 2 + (\text{new size}) \geq 2n - 3$.

\square

8.1 Unbounded Fan-in Circuits

We study the class of functions that are computable by unbounded fan-in circuits. Here the DAG representing a circuit is allowed to have unbounded indegree for vertices representing AND, OR and NOT gates.

Definition 8.1.1. AC^0 is the class of $O(1)$-depth, polynomial size circuits with unbounded fan-in for AND, OR and NOT gates.

8.2 Lower Bound via Random Restrictions

There are some assumptions we can make about AC^0 circuits:

1. We do not have any NOT gates. As before, if a NOT gate is indeed required somewhere in a circuit, we can get an equivalent circuit using DeMorgan’s Laws that does not have any NOT gates, but uses the negations of variables as input gates.

2. The vertices (gates) of the circuit are partitioned into $d + 1$ layers $0, 1, \ldots, d$ such that: any edge (wire) (u, v) is from vertex u in layer i to vertex v in layer $i + 1$ for some i, inputs $x_i, \neg x_i, i \in [n]$ are at layer 0, the output is at layer d, each layer consists of either all AND gates or all OR gates and layers alternate between AND gates and OR gates. d is the depth of the circuit.

We can convert the DAG for the circuit into this form after a topological sort. First group the AND gates and OR gates together into layers. If there is an edge from a vertex u in layer i to a vertex v in layer $j > i + 1$, then we can
replace the edge with a path from \(u \) to \(v \) having a vertex in each intermediate layer. Each new vertex represents an appropriate gate for the layer it is in. For each edge in the original circuit the number of gates (wires) we add is at most the (constant) depth of the original circuit.

Note that constant-depth polynomial-sized circuits remain so even after the above transformations, so we can assume that \(\text{AC}^0 \) circuits have these properties.

Now we are ready to prove our first lower bound on \(\text{AC}^0 \).

Theorem 8.2.1 (Håstad \cite{Has86}), \(\text{PAR}_n \notin \text{AC}^0 \).

Proof. We will prove this by induction on the depth of the circuit. Suppose there exists a depth \(d \), size \(n^c \) circuit for \(\text{PAR}_n \). We will show that there exists a restriction (partial assignment) such that after applying it

- the resulting subfunction which is either \(\text{PAR} \) or \(\neg \text{PAR} \) depends on \(n^{1/4} \) variables.
- there exists a depth \(d-1 \), size \(O(n^c) \) circuit for the resulting subfunction.

But by our induction hypothesis this will not be possible.

For the base case, we will show that a circuit of depth 2 computing \(\text{PAR} \) or \(\neg \text{PAR} \) must have \(> 2^{n-1} \) gates. This will complete the proof.

For the base case let’s assume without loss of generality that level 1 is composed of \(\text{OR} \) gates and level 2 of an \(\text{AND} \) gate producing the output. We claim that each \(\text{OR} \) gate must depend on every input \(x_i \). For suppose this is not the case. Some \(\text{OR} \) gate is independent of (say) \(x_1 \). Then set \(x_2, x_3, \ldots, x_n \) so as to make that \(\text{OR} \) gate output 0. Then the circuit outputs 0, but the remaining subfunction is not constant. This gives a contradiction. Now, for each \(\text{OR} \) gate there is a unique input that makes it output 0. For each 0-input to \(\text{PAR} \) there must be an \(\text{OR} \)-gate that outputs 0. So the number of \(\text{OR} \) gates is at least the number of 0-inputs to \(\text{PAR} \) which is \(2^{n-1} \).

To prove the induction step, consider the following random restriction on the \(\text{PAR} \) function. For each \(i \in [n] \), independently set

\[
x_i \left\{ \begin{array}{l}
0, \quad \text{with probability } \frac{1}{2} - \frac{1}{2 \sqrt{n}} \\
1, \quad \text{with probability } \frac{1}{2} + \frac{1}{2 \sqrt{n}} \\
\ast, \quad \text{with probability } \frac{1}{\sqrt{n}}
\end{array} \right.
\]

Here \(\ast \) means that the variable is not assigned a value and is free. Repeat this random experiment with the resulting subfunction. After one restriction we get that

\[
\mathbb{E}[\text{# of free variables}] = \frac{1}{\sqrt{n}} \cdot n = \sqrt{n}.
\]

Then by applying a Chernoff bound we see that with probability \(\geq 1 - 2^{-O(n)} \), we have \(\geq \sqrt{n} \) free variables. After two restrictions, with probability \(\geq 1 - \exp(-n) \), we have \(\geq n^{1/4} \) free variables. Let \(\text{BAD}_0 \) denote the event that this is not the case.

We make two claims:

Claim 1: After the first random restriction, with probability \(\geq 1 - O\left(\frac{1}{\sqrt{n}}\right) \), every layer-1 \(\text{OR} \) gate depends on \(\leq 4c \) variables.

