
NLify: Lightweight Spoken Natural Language Interfaces via
Exhaustive Paraphrasing

Seungyeop Han
University of Washington

Matthai Philipose
Microsoft Research

Yun-Cheng Ju
Microsoft Research

ABSTRACT
This paper presents the design and implementation of a pro-
gramming system that enables third-party developers to add
spoken natural language (SNL) interfaces to standalone mo-
bile applications. The central challenge is to create statistical
recognition models that are accurate and resource-efficient
in the face of the variety of natural language, while requir-
ing little specialized knowledge from developers. We show
that given a few examples from the developer, it is possible
to elicit comprehensive sets of paraphrases of the examples
using internet crowds. The exhaustive nature of these para-
phrases allows us to use relatively simple, automatically de-
rived statistical models for speech and language understand-
ing that perform well without per-application tuning. We have
realized our design fully as an extension to the Visual Studio
IDE. Based on a new benchmark dataset with 3500 spoken
instances of 27 commands from 20 subjects and a small de-
veloper study, we establish the promise of our approach and
the impact of various design choices.

Author Keywords
Spoken natural language interface; third-party mobile
applications; crowdsourcing; paraphrasing.

ACM Classification Keywords
H.5.2. Information Interfaces & Presentation (e.g. HCI):
User Interfaces—Natural language; D.2.6. Software Engg.
: Programming Environments—Integrated environments

INTRODUCTION
Visual attention and screen real estate are at a premium in
mobile devices. Spoken natural language (SNL) interfaces,
which allow users to express their functional intent verbally
without conforming to a rigid syntax, have therefore been
of increasing recent interest. Prominent “first-party” systems
such as Siri and Google Voice Search offer such functional-
ity on select domains today, making extensive use of cloud-
based servers. In this paper, we present a system that enables
any (“third-party”) developer to build SNL interfaces that run
on resource-light sporadically connected devices. Although
we focus on a mobile phone based implementation, we be-
lieve that this combination of ease of development and low re-
source usage will be of equal appeal and relevance to speech-
enabling other ubiquitous devices.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UbiComp’13, September 8–12, 2013, Zurich, Switzerland.
Copyright c© 2013 ACM 978-1-4503-1770-2/13/09...$15.00.
http://dx.doi.org/10.1145/2493432.2493458

We target command-and-control (C&C) style interactions
(e.g., “When is the next 210 bus to San Jose?”) supported
by today’s first-party systems. In this mode, the user speaks
a single sentence or phrase to indicate a single intent, i.e., a
single handler function supplied by the developer in the un-
derlying program (e.g., findBusTime(route,destination)). The
intent may be expressed in several different natural para-
phrases, e.g., “When’s the 210 to San Jose expected?”, or
even “Next San Jose 210 bus”. The role of the SNL system
is to analyze the speech and dispatch it to the correct handler,
with parameters (also known as slots, e.g., “210” and “San
Jose”) correctly instantiated. Although single-intent C&C is
simple relative to the full range of spoken natural interactions
such as dialog and dictation, it is both broadly useful and con-
sidered impractical for non-experts to implement.

Third-party SNL interfaces pose several challenges. First, the
task of developing these interfaces, traditionally the domain
of speech and natural language specialists, must be simpli-
fied enough to be accessible to lay developers. Second, when
these interfaces are in use, language-processing computation
must ideally be completed wholly on the phone. The ad-
ditional recurring cost implicit in using cloud-based servers
would pose a significant barrier-to-use for third parties. Fur-
ther, as spoken interaction becomes more common, spotty
high-speed connectivity [1] becomes an ever larger limiter.1
Third, given that apps are developed independently of each
other and only installed by end users, the interface must allow
apps to specify the underlying speech and language classifiers
in a modular way while still allowing fast install by users.
Fourth, the system must provide an appropriate mental model
for a user talking to these apps. Currently-popular models
such as valets or search assistants that allow users to “say any-
thing” to the system imply a (cloud-based) large-vocabulary
speech decoder while at the same time obfuscating the spe-
cific apps installed on the phone.

We present NLify, a fully implemented system that addresses
the above challenges using a combination of carefully consid-
ered algorithmic and system design choices. The fundamen-
tal difficulty in developing natural language interfaces is that
of paraphrasing: a single command may be phrased in hun-
dreds of alternate ways. Once an app is widely adopted, data
from its users can be a source of new paraphrases. However,
NLify seeks to address the important problem of providing

1Since many apps use web-based services to handle requests, spotty
connectivity may seem to render them useless in any case. How-
ever, in many of these cases (e.g., maps, calendars, weather, movies,
transit, music, unit conversions, phrase books) small sporadically
updated databases cached on the phone suffice. Such weakly con-
nected operation is important and, we believe, will be increasingly
prevalent given user expectations.

acceptable SNL out of the box. The main idea behind NLify
is exhaustive paraphrasing. The intuition is that we automat-
ically generate paraphrase sets covering “all” ways of saying
the command so that speech models can be derived solely
from them and intent-classification algorithms need to per-
form very modest generalization. In particular, we show how
to design a crowdsourcing system to obtain large paraphrase
sets for each command. We further show how to embody this
functionality in an integrated development environment, so
that the workflow for a programmer is similar to developing
graphical interfaces, with no knowledge of crowds required.

We advocate a simple natural language shortcut metaphor
for what users can expect to say to their phones: essentially,
for each application they have installed, they can expect to
access its key functionality by voice. We do not support
other queries (e.g., “Siri, what color are your eyes?”). The
restriction to shortcuts allows NLify to make a closed-world
assumption: all utterances are either targeted at commands
with local paraphrase sets or are out of vocabulary. The as-
sumption allows all commands to be processed locally on the
phone by a combination of compact statistical models derived
from the paraphrases. Further, exhaustive paraphrasing facil-
itates an architecture that allows new applications to repre-
sent their incremental functionality modularly as paraphrase-
set/handler pairs, while maintaining fast speech and language
model update times at app install time.

