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Abstract
Rapid developments in networking technology over the past few years have lead to the

emergence of distributed applications which incorporate continuous media data types such as
digital video and audio. Such applications have stringent real-time synchronisation requirements
which have been documented in the literature. However, little research has been carried out into
suitable mechanisms to support such synchronisation. This paper presents a multimedia
synchronisation architecture and a detailed description of the lower layer services of the
architecture. The paper also provides a rationale for the services by describing a real world
application area and illustrates how the services can be exploited in this application area.
Because the services described incorporate a variety of co-ordination functions over multiple
transport connections a more general term, orchestration, is introduced to describe the low level
synchronisation services.
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1. INTRODUCTION

Rapid developments in networking technology over the past few years have lead to the
emergence of distributed applications which incorporate multimedia and continuous media
information exchange [1] (e.g. digital video and audio). Such applications introduce new
design challenges at all levels from network protocols and operating systems to application
support platforms. This is because multimedia applications introduce fundamentally novel
requirements [2] such as the need to represent continuous media storage and transmission,
quality of service (QOS) configurability and real-time synchronisation of continuous media
streams.

This paper addresses the requirement for real-time synchronisation of continuous media
streams. Our approach is based on the assumption that the underlying transport protocol
supports a degree of QOS configurability and has responsive back pressure flow control.
Previous work at Lancaster has addressed these issues and is reported in [3]. In this paper we
describe layers on top of such a protocol which support application level synchronisation
between multiple information streams. These services also provide support for synchronisation
and rate control within single streams. Because of the scope of the services, we introduce a new
term, orchestration, which is defined as the dynamic management of information flow and QOS
in a multimedia session involving a set of connections and end devices.



The paper first sets out, in section 2, requirements for synchronisation in distributed
multimedia applications which are set in the context of a real world application scenario. Section
3 then introduces our orchestration services including an architecture which places the services
within an experimental distributed multimedia application platform developed at Lancaster.
Finally, section 4 presents an application example from the scenario of section 2 which
exercises the orchestration services, and section 5 presents our conclusions.

2. SYNCHRONISATION REQUIREMENTS

2.1 Application Scenario

Previous work in the field has identified the need for real-time synchronisation between
related activities in multimedia applications (e.g. [4-6]). This section illustrates such
requirements in the context of a real world application scenario which arose from a
collaboration between Lancaster University and ICI, Runcorn, UK [7].

The scenario is one of remote scientific co-operative working. ICI maintains a number of
specialised microscopes at various sites throughout the country and employs scientists who use
the various microscopes on a regular basis. Currently, scientists need to travel between sites to
use microscopes and to collaborate with remotely sited colleagues on microscope output data.
In the latter case, microscope output (usually slow scan video) is dumped to videotape and
taken along by car.

To reduce travelling overheads and improve the efficiency of collaboration, we have
designed a prototype system which allows remote collaborative working between scientists at
the various sites. Presently the system runs over a local network but should be capable of
running over a wide area network without fundamental design changes. Each scientist has a
audio/ video multimedia workstation with the capability to control and display the slow scan
video output from remote microscope devices. Such output can also be multicast to a number of
sites which are linked by a multiparty video telephone component. Finally, scientists engaging
in remote collaborative working can record microscope output to disc and create multimedia
documents including co-ordinated video, text and voice annotations. They may also send such
documents to remote sites as ‘video mail’.

2.2 Synchronisation Scenarios

To begin to address the requirements of multimedia synchronisation, we have identified two
categories of synchronisation as follows:-

event-driven synchronisation:

This is the act of notifying that a relevant event or set of events has taken place, and then
causing an associated action or actions to take place. This must all be done in a timely
manner due to the real-time nature of continuous media communication. For example, a
user clicking on the stop button relating to a video play-out should cause the play-out to
stop instantaneously.

continuous synchronisation:

This is an on-going commitment to a repetitive fine grained pattern of event driven
synchronisation relationships such as the 'lip sync' relationship between the individual
frames in an audio and video components of a play-out. Continuous synchronisation is
ultimately based on event synchronisation but is a useful concept in itself as it permits
potentially complex patterns of event synchronisation, perhaps involving various
degrees of ‘slack’ and tolerance, to be encapsulated and handled as a whole.