Claim 2: If every layer-1 \(\text{OR} \) gate depends on \(\leq b \) variables, then after another random restriction, with probability \(\geq 1 - O\left(\frac{1}{b}\right) \), every layer-2 \(\text{AND} \) gate depends on \(\leq \ell b \) variables (where \(\ell b \) is a constant depending on \(b \) alone).

Now, we make the observation that for a function \(g : \{0,1\}^n \to \{0,1\} \) that depends only on \(\ell \) of its inputs, we have a depth-2 \(\text{AND} \)-of-\(\text{OR} \)'s circuit and a depth-2 \(\text{OR} \)-of-\(\text{AND} \)'s circuit computing \(g \) both of size \(\leq \ell \cdot 2^\ell \).

Let \(\text{BAD}_1 \) and \(\text{BAD}_2 \) respectively denote the events that Claim 1 and Claim 2 do not hold. Then with probability \(\geq 1 - O\left(\frac{1}{\sqrt{n}}\right) \) none of the bad events \(\text{BAD}_0, \text{BAD}_1 \) and \(\text{BAD}_2 \) occur. So there exists a restriction of the variables such that none of the bad events occur. That restriction leaves us with a circuit on \(\geq \frac{n^{1/4}}{4} \) variables and by the above switching argument, we can make layer-2 use only \(\text{OR} \) gates and layer-1 use only \(\text{AND} \) gates. Then we can combine layers 2 and 3 to reduce depth by 1, completing the induction step. \(\square \)
Proof of Claim 1. Consider a layer-1 OR gate \(G \). We have two cases:

Fat case: Fan-in of \(G \) is \(4c \log n \).

Then with high probability \(G \) is set to be constant 1. To be precise,

\[
\Pr[G \text{ is not set to } 1] \leq \left(\frac{1}{2} + \frac{1}{2\sqrt{n}} \right)^{4c \log n} \leq \left(\frac{2}{3} \right)^{4c \log n} = n^{4c \log \frac{2}{3}} = n^{-c \log \frac{81}{16}} < n^{-2c}.
\]

Thin case: Fan-in of \(G \) is \(4c \log n \).

\[
\Pr[G \text{ depends on } \geq 4c \text{ variables}] \leq \left(\frac{4c \log n}{4c} \right)^{4c} \leq (4c \log n)^{4c} n^{-2c} \leq n^{-1.5c}.
\]

Applying the Union bound,

\[
\Pr[\exists G \text{ that depends on } \geq 4c \text{ variables}] \leq n^c \cdot n^{-1.5c} = O \left(\frac{1}{n} \right).
\]

Proof of Claim 2. The proof is by induction on \(b \). For the base case \(b = 1 \), every layer-2 gate is “really” a layer-1 gate. So this case reduces to Claim 1 and we can set \(\ell_1 = 4c \).

For the induction step, consider a layer-2 AND gate \(G \). Let \(M \) be a maximal set of non-interacting OR-gates that are in \(G \), where by interacting we mean that two gates share an input variable. Let \(V \) be the set of inputs read by gates in \(M \). We again have two cases:

Fat case: \(|V| > a \log n \).

In this case, \(|M| \geq \frac{|V|}{b} > \frac{a \log n}{b} \), so that

\[
\Pr[\text{a particular OR-gate in } M \text{ is set to } 0] \geq \left(\frac{1}{2} - \frac{1}{2\sqrt{n}} \right)^{b} \geq \left(\frac{1}{3} \right)^{b}.
\]

Then

\[
\Pr[\text{no OR-gate in } M \text{ is set to } 0] \leq \left(1 - \frac{1}{3^b} \right)^{|M|} \leq \left(1 - \frac{1}{3^b} \right)^{\frac{a \log n}{b}} \leq e^{-\frac{a \log n}{b-3b}} \leq n^{-a/(b-3b)} \leq O \left(\frac{1}{n} \right), \text{ for } a = b \cdot 3^b.
\]

Thin case: \(|V| \leq a \log n \).

In this case we have

\[
\Pr[\text{after restriction } V \text{ has } \geq i \text{ free variables}] \leq \left(\frac{|V|}{i} \right)^{\frac{1}{\sqrt{n}}} \leq \left(\frac{a \log n}{i} \right) \cdot n^{-i/2} \leq (a \log n)^i \cdot n^{-i/2} \leq n^{-i/3}.
\]

Choose \(i = 4c \). Then with probability \(\geq 1 - n^{-4c/3} \), there are \(\leq 4c \) free variables remaining in \(V \).

This implies that for every one of the \(2^{4c} \) settings of these free variables, the resulting circuit computes an AND-of-ORs with bottom fan-in \(\leq b - 1 \). This is because all OR gates that are not in \(M \) interact with \(V \).

This further implies that every one of these \(2^{4c} \) subfunctions will (after restriction) depend on \(\leq \ell_{b-1} \) variables.

So the whole function under \(G \) depends on \(\leq 4c + 2^{4c} \cdot \ell_{b-1} \) variables. Set \(\ell_b = 4c + 2^{4c} \cdot \ell_{b-1} \), to complete the induction step.