NLify is the first (fully realized) proposal for a system to sup-
port third-party development of spoken natural language in-
terfaces for mobile devices. The exhaustive-paraphrasing ap-
proach implemented via automated crowdsourcing is novel.
The derived architecture allowing modular addition of appli-
cations and purely local recognition is new. We are unaware
of a dataset to test spoken natural language C&C. We present
a new and extensive benchmark dataset including roughly
3500 spoken utterances from 20 subjects targeted at 27 differ-
ent intents, with 1600 crowdsourced paraphrases for these in-
tents. A quantitative evaluation of our implementation shows
overall recognition rates of 85/81% across intents/slots, along
with drill-down analysis of the impact of our design deci-
sions on accuracy. We further show that our specialized on-
phone SNL interface is competitive in accuracy with a generic
cloud-based large-vocabulary system. Also, it consumes lit-
tle power beyond that already spent by the phone’s audio col-
lection loop. Finally, a small qualitative programmer study
gauges NLify’s usability and utility.

BACKGROUND
We describe the typical spoken natural language (SNL) pipe-
line and its relation to NLify. Figure 1 illustrates a standard
pipeline for inferring intent from audio. Audio signals (sam-
pled at 16-48kHz and 8-16 bits) are segmented into sentences
that represent commands. Segments are converted into words
and then intents/slots as described below.

Speech Recognition Engine
Given streaming audio, the speech recognition (SR) engine
first segments it using heuristics; NLify assumes speak-on-
button-press followed by terminate-speech-on-silence.

language
model

acoustic
model

pronunciation
model

decodersegmenter

intent
recognizer

slot
extractor

speech recognition engine language engine

audio

intent

+

slots

word sequencesegmented audio

Figure 1. Standard SNL pipeline. NLify focuses on the gray boxes.

The engine is parameterized by three statistical models. The
acoustic model captures the joint distribution over feature
vectors derived from raw audio and phones, which can be
thought of as the primitive units of the sounds in a language.
The pronunciation model captures the mapping between ph-
ones and words. Neither model usually changes with appli-
cations, and NLify leaves them untouched.

The language model (LM) represents sequential correlation
among words expected to be input to the SR engine. Of the
three models parameterizing the recognition engine, the LM
most affects per-application SNL recognition performance.
For example, the distribution of phrases to control an alarm
application is very different from that for making a phone
call. Ideally, the correlations are derived from training data
representing expected input. When data is sparse (e.g., only
a few paraphrases are available as in [5]) correlations are
represented as deterministic grammars that are essentially
the union of the paraphrases. In the data-rich setting, the
models could be statistical distributions over subsequences
(“n-grams”) of words, termed Statistical Language Models
(SLMs). Given enough training data, SLMs are known to be
more robust to variation in phrasing and noise than determin-
istic models, and are preferred for SNL modeling [22].

Training data, however, is usually lacking in two ways. First,
slots could have very many values (e.g., numbers, dates or
movie names), so that most slot values will be missing from
training data. Such data is usually provided as separate do-
main specific grammars. The domain-specific data is accom-
modated by incorporating a hierarchical component to the
statistical model that allows these grammars to be parsed as
part of recognition [25]. NLify uses such a hierarchical model
in an important way explained in the next section.

More fundamentally, different phrasings of the command
may be missing from training data (e.g., a test phrase may say
“go ahead and give me the date”, whereas training data for the
command may not contain “go ahead”). In this case, the state-
of-the-art approach is to assume that domain-specific training
data is significantly lacking in variety, and to mix the domain-
specific training data with a general (“large-vocabulary”) sta-
tistical model [14] for the language (e.g., English) in which
commands are spoken. Good large-vocabulary recognition
systems today have resource requirements that are designed
for the cloud rather than mobile devices [7], thus precluding
the standalone recognition we seek. NLify’s exhaustive para-
phrasing approach instead attacks the assumption that train-
ing data must be spotty, and uses solely this rich, in-domain,
training set to generate its speech model. It uses the newly
available resource of crowd workers in a convenient and effi-
cient way to do so. In principle, this model could be comple-
mented by a compact general model on the phone.

crowd-sourcing amplifier

seed template set

vector space
model

compiler

hierarchical
SLM (HSLM)

compiler

HSLMAM PM

speech recognition engine language engine

vector space
intent matcheraudio

development time

install time

run time

amplified template set … from multiple apps

HSLM VS model

word sequence +
slot/value bindings

intent +
slot/value bindings

dispatcher invoke
callbacks

crowdsourcing
internet

marketplace

Figure 2. NLify system architecture.

Language Engine
Functionally, the language engine is a classifier from text se-
quences to intents and slots. The consensus [11, 21] is that
the conditional random field (CRF) is the classifier of choice
to implement the language engine. Typically, the CRF des-
ignates each word (or phrase) of the incoming sentence as
slots or carrier phrases (i.e., the “filler”), and infers the in-
tent of the sentence as a whole. CRFs are especially highly
rated because their discriminative nature allows inferred val-
ues to be conditioned on arbitrary combinations of incoming
words (known as “features”), unlike their generative counter-
parts [21]. In fact adding the right features to compensate for
adequate training data is one of the key roles of a special-
ist in tuning models for natural language understanding. It
is common for CRFs for SNL to be trained over hundreds of
thousands of features [11] (these are usually various assign-
ments for the size-n subsequences, or “n-grams” surrounding
the current word). Training these models often takes tens of
seconds on a desktop-class processor even with the fastest
current implementations of CRFs [18].

NLify takes the point of view that its users are not sophisti-
cated enough to add new features to the classifier. The flex-
ibility of CRFs is therefore much less useful. On the other
hand, we expect exhaustive paraphrasing to provide enough
data that even simple (e.g., nearest-neighbor style) classifiers
will do an acceptable job of classification. Further, since the
system-wide classifier must be re-trained every time a user
installs a new application, it is critical that training be very
fast, e.g., under 5 seconds. Once again, by enabling simple
non-parametric classifiers that are fast to compute but rely
on adequate data, exhaustive paraphrasing comes to the res-
cue. By relying on “big data” therefore, NLify trades off
expert-friendly and relatively slow-to-learn classifiers for a
developer-friendly, fast-to-learn variant.

RELATED WORK
Several ubicomp systems have targeted mobile audio. The
Personal Audio Loop [13] allowed users to save audio of con-
versation snippets of interest. Features from spoken audio
have been shown to reveal social dynamics [27], stress lev-
els [16] and certain human activities [28]. Predicting silent
periods in speech has been shown to allow radios to be shut
down, extending phone battery life [20]. None of these sys-
tems recognizes speech or processes natural language, much

less enables non-expert developers to develop systems that do
so efficiently in real time, the core contribution of NLify.

