

- Transport segment from sending to receiving host
- On sending side encapsulates segments into datagrams On receiving side, delivers segments to transport layer
- . Network layer protocols in
- every host, route Router examines header fields in all IP datagrams passing through it
- Two important functions
- forwarding: move packets from router's input to appropriate router output
- routing: determine route taken by packets from source to dest.

Virtual Circuit Networks

- · First let's talk about virtual circuit networks as a contrast to IP networks
- Based on establishing and tearing down connections
- Another important function in some network architectures:
 - ATM, frame relay, X.25
 - Before datagrams flow, two end hosts and intervening routers establish virtual connection · routers get involved
 - Network vs transport layer connection service:
 - network: between two hosts (may also involve intervening routers in case of VCs) · Transport: between two processes

Network service model

What service model for "channel" transporting datagrams from sender to receiver?

Example services for individual datagrams:

guaranteed delivery ٠

msec delay

- guaranteed delivery with less than 40
- delivery guaranteed minimum bandwidth to flow

Example services for a

flow of datagrams:

• in-order datagram

restrictions on changes in inter-packet spacing

Network Architecture	Service Model	Guarantees ?				Congestion
		Bandwidth	Loss	Order	Timing	feedback
Internet	best effort	none	no	no	no	no (inferred via loss)
ATM	CBR	constant rate	yes	yes	yes	no congestion
ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
ATM	ABR	guaranteed minimum	no	yes	no	yes
ATM	UBR	none	no	yes	no	no

Network layer connection and connection-less service

- Datagram network provides network-layer connectionless service
- VC network provides network-layer connection service
- Analogous to the transport-layer services, but:
 - service: host-to-host
 - no choice: network provides one or the other
 - implementation: in network core

Virtual circuits

- "source-to-dest path behaves much like telephone circuit"
 - performance-wise
 - network actions along source-to-dest path
- call setup, teardown for each call before data can flow
- each packet carries VC identifier (not destination host address)
- every router on source-dest path maintains "state" for each passing connection
- link, router resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service)

VC implementation

- VC comprises
 - path from source to destination
- VC numbers, one number for each link along path
- entries in forwarding tables in routers along path packet belonging to VC carries VC number
- (rather than dest address)
- VC number can be changed on each link.
 New VC number comes from forwarding table

Forwarding table - 4 billion possible entries

Destination Address Range	Link Interface
11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 1111111	0
11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111	1
11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 1111111	2
otherwise	3

Switching Via a Bus datagram from input port memory to output port memory via a shared bus bus contention: switching speed limited by bus bandwidth 1 Gbps bus, Cisco 1900: sufficient speed for access and enterprise routers (not regional or backbone)

Switching via An Interconnection Network

- · Overcome bus bandwidth limitations
- Banyan networks, other interconnection nets initially developed to connect processors in multiprocessor
- Advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- Cisco 12000: switches Gbps through the interconnection network

green packet experiences HOL blocking