If we do our calculations carefully through the steps of the induction above, we could prove a lower bound of \(2^{n^{2(1/d)}} \). On the other hand, we can also construct a depth-\(d \) circuit of size \(O(n \cdot 2^{n^{1/d-1}}) \).

8.3 Lower Bound via Polynomial Approximations

We will now look at the Razborov-Smolensky Theorem which gives an alternate proof of $\text{PAR}_n \notin \text{AC}^0$ but also tells us more. This proof also takes a more holistic view of the circuit, rather than looking at just the gates at the lower layers.

Theorem 8.3.1 (Razborov-Smolensky [Raz87, Smo87]). $\text{PAR}_n \notin \text{AC}^0$ (but we will show more).

Proof. Since $p \land q = \neg(p \lor \neg q)$, we can assume that our circuit consists of OR and NOT gates alone. We will not count NOT gates towards depth.

We will associate with each gate G of the depth-d circuit, a polynomial $p_G(x_1, x_2, \ldots, x_n) \in \mathbb{F}_3[x_1, x_2, \ldots, x_n]$ (\mathbb{F}_3 is the field of elements $\{0, 1, 2\}$ under addition and multiplication modulo 3). p_G will approximate the Boolean function calculated by G in the following sense: for all $\vec{a} \in \{0, 1\}^n$, $p_G(\vec{a}) \in \{0, 1\}$ and $\Pr_{\vec{a} \in \{0, 1\}^n}[p_G(\vec{a}) \neq G(\vec{a})] \leq \text{small}(\ell) \approx \frac{1}{\ell}$, where ℓ is a parameter to be fixed later.

Eventually, we will get a polynomial that approximates parity and has “low” degree, which we will see is a contradiction.

We define a polynomial that approximates an OR gate in the following manner. We want to know if the input \vec{x} to the OR gate is $\vec{0}$. Take a random vector $\vec{r} \in_R \{0, 1\}^n$ and compute $\vec{r} \cdot \vec{x} \mod 3 = \sum_{i \in [n]} r_i x_i \mod 3$. If $\vec{x} = \vec{0}$, then $\vec{r} \cdot \vec{x} \mod 3 = 0$ always. If $\vec{x} \neq \vec{0}$, then $\Pr_{\vec{r} \in_R \{0, 1\}^n}[\vec{r} \cdot \vec{x} \mod 3 = 0] \leq \frac{1}{2}$.

Pick $S \subseteq [n]$, uniformly at random (this is equivalent to picking $\vec{r} \in_R \{0, 1\}^n$ as above). Consider the polynomial $\sum_{i \in S} x_i \in \mathbb{F}_3[x_1, x_2, \ldots, x_n]$. If $\vec{x} = \vec{0}$, this polynomial is always 0. Otherwise, this polynomial is not 0 with probability $\frac{1}{2}$, that is, the square of the polynomial is 1 with probability $\leq \frac{1}{2}$.

If we pick $S_1, S_2, \ldots, S_{\ell} \subseteq [n]$ uniformly and independently and construct the polynomial

$$1 - \left(1 - \left(\sum_{i \in S_1} x_i\right)^2\right) \left(1 - \left(\sum_{i \in S_2} x_i\right)^2\right) \cdots \left(1 - \left(\sum_{i \in S_{\ell}} x_i\right)^2\right),$$

then this is a polynomial of degree 2ℓ and for a particular input, this choice is bad with probability $\leq \frac{1}{2^\ell}$. Now, by Yao’s Minimax Lemma, we have that there exists a polynomial of degree 2ℓ that agrees with OR$_n$ except at $\leq 1/2^\ell$ fraction of the inputs.

Now we topologically sort the circuit C to get the order: $x_1 = g_1, x_2 = g_2, \ldots, x_n = g_n, g_{n+1}, g_{n+2}, \ldots, g_s$, where $s = \text{size}(C)$. For $i = 1$ to s, we write a polynomial p_{g_i} corresponding to gate g_i that approximates the Boolean function computed at g_i.

- For $i \leq n$, $p_{g_i} = x_i$.
- If g_i is a NOT gate with input g_j, then $p_{g_i} = 1 - p_{g_j}$.
- If g_i is an OR gate with inputs h_1, h_2, \ldots, h_k, then

$$p_{g_i} = 1 - \prod_{j=1}^{\ell} \left(1 - \left(\sum_{m \in S_j} p_{h_m}\right)^2\right),$$

where S_1, \ldots, S_{ℓ} are as obtained above (using Yao’s Lemma).

Let $f = p_{g_s}$ be the polynomial corresponding to the output gate. Then,

$$\Pr_{\vec{a} \in \{0, 1\}^n}[f(\vec{a}) \neq \text{PAR}(\vec{a})] \leq \text{(number of OR gates)} \cdot \frac{1}{2^\ell} \leq \frac{s}{2^\ell}. $$

Also, $\deg(p_{g_s}) \leq (2\ell)^{\text{depth}(g_s)}$. So, $\deg(f) \leq (2\ell)^d$.