Many efforts have examined spoken natural language in the
context of interacting with devices in smart spaces. Tran-
scribing text from speech followed by simple sentiment anal-
ysis is shown to have promise in eliciting community feed-
back [26]. The speech recognition in this case is human aided
(taking “minutes” to “hours”), although language analysis is
automated if rudimentary. Other formative work has shown
that a home computer, if speech enabled, may be quite use-
ful [6]; however, the researchers noted that even the basic
keyword-based interface for their research system was hard
to build. Finally, failure-mode analysis and dialog-based re-
covery for spoken interfaces clearly show great promise [19].
However, this research too features a human-powered (Wiz-
ard of Oz) speech system. In summary, much formative work
has pointed out the potential value and difficulty of spoken
natural language. NLify provides technical machinery to help
realize this potential.

SYSTEM DESIGN & IMPLEMENTATION
Figure 2 shows how NLify is structured. NLify acts in three
phases. When apps are being developed (development time
in the figure), given a small set of textual seed examples of
utterances (“templates”) and corresponding handler invoca-
tions for a given command from the developer, NLify uses
cloud-based services to amplify the set into a large, compre-
hensive set that the developer can select from. When an app
with NLify support is installed on a phone (install time), the
templates for that app are pooled with those from other NLi-
fied apps on the phone to derive a language model and an in-
tent matcher. At run time, an NLify system dispatcher listens
to incoming audio, sequentially performs speech recognition
and language recognition on it, and dispatches to registered
handlers for templates that match the inferred intent.

Template definition language
NLify provides developers a two-level grammar definition
language to define template pattern sets (TPSs):
T ∈ TPS← h(s1, . . . , sm) d t1, . . . , tn g1, . . . , gk
h ∈ handler function names, s ∈ slot names
d ∈ description of scenario for command
t ∈ templates← τ1 . . . τn
τ ∈ tokens← w|s[r], w ∈ word
g ∈ deterministic grammars← s ::= . . .
r ∈ post processing function

Each TPS is intended to correspond to one command in the
app being NLified. The TPS specifies a handler function with
slot variables, a natural-language description of the scenario
in which the command occurs, a set of templates and a set
of definitions of deterministic grammars. Each template
corresponds to a distinct phrasing to invoke the command
with. In addition to words, a template may contain slot
variables. These variables must be the root of a deterministic
context-free grammar g. Slot variables may optionally
designate a post-processing function r. For convenience,
we allow grammars and post-processing functions to be
imported from external libraries (not shown). A concrete

TPS for a stock-price checking application:
handleStockCheck(@companyName,@day):

"You want to know stock price of @companyName

@day"

"Tell me the stock price of @companyName @day."

"How much was @companyName @day?"

"What’s a share of @companyName @day?"

day ::= "yesterday" | "today"

Learning models from templates
Given a set T of templates, NLify learns a hierarchical SLM
and a vector-space model for intent classification from them.
Note that all relevant templates are only available at install
time, so that learning must be fast.

Learning the SLM
NLify uses a conventional trigram-based representation of se-
quential correlation. A trigram model is the conditional prob-
ability pijk = P (wk|wiwj) that word wk may follow words
wi and wj in a command. When all three words are seen
in the training set, pijk can simply be estimated by count-
ing. When they are not, sophisticated smoothing techniques
for interpolating these probabilities from bigram and unigram
probabilities have been proposed [15]. For speed, we use a
simple linear smoothing scheme. Learning the smoothed tri-
gram is dominated by the cost of counting the co-occurrence
of various triples, pairs and words in T and is extremely fast
(below a second even for several ten thousand templates). The
resulting models fit within 2MB.

To handle out-of-vocabulary commands, NLify runs a “gar-
bage” SLM (about 30MB big) generated from a medium-
sized corpus independent of the spoken-command domain,
in parallel with the above SLM. When a command is de-
coded fully, the higher scoring of the garbage model and
foreground SLM is selected as the output of the compound
SLM. Although more sophisticated techniques exist for han-
dling out-of-vocabulary speech [3], NLify chooses this sim-
ple approach under the assumption that mobile commands are
distinctive relative to other speech. Further, it assumes that its
template set is exhaustive enough that the garbage model will
not dominate the primary SLM incorrectly.

Note that NLify templates are two-level, with slots s in tem-
plates defined by a separate grammar g. This two-level struc-
ture is used to produce a hierarchical SLM. During statistical
matching of the higher-level trigram model, slots s in tem-
plates trigger deterministic processing using the associated
grammar g, so that slots are discovered during speech recog-
nition. NLify thus moves slot extraction, traditionally a role
of the language engine, into the speech engine. In fact, the lo-
cal n-gram processing by the SLM engine to infer the identity
of slots is not dissimilar from that performed by the n-ary po-
tential functions of CRFs, although the SLM version is funda-
mentally less powerful because it is one-pass. By conflating
the second level of the SLM with slot inference, NLify avoids
needing a separate CRF for finding slots, at the potential cost
of higher classification error.

Learning the Intent Classifier
NLify treats the intent recognition problem as a document
matching problem. Given a spoken command (converted
into a sequence of tokens by the SR engine), we seek to
find the template(s) in T that it “best matches”. The tar-
get intent/handler is simply the one associated with the best
matching template. We use a standard vector-space model
for document [23] with Term-Frequency Inverse-Document-
Frequency (TF-IDF) weighting. Relevant details follow. We
refer generically to all sequences of tokens as “templates”.

We represent template ti as a feature tuple λ̂i =
(λ1i, . . . , λNi) of weights, with one weight per token in T .
The distance between templates ti and tj is the cosine of the

angle between them, λ̂iλ̂j

‖λ̂i‖‖λ̂j‖
. The best matching template

to a query template is the closest one. The TF-IDF weight
λij of token τi in template j is fij log

|T |
|{t∈T |τi∈t}| , where fij

is the frequency of token i in template j. This definition of λ
rewards words that appear often in the document being featur-
ized (high f) and penalizes appearance in many documents.