To illustrate the applicability of the concepts of event driven and continuous
synchronisation, we can extract a number of situations from the application scenario introduced



above:-

event synchronisation

A caption is to be shown at a particular point in a microscope video segment.

event synchronisation with user interaction

The user hits a graphical user interface button to start/stop continuous information flow
(perhaps over multiple flows simultaneously).

lip synchronisation

This is the most commonly cited form of multimedia synchronisation. It appears in our
scenario as the need to synchronise the video and audio components in the playback of a
recorded videophone message (i.e. video mail). In such cases, video and audio are
almost always stored in separate files and sometimes on separate storage servers which
are optimised for different media [8].

continuous synchronisation other than lip synchronisation

This is illustrated by the playback of two simultaneously recorded video segments
which record the same experimental sample from two different perspectives. An
example of this is where recordings of different magnification are made and then
simultaneously replayed to convey an impression of the context of the higher
magnification.

continuous synchronisation requiring varying degrees of 'tightness'

Simultaneously recorded video perspectives must be played in precise frame by frame
synchrony so that relevant features may be simultaneously observed. On the other hand,
lip synchronisation in multimedia documents does not need to be absolutely precise
when the main information channel is auditory and video is only used to enhance the
sense of presence. It is useful to permit degrees of tightness of continuous
synchronisation as looser synchronisation is often sufficient and can be achieved with a
relatively low overhead.

continuous synchronisation of many streams

This occurs in multimedia documents where an audio annotation, perhaps with
accompanying video, is associated with microscope output clips involving one or more
video streams.

continuous synchronisation from disparate sources and sinks

The need for continuous synchronisation arises in a number of different physical node
configurations. For example, video and audio from separate remote sources often need
to be synchronised at a common sink. Conversely, the playout of a single segment of
stored microscope may need to be displayed simultaneously at different remote sinks so
that scientists discussing the output over a videophone can simultaneously refer to the
same features. There are also situations where two or more streams need to be
synchronised which all originate from different sources and are played out at separate
remote sinks. For example, two remote scientists may each view different separately
stored perspectives on the same experiment while discussing related events over the
videophone. Finally, there is a need to synchronise separate multicasted playouts
where, for example, a number of scientists interactively collaborate over a continuously
synchronised playout where the components are separately stored.



2.3 Infrastructure Requirements for Continuous Synchronisation

Although it is possible in some situations to support continuous synchronisation simply by
multiplexing the different media onto a single connection in the correct ratios, there exist strong
arguments against this as a general solution [9]:-

• the overhead and complexity of multiplexing/ demultiplexing is significant, especially
when different encoding/ compression schemes are used for different media; this can
lead to excessive real-time delays, especially where it would otherwise be possible to
interface the transport protocol directly to hardware such as frame grabbers, codecs etc.;

• the opportunity to process separate connections in parallel is lost, thus reducing
potential performance;

• multiplexing leads to a combined QOS which must be sufficient for the most demanding
medium; this may be both expensive and unsuited to some component media types;

• multiplexing is not an option where media originate from different sources.

If multiplexing is rejected as a general purpose strategy for the support of continuous
synchronisation, an analysis of the continuous synchronisation problem suggests that the
following support should be provided by the infrastructure. Sections 3 and 4 illustrate how our
design satisfies these requirements.

i) the ability to start and stop and pause related continuous media data flows precisely
together. If a temporal relationship is not correctly initiated, there is no possibility of
maintaining correct synchronisation.

ii) the ability to monitor the on-going temporal relationship between related connections,
and to regulate the connections to perform fine grained corrections if synchronisation is
being lost. It is almost inevitable that related connections will eventually drift out of
synchronisation due to factors such as the potentially long duration of continuous media
connections in typical applications, and temporary 'glitches' occurring in individual
connections and the scheduling of source and sink application threads.

Finally, note that the need for the comprehensive continuous synchronisation support
detailed in this paper is only strictly necessary when all the CM sources to be orchestrated are
stored. This is because with live media, there is no possibility of control over when the
information flow starts (e.g. it depends when the camera is switched on!), and also no
possibility of altering the speed of a live media flow. Whenever live sources are to be
continuously synchronised (e.g. the output from a camera and a microphone), the major
requirement is to ensure that the latency of the connections is the same. Other QOS parameters
such as delay, jitter and error rates can be separately controlled over individual connections as
desired.

3. ORCHESTRATION ARCHITECTURE

This section presents an architecture which addresses the need for the temporal co-
ordination of multiple related continuous media transport streams identified in section 2.