Set \(\ell \) such that \((2\ell)^d = \sqrt{n} \), that is \(\ell = \frac{1}{2} \cdot \frac{n}{2^d} \). Then we know that \(f(\bar{a}) = \text{PAR}(\bar{a}) \) for \(\geq 2^n \left(1 - \frac{2^{\ell}}{2^n} \right) \) vectors \(\bar{a} \in \{0,1\}^n \) and \(\deg(f) \leq \sqrt{n} \).

Now we make the great notational change:

\[
\begin{align*}
0 & \rightarrow \text{FALSE} \rightarrow +1 \\
1 & \rightarrow \text{TRUE} \rightarrow -1.
\end{align*}
\]

Then we have that there exists \(A \subseteq \{-1,1\}^n \) and a polynomial \(\hat{f} \in \mathbb{F}_3[x_1, \ldots, x_n] \) such that:

1. \(\text{def}(\hat{f}) = \text{def}(f) \leq \sqrt{n} \), and
2. \(\forall \bar{a} \in A : f(\bar{a}) = \pm 1\text{PAR}(\bar{a}) = \prod_{i=1}^n a_i \).

Consider \(\mathbb{F}_3^A = \{ \text{all functions} : A \to \mathbb{F}_3 \} \), so that \(|\mathbb{F}_3^A| = |\mathbb{F}_3|^{|A|} = 3^{|A|} \). Pick a function \(\phi : A \to \mathbb{F}_3 \). Then \(\phi \) has a multilinear polynomial representation \(g(x_1, \ldots, x_n) \) that agrees with \(\phi \) on \(\{-1,1\}^n \) (hence on \(A \)). The polynomial \(g(x_1, \ldots, x_n) \) is of the form \(\sum \text{(monomials)} \cdot \text{(coefficients)} \), where each monomial is of the form \(\prod_{\ell \in I} x_i \) for some \(I \subseteq [n] \).

Note that, in \(\mathbb{F}_3 \),

\[
\prod_{\ell \in I} x_i = \prod_{i \in [n]} x_i \cdot \prod_{\ell \in [n]\setminus I} x_i = \hat{f}(x_1, \ldots, x_n) \cdot \prod_{\ell \in [n]\setminus I} x_i
\]

for \(\hat{x} \in A \) (required for the last equality). The LHS above has degree \(|I| \), while the RHS has degree \(\sqrt{n} + n - |I| \).

Applying this to every monomial of degree \(\geq \frac{n}{2} + \sqrt{n} \), we get a polynomial \(\hat{g} \) such that \(g(x_1, \ldots, x_n) = \hat{g}(x_1, \ldots, x_n) \) for \(\hat{x} \in A \) with \(\deg(\hat{g}) \leq \frac{n}{2} + \sqrt{n} \).

Now, the number of multilinear polynomials in \(\mathbb{F}_3[x_1, \ldots, x_n] \) of degree \(\leq \frac{n}{2} + \sqrt{n} \) is

\[
3^{|\text{monomials of degree } \leq \frac{n}{2} + \sqrt{n}} = 3^{\frac{n}{2} + \sqrt{n}} \leq 3^{0.98 \times 2^n},
\]

where the final inequality follows from concentration results. We have that for a random variable \(X \) having Binomial distribution with parameters \(n \) and \(p = \frac{1}{2} \), the interval \(\left[\frac{n}{2} - \sqrt{n}, \frac{n}{2} + \sqrt{n} \right] \) is a 95% confidence interval. That is \(\text{Pr} \left[\frac{n}{2} - \sqrt{n} \leq X \leq \frac{n}{2} + \sqrt{n} \right] = 0.95 \). Then, because of the symmetric distribution around the mean \(\frac{n}{2} \), we have that \(\left[0, \frac{n}{2} - \sqrt{n} \right] \) is an interval of confidence 97.5%. This gives us that \(\sum_{i=0}^{\frac{n}{2} - \sqrt{n}} \binom{n}{i} \leq 0.98 \times 2^n \).

Now, comparing the two expressions for the number of functions, \(|A| \leq 0.98 \times 2^n \). But \(|A| \geq 2^n \left(1 - \frac{2^{\ell}}{2^n} \right) \), so that \(1 - \frac{2^{\ell}}{2^n} \leq 0.98 \). This implies that \(s \geq 0.02 \cdot 2^\ell = 0.02 \cdot 2^{\frac{1}{2} \cdot \frac{n}{2^d}} = 2^{n2^{\ell/d}} \).

In a circuit we can also have MOD3 gates. A MOD3 gate taking inputs \(x_1, \ldots, x_n \) produces output \(y = 1 \) if \(\sum_j x_j \text{ mod } 3 \neq 0 \) and \(y = 0 \) otherwise. If we denote the class of such circuits as \(\text{AC}^0[3] \) then the above proof also shows that \(\text{PAR}_n \notin \text{AC}^0[3] \).

In general, if we have \(\text{MOD}_m \) gates taking inputs \(x_1, \ldots, x_n \) and producing output \(y = 1 \) if \(\sum_j x_j \text{ mod } m \neq 0 \) and \(y = 0 \) otherwise then we have the following definition.