This (standard) formulation of TF-IDF is problematic for
template matching. It attempts to distinguish between indi-
vidual templates, whereas we seek to only distinguish be-
tween those corresponding to different intents. For instance,
all slots will get a low IDF score since they appear in ev-
ery template for a given intent, even if they do not appear in
templates with other intents and so should serve as good dis-
criminators. We therefore consider a discounted IDF score
that merges all templates derived from one TPS into a single
“super-template”. The denominator of the IDF calculation is
|{Tj ⊆ T |τi ∈ Tj}|, where Tj = {t|t ∈ TPSj}.

Template Set Amplification
Programmers typically provide 3-5 examples in the seed tem-
plate set. NLify enlarges this set automatically 10-100x
toward exhaustive paraphrasing. Automatic machine para-
phrasing is an old, hard problem in natural language process-
ing (NLP) [2]. We attack it by finessing the problem by using
people instead of machines to paraphrase.

Crowdsourcing services such as Amazon Mechanical Turk
have been used to collect paraphrase sets that serve as NLP
benchmarks [8, 9, 24]. Essentially, workers worldwide are
paid tiny amounts to paraphrase individual example sentences
or concepts. NLify shields its developers from the intrica-
cies of programming crowd services by automatically deriv-
ing and issuing paraphrasing tasks and post-processing them
to yield good results.

Developers need only register an account at the paraphrasing
site and provide NLify the key. NLify submits the scenario
description d from the TPS with a subset of templates from
T to the crowd with every slot instantiated with an example
value. For example, for the stock application above, a task
may read ([]s indicate values that must not be changed):
Scenario:

You want to know the stock price of Facebook yesterday

Example 1: Tell me the stock price of [Facebook]

[yesterday].

Figure 3. IDE extension for NLify.

Example 2: How much was [Facebook] stock [yesterday]?

Enter five other ways you may speak in this scenario.

NLify provides a generic paraphrasing-task description to
each crowd worker. The description specifies the general
paraphrasing task with an example and (based on our ex-
perience) provides several tips on what constitutes a good
paraphrases. For instance, it requires the result to be a sin-
gle sentence and to use all slot values in the input sentence.
NLify presents results back to the developer after re-instating
placeholders for slots, removing duplicates (after normaliz-
ing spelling and punctuation), rejecting answers that do not
match the number of slots of the input template and workers
who are outliers in task completion time. The developer may
then choose which of the results to include in their app.

Static automated crowdsourcing substantially reduces the ef-
fort of using the crowd for paraphrasing. However, even early
NLP benchmarking efforts recognized that the way a task is
presented biases the paraphrases returned by the crowd [9]:
e.g., if the example says “what is my next meeting”, responses
that substitute “appointment” for “meeting” are relatively un-
common. We added the “scenario” field to our tasks to re-
duce bias toward examples as per [24]. It seems manageable
for developers to provide scenarios. On the other hand, we
rejected other expert-recommended techniques to reduce bias
such as using images [10] and videos [8] of the task instead
as being too onerous for the developer.

Implementation
NLify is implemented as an extension to Microsoft Vi-
sual Studio 2012 complemented by the publicly available
Microsoft Speech Recognition API for Windows Phone 8
(SAPI) as its speech engine. Figure 3 is a screen shot

of the extension being used to NLify a calendar applica-
tion. The pane provides a graphical view for defining TPSs.
Three TPSs are visible, for querying time, date and sched-
ule. Description, Handler and Inputs fields are vis-
ible for two of the TPSs. Inputs are the same as templates.
The developer may select a seed template set using the check
box to the left of each template. Pressing the Crowdsource
button will then automatically amplify the existing set of tem-
plates. The middle pane shows an alternate (XML-based text)
view of the TPS list. The right pane shows some of the
grammars (e.g., date.grxml) generated by NLify from the
user’s specification. A dozen NLify-based apps have been
working on Windows Phone for over six months.

EVALUATION
We seek to answer the following questions. 1. How well do
systems built using NLify perform overall? 2. How does per-
formance scale with the number of NLified commands in-
stalled? 3. How do our design decisions impact recogni-
tion rates? 4. How do on-phone implementations compare
to cloud-based ones? 5. What is the resource consumption of
NLify? 6. What is the developer experience using NLify?

The NLify C&C Dataset
To our knowledge, no public dataset designed to evaluate mo-
bile spoken natural language systems exists. We have there-
fore collected an extensive dataset that we intend to make
public (Table 1). We identified 27 pieces of functionality
(each corresponding to an intent) a user may access from the
phone via spoken language, divided across nine application
domains. We tried to sample multiple intents in a single do-
main, both since these often go together in the real world,
and they tend to have common vocabulary and slots as a re-
sult (which make them challenging to distinguish). For each

Domain # Intent and Slots Example
Clock 1 FindTime() “What’s the time?”

2 FindDate(Day) “What’s the date today?”
3 SetTimer(Duration) “Set a timer for 35 minutes”

Calendar 4 ScheduleMeeting(Person,Day,Location) “Set up a meeting with Bob Brown for tomorrow in his office”
5 CheckNextMeeting() “What’s my next meeting?”
6 ReserveRoom(NumPeople,Duration,Day) “Book a meeting room for 5 people for an hour on Wednesday”

Current conditions 7 FindWeather(Day) “What’s the weather tomorrow?”
8 FindNextBus(Route,Destination) “When is next 20 to Renton?”
9 FindTravelTime(Destination) “What’s travel time to Renton?”
10 ConvertCurrency(Amount,SrcCurr,TgtCurr) “How many dollars is 17 euros?”

Finances 11 FindStockPrice(CompanyName) “How much is Starbucks stock?”
12 RecordSpending(Money,CompanyName) “Remember spending 68 dollars at Ikea”
13 CalculateTip(Money,NumPeople,Rate) “Split 32 dollars and 10 cents five ways”

Contacts 14 FindOfficeLocation(Person) “Where is Janet Smith’s office?”
15 FindManagerName(Person) “Who is Janet Smith’s boss?”
16 FindGroup(Person) “Which group does Janet Smith work in?”

Unit Conversion 17 ConvertUnits(SrcUnit,TgtUnit) “How many teaspoons in a tablespoon?”
18 ConvertNumUnits(Amount,SrcUnit,TgtUnit) “How many ounces is 7 pounds?”