It can be seen from the architecture diagram in figure 1 that orchestration is a multi-layered
activity. Each layer provides policy to its lower neighbour and mechanism to its upper
neighbour. This design provides both flexibility and efficiency because the lower layers are
simply provided with targets, and all exceptions, error handling and re-structuring are handled
in the layers above.

3.1 Upper Architectural Layer

The top level of the synchronisation architecture forms part of the Lancaster multimedia
application platform [10]. This is an object-based set of services based on the ANSA distributed



systems architecture [11]. At the application platform level all entities in the system are
represented as abstract data type interfaces with named operations which can be invoked by
RPC. Such entities include documents, the individual components of documents, 'devices'
such as video windows and speakers, and even continuous media connections themselves.
Abstract data type interfaces are referred to through interface references which are location
independent 'handles' which can be freely passed around the system.
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Figure 1: Three level orchestration architecture.

The synchronisation manager is the platform level view of the orchestration services and,
like all the other platforms services, appears to applications as an abstract data type interface.
The synchronisation manager is responsible for finding the physical locations of the transport
connections underlying the platform level communications abstractions, and thus choosing a
single node from which the lower levels of orchestration will be co-ordinated. The node
selected, known as the orchestrating node, is that common to the greatest number of
connections (see figure 2). For example, if it was required to orchestrate separate video and
audio tracks of a film stored on separate storage servers, the common sink would be designated
as the orchestrating node by the synchronisation manager. The platform level of the architecture
is not discussed further in this paper. See [10] for more details of this aspect of the architecture.
A more detailed description of the synchronisation specific aspects of the platform can be found
in [12].
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Figure 2: Orchestrating at the common node.

3.2 Lower Architectural Layers

Below the platform level, the remaining two orchestration components are responsible for
realising the behaviour and policy required by the synchronisation manager. At this level, the
orchestration process is realised as high level orchestrator (HLO) entities which monitor and
regulate multiple transport connections via a low level orchestrator (LLO) interface. For each
orchestrated group of connections, a single HLO runs on the orchestrating node, and an LLO
instance runs on all source and sink nodes of all the orchestrated connections. The HLO only
interacts with its local LLO instance, but the multiple LLO instances interact with each other via



Orchestrator PDUs (OPDUs), on out of band connections.

3.2.1 Orchestration Control Framework

The out of band connections for OPDU transfers must have guaranteed bandwidth to
support the necessary real-time communication of orchestration primitives and, in general, a
separate connection is required between the orchestrating node and each source and sink node
involved. However, depending on the topology the numbers of connections can often be
reduced in practice: e.g. when a number of connections are sourced and sinked on the
orchestrating node itself. In our current implementation we exploit duplex control connections
associated with each simplex continuous media connection [13].

There are three sorts of interaction between the HLO and the LLO instance on the
orchestrating node, each of which involves a separate set of primitives. The first group of
primitives are used for management purposes to establish and modify orchestrated groups of
connections. The second set operates over a grouping of transport connections and provides the
ability to atomically prime, start and stop the flow of data in these connections both atomically
and instantaneously. The third set allows the HLO to control the rate of information flow on
individual orchestrated connections, and thus forms the basis for the implementation of
continuous synchronisation across multiple connections.

Figure 3 illustrates the pattern of interaction for a single connection between the HLO and
the local LLO where the third set of primitives are being applied. The HLO supplies the LLO
with rate targets for each orchestrated connection over specified intervals. These targets require
that each orchestrated connection runs at the required rate for the required synchronisation
relationship between the orchestrated connections to be maintained. The LLO attempts to meet
the required rate target over each interval for each connection, and reports back at the end of the
interval on its actual success or failure. Then, on the basis of these reports, the HLO may set
new targets for the next interval which compensate for any relative speed up or slow down
among the orchestrated connections. If no new target is set for the forthcoming interval, the
LLO uses the rate specified in the previous request until further notice. The LLO operates on a
best effort principle; it is the responsibility of the HLO to take appropriate action (e.g. set new
targets or re-negotiate the connection QOS) if the LLO consistently fails to meet targets. The
length of interval chosen largely determines the granularity or 'tightness' of the synchronisation
required (as specified by the application). As mentioned in section 2, loose synchronisation
based on long intervals is relatively cheap in terms of message exchanges and synchronisation
overhead.
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Figure 3: Interaction between HLO and LLO.