Definition 8.3.2. \(\text{AC}^0[m] \) is the class of \(O(1) \)-depth, polynomial size circuits with unbounded fan-in using AND, OR and NOT and MOD\(_m\) gates.

Note that \(\text{PAR}_n \notin \text{AC}^0[2] \).

The “same” proof as above also shows that \(\text{MOD}_q \notin \text{AC}^0[p] \), for primes \(p \neq q \). This proof is due to Smolensky [Smolin 87].

We do not have any idea of the computational power of \(\text{AC}^0[6] \). For instance we do not know whether or not \(\text{AC}^0[6] = \text{NEXP} \).

We also define the class \(\text{ACC}^0 \) as
Definition 8.3.3. ACC^0 is the class of $O(1)$-depth, polynomial size circuits with unbounded fan-in using AND, OR and NOT and $\text{MOD}_{m_1}, \text{MOD}_{m_2}, \ldots, \text{MOD}_{m_k}$ gates, for some constants m_1, m_2, \ldots, m_k.

We can think of ACC^0 as the class of AC^0 circuits but with “counters”.
Monotone Circuit Size

9.1 The Clique Function

Let \(\text{CL}_n^k : \{0, 1\}^{\binom{n}{2}} \to \{0, 1\} \) denote the \(k \)-clique function. The input is interpreted as an \(n \)-vertex graph, and the output is 1 iff this graph contains a \(k \)-clique, where \(k \) is an integer in \([1, n]\).

Theorem 9.1.1 (Razborov). Set \(k = \lceil n^{1/4} \rceil \). Then every monotone circuit for \(\text{CL}_n^k \) has size at least \(n^{1 + 1/8} \).

The proof of this theorem is ingenious and is based on several constructions that may at first appear to be rabbits pulled out of a hat but in hindsight are natural, indeed “inevitable” given the high-level plan of the proof. Let \(C \) be a monotone circuit for \(\text{CL}_n^k \), whose output gate is \(o \). The proof plan is as follows.

1. We shall associate, with each gate \(w \) of \(C \), a certain set system \(\mathcal{F}_w \), which will in turn implicitly define a certain Boolean function \(\Phi[\mathcal{F}_w] \). In this way, we will end up associating a Boolean function \(\Phi[\mathcal{F}_o] \) with \(C \).

2. We shall construct a set of positive examples, which are inputs \(x \) such that \(\text{CL}_n^k(x) = 1 \), and a set of negative examples, which are inputs \(x \) such that \(\text{CL}_n^k(x) = 0 \).

3. The function \(\Phi[\mathcal{F}_w] \) will approximate the function computed at \(w \) in the sense that the two functions will agree on a “large” fraction of examples. This fraction will degrade as we move “up” the circuit in topological order. As a result, if \(|C| \) is “small,” then \(\Phi[\mathcal{F}_o] \) will approximate \(C \) rather well.

4. Our construction shall ensure that each \(\mathcal{F}_w \) is simple in the sense that both \(|\mathcal{F}_w| \) and the size of each set in \(\mathcal{F}_w \) are upper bounded.

5. Separately, we shall show that the function defined by a simple set system must approximate \(\text{CL}_n^k \) rather poorly: it can agree with \(\text{CL}_n^k \) on at most a “small” fraction of examples.

The tension between \((S3)\) and \((S5)\) then gives us a lower bound on \(|C| \).

9.2 Set Systems and the Boolean Functions They Define

A set system over a ground set \(X \) is a subset of \(2^X \). Our proof will involve set systems over the ground set \([n]\), which we identify with the vertex set of our input graph. Each subset of \([n]\) is a potential clique, and a set system naturally defines a Boolean function that tests a number of such potential cliques for presence of an actual clique in the input.
graph. To make this precise, label the input variables \(x_{ij} \), with \(1 \leq i < j \leq n \). A set system \(\mathcal{F} \subseteq 2^{[n]} \) defines a function \(\Phi[\mathcal{F}] \) on these variables as follows:

\[
\Phi[\mathcal{F}] := \bigwedge_{\mathcal{W} \in \mathcal{F}} \bigvee_{i < j \in \mathcal{W}} x_{ij}.
\]

(9.1)

Thus, \(\Phi[\mathcal{F}] \) expresses the condition “at least one of the sets \(W \in \mathcal{F} \) is a clique in the input graph.” Two corner cases are worth explicating. If \(\mathcal{F} = \emptyset \), then the outer OR in (9.1) is empty and \(\Phi[\mathcal{F}] \) is always 0. If \(\mathcal{F} \) contains a singleton set, then the term in (9.1) corresponding to this set is empty and becomes a constant 1, as does \(\Phi[\mathcal{F}] \).

Definition 9.2.1. The set system \(\mathcal{F} \) is said to be \((M, \ell) \)-simple if \(|\mathcal{F}| \leq M \) and \(|W| \leq \ell \) for all \(W \in \mathcal{F} \).

To carry out step [S1] of our proof plan, we need to define certain operations on set systems. The most important of these operations involves the combinatorial notion of a sunflower.