Music 19 MoveToPlaylist(Playlist) “Put this song on the Dance playlist”
20 ShareWithFriend(Person) “Share this with Bob Brown”
21 IdentifyMusic() “What’s this song?”

Social Media 22 PostToSocial(Channel) “Send this to Facebook”
23 ListSocial(Person,Channel) “Any messages on Facebook from Bob Brown?”
24 LikeOnFacebook(Liketarget) “Like Toshi’s Teriyaki on Facebook”

Local search 25 FindMovie(MovieName) “Where is Avatar playing?”
26 FindRestaurant(Cuisine,Money) “Find me a Japanese restaurant under 20 bucks”
27 FindDistance(Destination) “How far is it to Renton?”

Table 1. NLify Command and Control dataset summary.

intent, we identified plausible slot values. The number of
distinct slot values were 2680 for CompanyName, Destina-
tion (271), MovieName (247), SrcCurr/TgtCurr (163), Per-
son (102), Playlist (15), TgtUnit/SrcUnit (17), Day (10), Cui-
sine (9), Location (6), Channel (3). Remaining slots (e.g.,
Amount) were numbers, time durations, or currencies of un-
bounded cardinality implemented as external rules. We then
collected three datasets.

Voice (“Audio”) Dataset
For each intent, we selected one or more slot values. For
instance, we selected CompanyName = Dell, Shell,
Facebook. 47 instantiated slots resulted. For each in-
stantiated slot, we produced a corresponding instantiated
text example of how the command may be spoken (as in
the last column of the table), yielding 47 command sen-
tences. Slot values were selected to exercise known weak-
nesses of the speech systems: some sounded similar to each
other (e.g., Houston, Renton, Dell, Shell), some were
long (e.g., The Perks of Being a Wallflower),
some were unconventional (e.g., Toshi’s Teriyaki)
and some came from sets of large cardinality (e.g., all 2680
companies on NASDAQ for CompanyName and any number
for Amount in the currency-conversion intent).

We wrote a Windows Phone application to collect 16-bit au-
dio at 16kHz to step subjects through these examples. For
each example, we asked subjects to speak up to five variants
of how they would request the functionality from a phone.
For calibration, they were asked to speak the example sen-
tence provided to them with no change before speaking its
five paraphrases. Subjects were encouraged to restrict them-
selves to language they would use with a phone, provide one
sentence per paraphrase, preserve the meaning of the orig-

inal example as closely as they could, make no changes to
the values of (clearly indicated) slot values when they spoke.
To avoid subjects making up exotic paraphrases (a problem
we found in an informal test run), we allowed subjects to re-
peat a previous paraphrase if they could not think of a natural
paraphrase. They were allowed to delete and re-record any
utterance at any time. Subjects were asked to hold the phone
5 to 20 inches from their mouths when speaking. Data was
collected in a quiet office with occasional background noise.

We recruited 20 subjects aged from the twenties to above
fifty, 16 male, 4 female who worked at our institution for the
study. Subjects were reimbursed $10 each. Data collection
was spread over 6 days. We collected 5401 non-empty, non-
malformed audio files. We manually transcribed these and
mechanically cleaned as follows. Removing utterances that
did not follow the above rules left 5038. Further removing
all utterances of the calibration sentence yielded 3505 results,
roughly equally distributed across the 47 instantiated intents.
We use the resulting set (which we call the Audio Dataset) for
our experiments. We believe that it provides a reasonable rep-
resentation of the diversity of SNL command phrasing, short
of an in-situ dataset.

Crowdsourced (“UHRS”) Data
An important part of NLify’s thesis is that automatically
crowdsourced data from the internet can substantially boost
the generality of SNL interfaces. Accordingly, we collected a
dataset of paraphrases invoking the 27 different intents. In
this case, variation in slot values was not important since
responses were written and not spoken. We used the Uni-
versal Human Relevance System (UHRS), a crowdsourcing
service similar to Amazon Mechanical Turk available inter-
nally within Microsoft, to collect the dataset. UHRS workers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Function number (see Table 1)

0

0.2

0.4

0.6

0.8

R
e
co

g
n
it

io
n
 r

a
te

µ=0.85
σ=0.07
µ=0.81
σ=0.11

Intent
Slot

Figure 4. Overall recognition rates. Dashed lines are averages. Functions numbered per Table 1.

were given similar instructions as the spoken data contribu-
tors above, except that they were given a scenario description
and up to 5 seed sentences as examples. The scenario descrip-
tion was specifically crafted to be distinct from the descrip-
tions and examples used to elicit the Audio Dataset. The seed
sentences were created, solely using this scenario description,
by a researcher isolated from the speech data collection ef-
fort. We call these 27x5 = 135 sentences the Seed Dataset
below. Workers were asked for up to 3 paraphrases for each
scenario at a cost of roughly 3 cents per paraphrase. As with
the voice data, the above researcher mechanically filtered out
non-adherence to rules and duplicates. For the 47 command
sentences, we started with 2732 responses and ended up with
1612 unique, well-formed paraphrases that we could use. We
call this dataset, corresponding to our static automated crowd-
sourcing technique, the UHRS Dataset below.

Results
To evaluate the SNL recognizers produced by NLify, we as-
sumed a configuration where all 27 intents/commands of Ta-
ble 1 are installed on the phones of the 20 different users
who contributed the Audio dataset. We assume developers
of intents contributed the Seed Dataset (roughly 5 templates
each), amplified by the UHRS dataset. In other words, we
trained on the Seed + UHRS template set, tested on the Au-
dio dataset and measured the fraction of intent values and slot
values inferred correctly. Although we use a garbage model
as per our standard design, all queries are non-garbage unless
specified. We use the discounted-matching variant of TF-IDF
unless specified.

Figure 4 shows the results across all 27 intents for the best
training set configuration (Seed + UHRS). Whereas the Seed
+ UHRS configuration shown had a mean intent recognition
rate of 85%, Seed by itself gave 69%. For each intent, the
figure shows the intent and the slot recognition rates side-by-
side. Overall, intent recognition rate is a respectable 85%
mean (σ = 0.06). Slot recognition rates are lower at 81%
mean (σ = 0.11). Given that slot recognition is performed
deterministically on short acoustic snippets, whereas intent
recognition is performed statistically across multiple words,
lower recognition rates and higher variance are unsurprising.