3.2.2 Data Transfer in Orchestrated  Connections

The small numbered arrows in figure 3 represent the delivery of quanta of CM information
which are released by the sink LLO instance to the application thread at times determined by the
HLO initiated targets. These quanta are known as OSDUs, and are the units of CM information
meaningful to applications (e.g. video frame or text paragraph).

The orchestration services maintain a special OSDU sequence number field for each OSDU,
which starts from zero when the connection is first used; a second such field, known as an
event field, is employed for use by the Orch.Event primitive (see later). Both these fields form
part of an OPDU which is sent along with each OSDU. OSDU and OPDU boundaries are
maintained by the transport service. This is possible in our system because, at connection
establishment time, the transport service is given the maximum size of an OSDU as a QOS
parameter, and this (plus the size of the OPDU) is interpreted as a lower bound on buffer size
allocation.

LLO

shared buffer

application
thread

protocol
thread

access 
semaphores

Figure 4: Shared buffer interface between application and protocol threads.

The application’s data.request and data.indication interface to the orchestration service is
implemented as a circular shared buffer (see figure 4) which maintains mutual exclusion and
access control by means of semaphores. The protocol and application run as separate threads
and do not need to explicitly synchronise via the access semaphores if they are running at
compatible rates. When applications write/ read OSDUs into/ from the circular shared buffers,
they write/ read from the beginning of a buffer, and may also write/ read the current OSDU size
to/ from an auxiliary memory location. The LLO operates largely by controlling the flow of data
by means of the shared buffer access semaphores. The interface and mechanism of the LLO is
described in the following section.

4. LOW LEVEL ORCHESTRATOR

The LLO service interface consists of three sets of OSI-like primitives corresponding to the
three types of HLO/LLO interaction described above. As indicated above, the LLO interface is
not expected to be used directly by applications but is intended for use by an HLO instance and
ultimately via a synchronisation manager interface by an application running in an object-based
computational model.

We now present the LLO interface primitives in more detail together with their
implementation in terms of protocol message exchanges.

4.1 Management Primitives

The management primitives and their parameters are illustrated in table 1 below.

4.1.1 Orch.request

We assume that before an HLO instance attempts to instantiate an LLO orchestrating
service, the connections to be orchestrated have already been established.



The initiating HLO issues a Orch.request to the orchestrating LLO instance at its local node.
This causes the orchestrating LLO to open transport associations between itself and the LLO
instances at the source and sink of all connections in the orchestrated group. Subsequently, the
orchestrating LLO instance uses these associations to pass an Orch.request to all the LLO
instances involved. Each source and sink LLO instance passes an indication up to the
application thread which owns the connection and waits for either an Orch.response or an
Orch.release.request depending on whether or not the application wants the connection to be
involved. Each LLO instance then replies on its private connection to the initiating LLO with
either an Orch.confirm or an Orch.release.request packet. If accepted by all the remote LLO
services, the HLO will eventually be passed an Orch.confirm, or if rejected a
Orch.Release.indication giving a reason why orchestration was rejected. Apart from refusal by
the application, rejection may also occur because some LLO instance has no table space
available, or because one or more of the specified connections do not exist etc..

Having authenticated the set of connections to be orchestrated, the orchestrating LLO
instance enters the connection identifiers and the corresponding source and sink addresses in a
private table accessible via the orch-session-id.

Primitives Parameters
Orch.request
Orch.indication
Orch.response
Orch.confirm

orch-session-id, list-of-vc-ids
                  "
orch-session-id, vc-id, status
                  "

Orch.Release.request
Orch.Release.indication
Orch.Release.response
Orch.Release.confirm

orch-session-id, vc-id
                  "
orch-session-id, vc-id, reason
                  "

Orch.Add.request
Orch.Add.indication
Orch.Add.response
Orch.Add.confirm

orch-session-id, vc-id
                  "
orch-session-id, vc-id, status
                  "

Orch.Remove.request
Orch.Remove.indication
Orch.Remove.response
Orch.Remove.confirm

orch-session-id, vc-id
                  "
orch-session-id, vc-id, status
                  "

Table 1: Orchestration management primitives together with their associated parameters.

4.1.2 Orch.Add and Orch.Remove

The Orch.Add and the Orch.Remove primitives are employed to either add or remove a
connection or connections from an orchestrated group. The message sequence is similar to that
for Orch.request. Note that when connections are removed from an orchestrated group they are
not disconnected and thus data may still be flowing. If a single connection is closed, the local
LLO instance is informed by the transport service and issues a Orch.Remove.request to the
orchestrating LLO instance.