Define a *sunflower* with \(p \) petals to be a collection of \(p \) distinct sets \(Z_1, \ldots, Z_p \) that have a common intersection (possibly empty), but are otherwise pairwise disjoint. Formally, for all \(1 \leq i < j \leq p \), we have \(Z_i \cap Z_j = \bigcap_{k=1}^{p} Z_k \). The common intersection is called the *core* of the sunflower. If a set system \(\mathcal{F} \) contains a sunflower \(\mathcal{S} \) with core \(Z \), then *plucking* \(\mathcal{S} \) is defined as the operation of replacing the sets in \(\mathcal{S} \) with the single set \(Z \). Thus, after such a plucking, we are left with the set system \((\mathcal{F} \setminus \mathcal{S}) \cup \{Z\} \).

Lemma 9.2.2 (Sunflower). Let \(p, \ell \geq 1 \) be integers and let \(\mathcal{F} \) be a set system consisting of sets of size \(\ell \) such that \(|\mathcal{F}| > (p - 1)^{\ell} \ell! \). Then \(\mathcal{F} \) contains a sunflower with \(p \) petals.

Proof. Induction on \(\ell \). The base case is trivial. For the induction step, consider a maximal pairwise disjoint subsystem \(\mathcal{F}' \subseteq \mathcal{F} \). If \(|\mathcal{F}'| \geq p \), we are done; otherwise, one of the elements in \(W := \bigcup_{A \in \mathcal{F}'} A \) lies in at least \(|\mathcal{F}'|/|W| > (p - 1)^{\ell-1}(\ell - 1)! \) of the sets in \(\mathcal{F} \). Delete this element from these sets and apply the induction hypothesis. \(\Box \)

We now set our parameters as follows (ignoring ceilings and floors for convenience), for the entirety of the proof.

\[
\begin{align*}
k &:= n^{1/4}, \\
\ell &:= \sqrt[4]{n}, \\
p &:= \ell \log n, \\
M &:= (p - 1)^{\ell} \ell!.
\end{align*}
\]

Suppose \(\mathcal{F} \) and \(\mathcal{G} \) are two set systems. Impose an ordering on the ground set of \(\mathcal{F} \), and use this to canonically order the sets in \(\mathcal{F} \) and collections of such sets. Then define:

- \(\text{meld}(\mathcal{F}, \mathcal{G}) := \{V \cup W : V \in \mathcal{F}, W \in \mathcal{G}\} \),
- \(\text{drop}(\mathcal{F}) := \{W \in \mathcal{F} : |W| \leq \ell\} \),
- \(\text{pluck}(\mathcal{F}) := \text{the set system obtained from } \mathcal{F} \text{ by plucking its first sunflower with } p \text{ petals}, \)
- \(\text{trim}(\mathcal{F}) := \begin{cases}
\mathcal{F}, & \text{if } |\mathcal{F}| \leq M, \\
\text{trim}(\text{pluck}(\mathcal{F})), & \text{otherwise.}
\end{cases} \)

Notice that, by our choice of \(M \) and Lemma 9.2.2, the trim operation is well-defined: it only invokes the pluck operation on set systems that allow it. Finally, for each gate \(w \) of \(C \), we define its associated set system \(\mathcal{F}_w \), according to the following rules:

1. If \(w \) is an input gate, \(x_{ij} \), then \(\mathcal{F}_w = \{\{i, j\}\} \).
2. If \(w \) is an OR gate with inputs \(u \) and \(v \), then \(\mathcal{F}_w = \text{trim}(\mathcal{F}_u \cup \mathcal{F}_v) \).
3. If \(w \) is an AND gate with inputs \(u \) and \(v \), then \(\mathcal{F}_w = \text{trim}(\text{drop}(\text{meld}(\mathcal{F}_u, \mathcal{F}_v))) \).

The definitions make it clear that each \(\mathcal{F}_w \) is \((M, \ell) \)-simple.
9.3 Positive and Negative Examples

We now address step [S2] of our proof plan. Our examples will in fact be not graphs themselves, but rather certain combinatorial structures that implicitly define input graphs.

A positive example is defined to be a subset \(W \subseteq [n] \) with \(|W| = k \). It implicitly represents the input \(x \), where \(x_{ij} = 1 \) iff \(i \in W \) and \(j \in W \). Clearly, such an input satisfies \(\text{CLQ}_n^k(x) = 1 \). The total number of positive examples is \(\binom{n}{k} \).

A negative example is defined to be a function \(\chi : [n] \rightarrow [k - 1] \), to be thought of as a \((k - 1)\)-coloring of the vertices \([n]\). It implicitly represents the input \(x \), where \(x_{ij} = 1 \) iff \(\chi(i) \neq \chi(j) \). Notice that the coloring \(\chi \) is a valid coloring of the graph represented by this input \(x \), whence it certifies that \(\text{CLQ}_n^k(x) = 0 \). Note also that several distinct colorings \(\chi \) could represent the same input \(x \); we do consider these to be distinct negative examples. The total number of negative examples is \((k - 1)^n\).