To understand errors better, we generated a confusion matrix
for the intent classifier. 16% of misclassifications were due to
confusion between commands 17 and 18 (ConvertUnits
and ConvertNumUnits), another 6% confused Find-
TravelTime and FindDistance, and 6% between
FindOfficeLocation and FindGroup. These pairs
of queries expose the limitations of a word-order-agnostic
distance measure such as TF-IDF, since they involve simi-
lar words but in different orders. In roughly 12% of other
cases, slots were inferred to be of the wrong type: for in-
stance, movie titles were inferred to be currency. Incorrect
slot types result in incorrect intents.

To understand errors in slot parsing, we sorted the misparsed
slot types by % misparsed. The ones above 10% were Money
(misparsed 29% of the time), SrcUnit (21%), Company-
Name (20%), MovieName (26%), TgtUnit (14%), Amo-
unt (11%). There are two main types of problems. In
cases where the result is a phrase, the ability to statistically
as opposed to deterministically parse slots would be useful.
For instance, “The Perks of Being a Wallflower” may cur-
rently be mis-parsed if it misses “Perks”, whereas a statistical
parse should succeed. In other cases, especially numbers, ex-
act parses are required (e.g., “twenty three” versus “seventy
three”) and in the usual absence of statistical evidence point-
ing to either option, the only fallback would be a dialog-based
clarification from the user. NLify currently does not support
either statistical parsing of slots or dialog.

Scaling with number of commands
Recognition rates for a given command depends on other
commands loaded on the phone. How does NLify scale when
many such commands compete? To understand the robust-
ness of recognition to such competition in the command set,
we picked n = 10 random subsets each of N = 1, 5, 10, 15,
20 and 27 commands for testing. For each subset, we calcu-
lated mean intent and slot recognition rates when trained on
the UHRS+Seed data and tested on the Voice data.

Figure 5 shows the results. The upper line shows intent recog-
nition rates, the lower shows slot recognition rates. Note four
points. First, recognition rates do not collapse alarmingly
with competition. Second, intent recognition results decline
monotonically with amount of competition, which is unsur-

0 5 10 15 20 25
N = # of competing functions

0.5

0.6

0.7

0.8

0.9

1.0

M
e
a
n
 r

e
co

g
n
it

io
n
 r

a
te

 o
v
e
r

N
 f

u
n
ct

io
n
s

0.9 0.88 0.86 0.86 0.85 0.85
0.81 0.82

0.76
0.8 0.78 0.82

Avg. intent recognition
Avg. slot recognition

Figure 5. Scaling with number of commands.

0 5 10 15 20 25
Function number

0.0

0.2

0.4

0.6

0.8

1.0

R
e
co

g
n
it

io
n
 r

a
te

100%

80%

60%

40%

20%

Figure 6. Incremental benefit from templates.

prising since both the SLM and TF-IDF algorithms that iden-
tify intents compete across intents. Third, slot recognition
does not vary monotonically with number of competitors; in
fact the particular competitors seem to make a big difference,
leading to high variance for each N . On closer examination
we determined that even the identity of the competitors does
not matter: when certain challenging functions (e.g., 11, 12
and 19) are included, recognition rate for the subset plum-
mets. Larger values of n will likely give a smoother average
line. Overall, since slot-recognition is performed determinis-
tically bottom up, it does not compete at the language-model
level with other commands.

Impact of NLify Features
NLify uses two main techniques to generalize from the seeds
provided by the developers to the variety of SNL. To cap-
ture broad variation, it supports template amplification as per
the UHRS dataset. To support small local noise (e.g. words
dropped in the speech engine), it advocates a statistical ap-
proach even when the models are run locally on the phone (in
contrast, e.g., to recent production systems [5]).

We saw earlier that using the Seed set instead of Seed +
UHRS (where Seed has 5 templates per command and UHRS
averages 60) lowers recognition from 85% to 69%. Thus
UHRS-added templates contribute significantly. To evaluate
the incremental value of templates, we measured recognition
rates when f = 20, 40, 60 and 80% of all templates were
used. We pick the templates arbitrarily for this experiment.
The corresponding average recognition rates (across all func-
tions) was 66, 75, 80 and 83%. Figure 6 shows the breakout
per function. Three factors stand out: recognition rates im-

0 5 10 15 20 25
Function number

0.0

0.2

0.4

0.6

0.8

1.0

R
e
co

g
n
it

io
n
 r

a
te

SLM

Deterministic

(a) intent recognition

0 5 10 15 20 25
Function number

0.0

0.2

0.4

0.6

0.8

1.0

R
e
co

g
n
it

io
n
 r

a
te

SLM

Deterministic

(b) slots recognition

Figure 7. Benefit of statistical modeling.

0 5 10 15 20 25
Function number

0.0

0.2

0.4

0.6

0.8

1.0

R
e
co

g
n
it

io
n
 r

a
te

SLM

Large Vocabulary

Figure 8. Comparison to a large vocabulary model.

prove noticeably between the 80 and 100% configurations,
indicating that rates have likely not topped out; improvement
is spread across many functions, indicating that more tem-
plates are broadly beneficial; and there is a big difference be-
tween the 20% and the 80% mark. The last point indicates
that even had the developer added an additional dozen seeds,
crowdsourcing would still have been beneficial.

Given that templates may provide good coverage across para-
phrases for a command, it is reasonable to ask whether a
deterministic model that incorporates all these paraphrases
would perform comparably to a statistical one. Given tem-
plate amplification, is a statistical model really necessary? In
the spirit of the Windows Phone 8 Voice Command [5], we
created a deterministic grammar for each intent. For robust-
ness toward accidentally omitted words, we made the com-
mon words {is, me, the, it, please, this, to, you, for, now}
optional in every sentence. We compared recognition per-
formance of this deterministic system with the SLM, both
trained on the Seed + UHRS data. Figure 7 shows the results
for both intent and slot recognition. Two points are signifi-
cant. First, statistical modeling does add a substantial boost
for both intent (16% incremental) and slot recognition (19%).
Second, even though slots are parsed deterministically, their
recognition rates improves substantially with SLMs. This
is because deterministic parsing is all-or-nothing: the most
common failure mode by far is that the incoming sentence
does not parse, affecting both slot and intent recognition rates.