4.1.3 Orch.Release

An entire orchestration session is released by issuing a Orch.Release.request. Again, the
message sequence is similar to that for Orch.request. Orchestration will also be released
implicitly if all the connections in an orchestrated session are closed.



4.2 Group Operation Primitives

 The primitives to prime connections, and atomically start and stop the data flow on groups
of orchestrated connections are illustrated in Table 2.

4.2.1 Orch.Prime

The prime mechanism has the effect of filling the end-to-end pipeline of buffers in a
connection and is used to ensure that multiple streams of remotely stored CM data can be started
together in a co-ordinated manner. It is also useful in ensuring that time critical data can be pre-
fetched and made available when required. A third application of Orch.Prime arises when it is
required to flush the buffers in an end to end connection. This need arises when a user stops a
media play-out and then wishes to seek to another part of the media before resuming. If the
buffers were not flushed in this situation, a short burst of media buffered from the previous
play would be discernible.

Following the issue of an Orch.Prime.request by the initiating HLO, the orchestrating LLO
forwards Orch.Prime.requests to all involved source and sink LLO instances. At each LLO
instance, Orch.Prime.indication primitives are passed to the application threads associated with
the connection. On receipt of the Orch.prime.indication, each application thread is expected to
flush any internal buffers and start generating data or preparing to accept data as appropriate. If
any application thread is not in a position to do this it can set the error-flag in the
Orch.Prime.response primitive.

As data begins to arrive at the sinks, the sink LLOs in the primed state allow the receiver's
communications buffers to fill, but prevent the data from being delivered to the receiving
application threads. When the receive buffers are eventually full, each sink LLO notifies the
orchestrating LLO, which eventually relays the received Orch.Prime.confirm packet to the
originating HLO. At this point, the source application thread will also be blocked by the
protocol's flow control mechanism, but the pipeline is filled and ready to go.

Primitives Parameters
Orch.Prime.request
Orch.Prime.indication
Orch.Prime.response
Orch.Prime.confirm

orch-session-id
                   "
orch-session-id, error-flag
                   "

Orch.Start.request
Orch.Start.indication
Orch.Start.response
Orch.Start.confirm

orch-session-id,  start-t ime,
default-rate

                   "
                   "
                   "

Orch.Stop.request
Orch.Stop.indication
Orch.Stop.response
Orch.Stop.confirm

orch-session-id
                   "
                   "
                   "

Table 2: Orchestration primitives for priming, starting and stopping.

4.2.2 Orch.Start

This is intended to be issued after the successful completion of an Orch.Prime. The
primitive re-starts the transport protocol and also unblocks the previously filled receive buffers
so that data may be consumed by the sink application thread. In terms of messages, the
Orch.Start.request issued by the HLO is forwarded to each sink LLO instance concerned. To
ensure simultaneity of action, the orchestrating LLO must keep information on the maximum



delay of its out-of-band associations with the LLO instances at the sinks of each connection.
This is possible in our experimental system as the transport service provides delay bound
configurability as part of its QOS control interface. The orchestrating LLO must then time stamp
each Orch.Start.request packet with the value ‘now’ + max(delay1, delay2, ..., delayn). On
arrival of these packets at the LLO instance at each sink, the message is held back until the
current time becomes equal to the timestamp value. Note that this requires a globally
synchronised clock for correct operation. This can be supplied by mechanisms such as satellite
time co-ordination or network time protocols such as NTP [14].

If an Orch.Prime has been issued before the present Orch.Start, data will already be waiting
at all the sinks, and all the receiving application threads in the orchestrated group will start to
receive data at (almost) the same instant. A Orch.Start.indication is sent to each sink application
thread as a result of the Orch.Start.request in an analogous manner to that described for
Orch.Prime. However, where the system is already in a primed state, these threads will not
need to take any special action as they are already set up to produce/ consume data, but are
blocked by the underlying transport protocol’s back-pressure flow control mechanism.

After Orch.Start.request packets have been received at each sink LLO instance, the LLO
instances reply to the orchestrating LLO by means of an Orch.Start.response packet, and the
final response is relayed to the originating HLO when all expected packets have been received.