For a coloring \(\chi : [n] \rightarrow [k - 1] \) and a subset \(W \subseteq [n] \), we say that \(\chi \) repeats in \(W \) if there exist \(i \neq j \in W \) such that \(\chi(i) = \chi(j) \). Notice that the graph represented by \(\chi \) has a clique on the vertices in \(W \) iff \(\chi \) does not repeat in \(W \).

Let \(f : \{0, 1\}^{[n]} \rightarrow \{0, 1\} \) be a function. A false positive for \(f \) is defined to be a negative example that represents an input \(x \) such that \(f(x) = 1 \). A false negative for \(f \) is a positive example representing an input \(x \) such that \(f(x) = 0 \).

The next lemma addresses step [S5] of our proof plan.

Lemma 9.3.1. Suppose \(\mathcal{F} \subseteq 2^{[n]} \) is \((M, \ell)\)-simple. Then \(\Phi[\mathcal{F}] \) has either \(\binom{n}{\ell} \) false negatives, or at least \(\frac{1}{2} (k - 1)^n \) false positives.

Proof. If \(\mathcal{F} = \emptyset \), then \(\Phi[\mathcal{F}] = 0 \), for which every positive example is a false negative.

Otherwise, suppose \(W \in \mathcal{F} \). Consider a coloring \(\chi : [n] \rightarrow [k - 1] \) chosen uniformly at random. If \(\chi \) does not define a false positive for \(\Phi[F] \), then \(\chi \) repeats in \(W \). By a union bound, the probability of this latter event is at most

\[
\sum_{i < j \in W} \Pr[\chi(i) = \chi(j)] \leq \binom{\ell}{2} \frac{1}{k - 1} \leq \frac{1}{2}.
\]

QED.

9.4 The Introduction of False Positives and False Negatives

For this entire section, fix a non-input gate \(w \) of our circuit \(C \), and let \(u \) and \(v \) be the gates that feed in to \(w \).

A false positive, \(x \), for \(\Phi[\mathcal{F}_w] \) is said to be introduced at \(w \) if either (1) \(w \) is an OR gate, and \(x \) is not a false positive for \(\Phi[\mathcal{F}_u] \lor \Phi[\mathcal{F}_v] \), or else (2) \(w \) is an AND gate, and \(x \) is not a false positive for \(\Phi[\mathcal{F}_u] \land \Phi[\mathcal{F}_v] \). Similarly, we talk about false negatives introduced at \(w \), and about false positives and false negatives introduced by a meld, drop, pluck, or trim operation. We shall need to upper bound the “damage” done by each of these operations.

We begin by observing some basic properties of the operations on set systems that we have defined.

Lemma 9.4.1. For all \(\mathcal{F}, \mathcal{G} \subseteq 2^{[n]} \), the following relations hold.

1. \(\Phi[\text{drop}(\mathcal{F})] \leq \Phi[\mathcal{F}] \).
2. \(\Phi[\text{pluck}(\mathcal{F})] \geq \Phi[\mathcal{F}] \), whenever \(\text{pluck}(\mathcal{F}) \) is defined.
3. \(\Phi[\text{trim}(\mathcal{F})] \geq \Phi[\mathcal{F}] \).
4. \(\Phi[\mathcal{F} \cup \mathcal{G}] = \Phi[\mathcal{F}] \lor \Phi[\mathcal{G}] \).
5. \(\Phi[\text{meld}(\mathcal{F}, \mathcal{G})] \leq \Phi[\mathcal{F}] \land \Phi[\mathcal{G}] \).
6. \(\Phi[\text{meld}(\mathcal{F}, \mathcal{G})](x) = \Phi[\mathcal{F}](x) \land \Phi[\mathcal{G}](x) \), for every positive example \(x \).
Proof. Parts 1 through 5 are immediate from our definitions. For Part 6, we note that the inequality
\[\bigwedge_{i < j \in V} x_{ij} \land \bigwedge_{i \in V} x_{ii} \geq \bigwedge_{i < j \in V \cup W} x_{ij}, \]
which holds for all inputs \(x \in \{0, 1\}^{\binom{n}{2}} \), is in fact an equality if \(x \) represents a clique plus isolated vertices, as is the case in our positive examples. \(\square \)

Lemma 9.4.2. A pluck operation introduces no false negatives and at most \(2^{-p} (k - 1)^n \) false positives.

Proof. The statement about false negatives is immediate from Lemma 9.4.1 Part 2.