The experiments thus far assumed that no query was garbage.
In practice, users may speak out-of-grammar commands.
SLify’s parallel garbage model architecture is set up to catch
these cases. Without the garbage model, the existing SLM
would still reject commands that are egregiously out-of-gra-

Question (1-5 scale, 1 most negative) Score (range/mean)
1 How useful do you think it is for end-users to have spoken NL interfaces to those features? 3–4/3.6
2 How well did NLifys SNL advertised capabilities match your needs? 4–5/4.4
3 How easy was NLify to use? 2–4/3
4 How easy was NLify to use relative to the value of the feature(s) you added? 3–5/4
5 How gracefully did the cost/benefit of NLify scale? Was it clear how to spend more effort to get noticeably better

spoken UIs?
1–3/2.4

6 Did you feel crowdsourcing added useful cases to your interface? 2–4/3
7 If you didn’t answer Q4 with a 1, did you think the crowd-sourced results were worth spending 3 cents each? 2–4/2.6

(1: < 1 cent, 3: ∼ 3 cents, 5: > 10 cents)
8 If you didn’t answer Q4 with a 1, given your dev cycles, do you think you can afford to wait for crowdsourced results

for 3s, 3m, 3h, 12h, 24h
2–4/2.4

Table 2. Developer study questionnaire.

mmar, or at least assign them low scores. To compare the util-
ity of the garbage model we split our data into two halves. We
trained models with and without the garbage model on Seed-
UHRS data for commands 1 through 13 and tested with Voice
queries for all commands (1 through 27). For the no-garbage-
model version, if it declared “no recognition” or a score
below a carefully selected threshold, we inferred garbage.
The score-threshold was selected by eyeballing the data and
picking a point that seemed to yield good precision and re-
call. Our measurements showed that the garbage model has a
83%/8.5% true positive/false positive garbage detection rate
whereas the baseline yielded 51%/16%. Garbage models are
clearly effective.

Comparison to Cloud Implementation
NLify’s design decision of using a custom SLM augmented
by a mid-sized garbage model instead of a large-vocabulary
(LV) language model allows it to run fully on the client.
Given that commonly used cloud-based recognizers use much
bigger models, it is natural to ask if this independence comes
at the cost of recognition accuracy. We therefore use a com-
mercial quality cloud-based voice search model to perform
recognition on our Voice dataset before using the TF-IDF en-
gine trained on Seed-UHRS for intent recognition. Since (in
the absence of traditional CRF-based recognizer), our infras-
tructure does not support slot recognition on the resulting text
from the LV engine, we replaced the slot values with the slot
key names for each LV result. Figure 8 shows the result: the
LV model averages 80% intent recognition to NLify’s 85%.
Customized client-based models a la NLify are therefore at
least competitive with generic cloud-scale models. These re-
sults also suggest considering cloud-scale models that allow
SLM customization per mobile user.

Resource Usage
Since the NLify SNL pipeline runs entirely on-client, its re-
source usage, especially memory and power is important to
quantify. We profiled the memory usage of NLify running
with 27 intents and the full UHRS+Seed+Slot set of templates
on a Nokia Lumia 822 running Windows Phone 8. The max-
imum memory usage was 32M, of which roughly 26.5M is
the garbage SLM, 130kB the Nlify SLM and the rest slot val-
ues. Given our minimal effort to optimize memory layout, we
consider this acceptable.

We further profiled the same phone using a Monsoon Mo-
bile Device Power Monitor as in [17]. The “listening-for-
voice” loop on our phone consumed roughly 970mW on av-

Description Sample commands stats (rounded)
orig. LOC/
addl. LOC/ time
taken

1 Control a night
light

“turn off the light”,
“higher”

200 / 50 / 30 min

2 Get sentiment on
Twitter

“review this” 2000 / 60 / 30 min

3 Query, control lo-
cation disclosure

“where is Alice?”,“allow
Bob to see me”

2800 / 60 / 40 min

4* Query weather “weather tomorrow?” 3800 / 50 / 70
min*

5* Query bus service “when is the next 545 to
Seattle”

8300 / 80 / 3
days*

*Off-the-shelf program, time taken includes understanding program

Table 3. Developer study programs.

erage. NLify did not add noticeably to this load: all process-
ing for NLify is effectively piggybacked onto the listening
period, which would be required even in competing cloud-
based schemes. We conclude that NLify’s resource usage on
the client is acceptable for daily use.

Developer Study
Given that enabling developers is a key goal of NLify, we
conducted a small study among experienced developers to
ascertain if NLify is usable and useful. We recruited 5 de-
velopers we knew had written Windows Phone programs pre-
viously. The developers were all male in the 30-50 age group,
all with over 10 years of programming expertise. Three
agreed to modify their existing programs and two opted to
use open-source programs. Table 3 details the programs.

Each developer watched a 3.5-minute video of how to use
NLify, used a stock existing program as template, decided
what 1 to 3 intents they would add to their application, imple-
mented the functionality (after understanding the program to
modify if necessary) and answered 8 questions on a 5-point
rating scale about their experience. Responses from UHRS
(crowdsourced paraphrases) were delivered to subjects the
day after the programming session, since they typically take
a few hours to return. Subjects also had the opportunity to
provide open-ended comments.

Table 3 gives some details on the programs. Although some
of the programs are small, recall that supporting even sim-
ple programs that could use speech is an explicit goal of
NLify. All programmers completed their task quite quickly
with small amounts of additional code. In general, program-
mers were able to quickly articulate functionality that could

benefit from SNL, identify existing functionality in their code
that could handle it, and use the NLify IDE to produce code.

Table 2 details the questions and responses. Overall, develop-
ers found the SNL function useful, especially given the value
of SNL to their app (question 4). Ease of use could have been
better, primarily because our IDE integration was not com-
plete: developers had to add some boilerplate into their code
that they do not need in the GUI case. Further, instead of al-
lowing developers to add handlers to the file defining the GUI
corresponding to the NLified function, we require a separate
parallel file for the NL UI. Both problems are straightforward
to address. The broader message is that the SNL UI devel-
opment process should be as close as possible to the existing
GUI process.