4.2.3 Orch.Stop

Orch.Stop ‘instantaneously’ freezes the flow of data in the specified connections. Internal
messages exchanges are only necessary between the orchestrating LLO and the sinks: back
pressure in the transport protocol is relied on to stop data flow at the source. Note, however,
that the flow of data can not actually be stopped until the underlying protocol's flow control
mechanism can take effect. As with the Orch.Prime primitive, the receive buffers are made
unavailable to the application sink thread before they are drained so that data is available for a
subsequent primed start. Simultaneity of action is attained in a similar manner to Orch.Start via
a timestamping mechanism.

Note that a potential problem with both Orch.Start and Orch.Stop is that a orchestration
protocol message may be lost or delayed beyond its expected latency thus causing some
connections to be either left out or uncoordinated. This problem could be overcome by using a
standard two phase commit algorithm [15] but the overhead here could be significant. We are
investigating this pragmatically as our implementation develops.

4.3 Regulation Primitives

The third group of primitives operate on single transport connections within an orchestrated
grouping. Thus each primitive is issued with both an orch-session-id and a vc-id. These
primitives enable the controlling HLO to regulate and monitor the flow rate targets described in
section 3.1. As stated above, LLO instances will attempt to meet these targets on a best effort
basis. Primitives are also provided to report back to the HLO on the actual performance
achieved at the end of each interval.

4.3.1 Orch.Regulate
4.3.1.1 Orch.Regulate.request

The Orch.Regulate.request primitive is issued by the HLO instance to set a flow rate target
for the forthcoming interval. Note that there are no confirm and response packets associated
with this primitive as communication is not passed up above the LLO layer at the remote end.
For this reason, the indication variant of this primitive does not require a response. The same
applies to the Orch.Event primitive described later.

Parameters to Orch.Regulate.request include the orchestration session ID, the ID of the



connection to be controlled, a target OSDU# to be delivered at the end of the forthcoming
interval, the length of the forthcoming interval, an interval# to identify the corresponding
Orch.Regulate.indication, a default flow rate to be used for subsequent intervals, and a max-
drop# parameter. The interval# is also used to ensure that the desired effect occurs within the
desired interval: if the interval# refers to an interval which has already passed, the HLO will be
returned an Orch.Regulate.indication with an appropriate error flag.

The target-OSDU# parameter denotes the OSDU sequence number which should ideally be
delivered to the sink application thread at precisely the end of the interval. The required flow
rate target is calculated as ((target-OSDU# - current-OSDU#) / interval-length). Absolute OSDU
sequence numbers are used to avoid ambiguities due to OSDU loss: if targets are specified in
OSDUs/interval then lost OSDUs may cause synchronisation to be lost even when relative rates
appear correct. The default rate parameter is used for subsequent intervals if no further
Orch.Regulate.requests are issued. Subsequent intervals also use the most recently requested
interval length.

Primitives Parameters
Orch.Regulate.request

Orch.Regulate.indication

orch-session-id, vc-id, target-OSDU#,
interval-length, interval#, default-rate,
max-drop#
orch-session-id, vc-id, interval#,
OSDU#, dropped#,

proto-block-times, app-block-
times, error-flag

Orch.Regulate.Source.request

Orch.Regulate.Source.response

orch-session-id, vc-id, interval-length,
interval#,
interval-start-time, drop#
orch-session-id, vc-id, interval#,
dropped#,
proto-block-times, app-block-times

Orch.Event.request
Orch.Event.indication

orch-session-id, vc-id, event-pattern
                      "

Orch.Delayed.request

Orch.Delayed.indication
Orch.Delayed.response
Orch.Delayed.confirm

orch-session-id, vc-id, source-or-sink,
interval-length, OSDUs-behind, max-
drop#
                      "
                      "
                      "

Table 3: Orchestration Primitives for Regulation and Monitoring

When the LLO is attempting to meet the requested flow rate target for a connection, there
are three possible cases: it may be on target, behind target or ahead of target. If the connection
is on target, no action need be taken. If, however, either of the other cases is true, the following
compensatory strategies are available to the LLO:-

• if a connection is behind, its sole compensatory strategy is to drop OSDUs. The max-
drop# parameter to Orch.Regulate.request states the maximum number of OSDUs
which the connection may discard in order to achieve its flow rate target. All such
discards are performed at the source by incrementing the source shared buffer pointer.
This permits the source application thread to immediately insert another OSDU and thus
overwrite the previous one before it is sent. This strategy may help a delayed connection
to catch up and meet the link delivery target in case it is lack of transport bandwidth



which is causing the delay.