To estimate the number of false positives, let \(F \subseteq 2^n \), let \(S = \{W_1, \ldots, W_p\} \) be its first sunflower with \(p \) petals, and let \(Z = \bigcap_{r=1}^{p} W_r \) be the core of \(S \). Choose a coloring \(\chi : [n] \to [k - 1] \) uniformly at random. Let \(G \) be the graph implicitly defined by this coloring, and let \(E \) be the event that \(\chi \) is a false positive introduced by plucking \(S \). Then
\[E \iff \text{each of } W_1, \ldots, W_p \text{ is not a clique in } G, \text{ but } Z \text{ is} \iff \mathcal{R}(W_1) \land \cdots \land \mathcal{R}(W_p) \land \neg \mathcal{R}(Z), \]
where \(\mathcal{R}(W) \) denotes the event that \(\chi \) repeats in \(W \). Therefore,
\[\Pr[E] \leq \Pr[\mathcal{R}(W_1) \land \cdots \land \mathcal{R}(W_p) \mid \neg \mathcal{R}(Z)] = \prod_{r=1}^{p} \Pr[\mathcal{R}(W_r) \mid \neg \mathcal{R}(Z)] \leq \prod_{r=1}^{p} \Pr[\mathcal{R}(W_r)] \leq 2^{-p}. \]
where the equality holds because, by the definition of a sunflower, the events \(\{\mathcal{R}(W_r)\}_{r=1}^{p} \) are independent conditioned on \(\neg \mathcal{R}(Z) \), and the final inequality holds by the same reasoning as in Lemma 9.3.1. \(\square \)

We can now upper bound the damage done at each gate of \(C \).

Lemma 9.4.3. The number of false positives introduced at \(w \) is at most \(M^2 2^p (k - 1)^n \).

Proof. First, suppose \(w \) is an OR gate, so that \(F_w = \text{trim}(F_u \cup F_v) \). By Lemma 9.4.1 Part 4, the union operation introduces no false positives. Since \(F_u \cup F_v \) is \((2M, \ell)\)-simple, the number of pluckings performed by the trim operation is at most \(M/(p - 1) \leq M^2 \). The bound now follows from Lemma 9.3.2.

Next, suppose \(w \) is an AND gate, so that \(F_w = \text{trim}(\text{drop}(\text{meld}(F_u, F_v))) \). By Part 5 of Lemma 9.4.1 the meld operation introduces no false positives, and by Part 1, neither does the drop operation. Since \(\text{drop}(\text{meld}(F_u, F_v)) \) is \((M^2, \ell)\)-simple, the number of pluckings performed by the trim operation is at most \((M^2 - M)/(p - 1) \leq M^2 \). Again, the bound follows from Lemma 9.3.2. \(\square \)

Lemma 9.4.4. The number of false negatives introduced at \(w \) is at most \(M^2 (n - \ell - 1) \).

Proof. By Parts 4 and 3 of Lemma 9.4.1 we see that if \(w \) is an OR gate then no false negatives are introduced at \(w \).

Next, suppose \(w \) is an AND gate, so that \(F_w = \text{trim}(\text{drop}(\text{meld}(F_u, F_v))) \). By Parts 6 and 3 of Lemma 9.4.1 the meld and trim operations introduce no false negatives. The drop operation deletes at most \(M^2 \) sets from \(\text{meld}(F_u, F_v) \) and could introduce false negatives in the following way. When a set \(Z \subseteq [n] \) is deleted, a positive example \(W \) could be *introduced* as a false negative only if \(W \supseteq Z \). To complete the proof, we note that \(Z \) is deleted only if \(|Z| \geq \ell + 1 \), and in that case, we have
\[|\{W \subseteq [n] : |W| = k, W \supseteq Z\}| = \binom{n - |Z|}{k - |Z|} \leq \binom{n - \ell - 1}{k - \ell - 1}. \] \(\square \)
9.5 The Final Lower Bound

All the pieces are now in place for the proof of our final lower bound.

Proof of Theorem 9.1.1 Following the proof plan, let C be a monotone circuit for CLQ^n_k, whose output gate is o. Let set systems F_w, and associated Boolean functions Φ[F_w] be defined for each gate w of C. If w is an input gate, then Φ[F_w] has no false positives and no false negatives. Applying Lemmas 9.4.3 and 9.4.4 to each gate of C, we see that

Φ[F_o] has at most |C|M^22^{-p} \ell (k - 1)^n false positives and at most |C|M^2 \binom{n - \ell - 1}{k - \ell} false negatives.

On the other hand, F_o is (M, \ell)-simple and so Lemma 9.3.1 says that

Φ[F_o] has either at least 1/2(k - 1)^n false positives or at least \binom{n}{k} false negatives.

Therefore, either we have that |C|M^22^{-p} \ell (k - 1)^n \geq 1/2(k - 1)^n, whence |C| \geq 2^{p-1}/M^2 > \frac{1}{2n^{k^1/8}}$, or we have that |C|M^2 \binom{n - \ell - 1}{k - \ell} \geq \binom{n}{k}$, whence

|C| \geq \frac{\binom{n}{k}}{M^2 \binom{n - \ell - 1}{k - \ell}} = \frac{1}{M^2} \cdot \frac{n}{k} \cdot \frac{n - 1}{k - 1} \cdots \frac{n - \ell - 1}{k - \ell} \cdot (n - \ell - 1)! \geq \frac{1}{M^2} \left(\frac{n - \ell}{k}\right)^{\ell} \geq n^{1/2} n^{1/8}.

\qed
Bibliography