Although developers found the results of crowdsourcing to be
useful, the delay of several hours between requesting crowd-
sourcing results and receiving them was consistently reported
as needing improvement. A message here maybe that tech-
niques to accelerate crowdsourced results (e.g., [4]) may be
important at least in easing adoption of integrated crowd-
sourcing in development tools.

CONCLUSIONS AND FUTURE WORK
We have presented the first design for, and a complete imple-
mentation of, a programming system that enables third-party
developers to add spoken natural language (SNL) support to
their apps. The system runs efficiently on mobile devices.
We have presented the first mobile SNL benchmark dataset
we are aware of, and used it to drive a comprehensive evalua-
tion of our system. That, and a small developer study, indicate
that it is both feasible and useful for third-party developers to
add SNL interfaces to their apps.

Many obvious directions remain for improving and validat-
ing NLify, however. Given NLify’s promise on lab-collected
end-user data, a deployment study gauging its effectiveness
in daily use is a clear next step. Anecdotally, NLify has been
demonstrated in several conference-demo-style settings [12],
and has functioned quite well despite loud background noise,
given phones held close to the mouth or a wearable speech
accessory. Beyond testing, refining how users start and stop
speech, interact with wearable accessories, control privacy
and correct errors, is critical. Orthogonally, system perfor-
mance can still stand to improve. Crowdsourcing needs to
become more efficient and lower latency. Improvements in
classification should yield recognition rates well above the
current 85%, with support for correction dialog when the in-
evitable errors occur. All that said, we believe that NLify as
it is today is sufficient for prototyping useful and useable mo-
bile SNL interfaces.

ACKNOWLEDGMENTS
We thank Chris Brockett for providing access to the Contex-
tual Thesaurus API, Ranveer Chandra, Bodhi Priyantha and
Sharad Agarwal for assistance with the Monsoon power mea-
surement infrastructure, Madhu Chinthakunta for access to
server-based recognizers and Jitu Padhye for discussions on
metrics for evaluating NLify.

REFERENCES
1. Balasubramanian, A., et al. Augmenting mobile 3g using wifi. In

Mobisys (2010).

2. Barzilay, R., and McKeown, K. Extracting paraphrases from a parallel
corpus. In ACL (2001).

3. Bazzi, I. Modeling Out-of-Vocabulary Words for Robust Speech
Recognition. PhD thesis, MIT, 2002.

4. Bernstein, M. S., et al. Crowds in two seconds: enabling realtime
crowd-powered interfaces. In UIST (2011), 33–42.

5. Bishop, F. A. Speech-enabling a windows phone 8 app with voice
commands. MSDN Magazine 27, 11 (November 2012).

6. Brush, A. J., Johns, P., Inkpen, K., and Meyers, B. Speech@home: an
exploratory study. In CHI EA (2011).

7. Chelba, C., et al. Large scale language modeling in automatic speech
recognition. Tech. rep., Google, 2012.

8. Chen, D. L., and Dolan, W. B. Collecting highly parallel data for
paraphrase evaluation. In ACL (2011), 190–200.

9. Dolan, W. B., and Brockett, C. Automatically constructing a corpus of
sentential paraphrases. In 3rd Intl. Work. on Paraphrasing (2005).

10. Fei-Fei, L., et al. What do we perceive in a glance of a real-world
scene? J. Vision 7, 1 (1 2007), 1–29.

11. Hahn, S., et al. Comparing stochastic approaches to spoken language
understanding in multiple languages. IEEE Trans. Audio, Speech &
Language Processing 19, 6 (2011), 1569–1583.

12. Han, S., et al. Nlify: Mobile spoken natural language interfaces for
everyone. In HotMobile (demo) (2013).

13. Hayes, G. R., et al. The personal audio loop: Designing a ubiquitous
audio-based memory aid. In Mobile HCI (2004).

14. Hsu, B.-J. P. Language Modeling for Limited-Data Domains. PhD
thesis, MIT, 2009.

15. Jurafsky, D., and Martin, J. H. Speech and Language Processing,
second ed. Pearson Prentice Hall, 2008.

16. Lu, H., et al. Stresssense: detecting stress in unconstrained acoustic
environments using smartphones. In UbiComp (2012).

17. Mittal, R., Kansal, A., and Chandra, R. Empowering developers to
estimate app energy consumption. In MOBICOM (2012), 317–328.

18. Okazaki, N. Crfsuite: a fast implementation of conditional random
fields (crfs), 2007.

19. Oulasvirta, A., et al. Communication failures in the speech-based
control of smart home systems. In Intelligent Environments (2007),
135–143.

20. Pyles, A. J., et al. Sifi: exploiting voip silence for wifi energy savings
insmart phones. In UbiComp (2011).

21. Raymond, C., and Riccardi, G. Generative and discriminative
algorithms for spoken language understanding. In INTERSPEECH
(2007).

22. Rosenfeld, R. Two decades of statistical language modeling: Where do
we go from here? In Proc. of the IEEE (2000).

23. Salton, G., et al. A vector space model for automatic indexing.
Commun. ACM 18, 11 (Nov. 1975), 613–620.

24. Wang, W., et al. Crowdsourcing the acquisition of natural language
corpora: Methods and observations. In SLT (2012).

25. Wang, Y.-Y., et al. Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups. Signal
Processing Magazine, IEEE 29, 6 (nov. 2012), 82 –97.

26. Whittle, J., et al. Voiceyourview: collecting real-time feedback on the
design of public spaces. In Ubicomp (2010).

27. Wyatt, D., et al. Towards the automated social analysis of situated
speech data. In UbiComp (2008).

28. Yatani, K., and Truong, K. N. Bodyscope: a wearable acoustic sensor
for activity recognition. In UbiComp (2012).

	Introduction
	Background
	Speech Recognition Engine
	Language Engine

	Related Work
	System Design & Implementation
	Template definition language
	Learning models from templates
	Learning the SLM
	Learning the Intent Classifier

	Template Set Amplification
	Implementation

	Evaluation
	The NLify C&C Dataset
	Voice (``Audio'') Dataset
	Crowdsourced (``UHRS'') Data

	Results
	Scaling with number of commands
	Impact of NLify Features
	Comparison to Cloud Implementation
	Resource Usage
	Developer Study

	Conclusions and Future Work
	Acknowledgments
	REFERENCES