• if, on the other hand, a connection is ahead of schedule, the compensatory action is
simply to block. Note that, as with the Orch.Stop primitive, the flow control mechanism
of the underlying transport protocol must be capable of rapid adaptation for this to be
feasible. The rate based mechanism used in our protocol [13], is adequate for this
purpose. Note also that, for both these compensatory actions, the LLO must take
responsibility for attempting to spread compensatory actions over the length of the target
interval to avoid unnecessary jitter.

If these compensatory actions are not available to the LLO (e.g. a max-drop# of zero will
often be chosen where a no-loss medium such as voice is involved), then the necessary
corrections must be taken by the HLO on the basis of the information gathered via the
Orch.Regulate.indication primitive. Such actions will typically involve issuing Orch.Delayed
primitives to participating application threads, and re-negotiating the QOS of individual
connections.

4.3.1.2 Orch.Regulate.indication

The Orch.Regulate.indication primitive is used to report back to the HLO on the
performance actually achieved by each orchestrated connection. The interval# parameter is used
to match the indication to a prior request. If an interval expires and no new request has been
received, the LLO will automatically start a new interval on the basis of the default parameters
in the most recent Orch.Regulate.request, and will continuously generate asynchronous
Orch.Regulate.indications at the end of each interval. The statistics reported include the OSDU#
actually delivered at the end of the interval, the number of OSDUs actually dropped, and the
times spent blocking by both the application and protocol threads at both the source and sink
ends of the connection. This blocking time information is gathered by associating timers with
the shared circular buffer semaphores described in section 3.

The blocking time information is used by the HLO instance to determine which part of the
system was responsible for any failure to meet the flow rate target. Based on this information,
the HLO can take compensatory action if required. For example, if the application threads spent
an excessive amount of time blocked, the protocol throughput was presumably too low and the
HLO may re-negotiate the QOS of the connection. Alternatively if the protocol threads were
blocked, the application threads were presumably slow in producing/ consuming data. In this
latter case the HLO will probably issue a Orch.Delayed primitive.

4.3.1.3 Orch.Regulate.Source

The message sequence required for the Orch.Regulate primitives uses the
Orch.Regulate.Source primitive. This primitive is internal to the orchestration protocols and is
not visible to the client HLO. Because of this there are no indication and confirm variants of this
primitive.

When an Orch.Regulate.request is issued by the HLO, the orchestrating LLO forwards it to
the sink LLO of the connection concerned. The sink LLO then attempts to impose the flow
control strategy contained in the request. It also issues an Orch.Regulate.Source.request
primitive to the source LLO instance. This primitive is used to co-ordinate state information
between the LLO instances at the source and sink of each connection. Initially,
Orch.Regulate.Source.request notifies the source of the interval length and the time of
commencement of the next interval. The source is expected to asynchronously generate
Orch.Regulate.Source.response primitives at the end of each interval.
Orch.Regulate.Source.request is also used to request the source LLO instance to drop OSDUs
as and when this strategy is ordered by the sink LLO which acts as ‘master’ for this purpose.
The sink LLO instance receives an Orch.Regulate.Source.response at the end of each interval
and combines the information in this packet with its own local information to build an



Orch.Regulate.indication which is sent to the orchestrating LLO and thence to the originating
HLO.

4.3.2 Orch.Delayed

This primitive is issued by the HLO in response to the situation where it can be deduced that
an application thread is responsible a connection being behind the required schedule (see section
4.3.1.2). The effect of an Orch.Delayed.request is to cause an indication to be delivered to the
application thread(s) causing the delay. The intended interpretation of a Orch.Delayed.indication
is that the thread is not running sufficiently fast to produce/ consume data at a rate required by
the client of the location independent orchestration service. Applications so informed may take
any appropriate action such as requesting more processor resources or dropping OSDUs and
should then reply with an Orch.Delayed.response.

4.3.3 Orch.Event

This primitive is used to register an interest in a particular application defined event
associated with some OSDU; it thus provides support for event-driven synchronisation.

To register an interest in some application defined event, a Orch.Event.request is issued
which is forwarded to the LLO instance at the sink end of the specified connection, together
with a bit pattern representing the event. Subsequently, the sink LLO instance will match this
bit pattern, which is not interpreted in any way by the LLO, against the bit patterns in the event
fields of the OPDUs associated with incoming OSDUs (see section 5) on the set of orchestrated
connections. If the event in the OSDU matches the registered bit pattern, a
Orch.Event.indication is raised both locally to the sink application thread and also to the
originating HLO via the orchestrating LLO instance. To actually cause an event to be initiated,
the event fields of OSDUs may optionally be set by the source application thread when writing
an OSDU.

An example of use of the event mechanism is when a change of encoding is being signalled
in the data stream such as the introduction of a particular compression scheme. It would
obviously be possible to implement such a scheme in an ad-hoc manner in the application layer,
but this would require that application threads examine each incoming OSDU. The present
scheme avoids complicating application code, permits system dependent optimisations to be
made, and also permits OSDUs to be dumped directly into, say, a video frame buffer.

5. MODE OF USE

We now attempt to place the orchestration services in perspective by illustrating their use in
the microscope application scenario of section 2. Note, however, that the LLO services are self
contained and could in principle be used by a number of alternative upper layer designs. In the
forthcoming description much of the detail of the synchronisation manager and the HLO layers
of the architecture is omitted. The main intention is to show how the LLO interface primitives
are used in a realistic scenario.

Consider an application configuration in the scenario of section 2 where a multimedia
document needs to be played back to two separately located scientists who are conferring over a
video telephone. The document contains two video clips which view the same sample at
different levels of magnification, together with occasional voice annotation and text captions.
The various components of the document are separately stored but must nevertheless be
synchronised on playout both together and across the two scientist's workstations. The details
of the required synchronisation (i.e. timing of text captions, starting time of annotation, degree
of permitted slack etc.) are contained in a 'script' encapsulated within the multimedia document
structure. Figure 5 illustrates the logical topology associated with this configuration.

When it is required to play the document the following sequence of events takes place at the
application platform level (see section 3.1). Firstly, the controlling application program obtains



a location independent handle onto the document and passes it to a playout service. The playout
service obtains handles on the various media sources in the document, obtains or creates
(platform level) playback devices (i.e. video windows, speakers, caption windows) on the
required workstations, and connects the sources and sinks together by means of the platform’s
connection (stream) abstraction. Once the playout service has performed the necessary platform
operations to connect the configuration - which results in the underlying transport connections
being established - it begins to parse the script associated with the document.
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video 1multimedia
document

Figure 5: Example topology.

When parsing the script, the playout service determines the streams which are to be
synchronised and passes their handles to the top level component of the orchestration
architecture illustrated in figure 1: i.e. the synchronisation manager. At this time, the playout
service also initialises and starts the source and sink devices in the session via RPC. This,
however, will not cause data to flow as the flow of data is controlled by the orchestration
services. Next the synchronisation manager determines the physical location of the sources and
sinks of the streams involved and selects the orchestrating node. It then instantiates an HLO
instance on the orchestrating node and passes it details derived from the document script. These
details include the ratio of OSDU delivery for each stream to a reference time line, and ‘on’ and
‘off’ events for each stream. For example, the ‘on’ event for a caption or voice annotation could
be the delivery of a particular OSDU in a video stream, and the ‘on’ event for the video streams
would be the start of the session itself.

The first action of the HLO is to create a platform level control interface handle onto itself
which it returns to the controlling application. This interface contains start, stop, prime
operations which the application can invoke via RPC to control the set of streams as an atomic
unit. After this the HLO instantiates the orchestration session by issuing the Orch.request
primitive. Subsequently, on receiving prime and start invocations from the application, the
HLO issues the Orch.Prime.request and Orch.Start.request primitives which start data flowing
in the orchestrated set of connections. The data flow will then be controlled by the HLO by
means of the Orch.Regulate primitive according to the document policy. At certain points in the
playout, as determined by the script, the HLO will pass caption OSDUs through to the caption
window. The event causing this action could be either an explicit OSDU number, or an
Orch.Event.indication depending on the contents of the script. If the platform level application
wants to momentarily pause the playout, it issues a stop invocation which results in the HLO
issuing an Orch.Stop.request and thus freezing the flow of data. Note that as synchronisation is
event driven rather than being associated with absolute time, pauses will not affect subsequent
caption and voice annotation timings when the playout is restarted.

Finally, it is possible to dynamically add new streams to an ongoing session; for example,
the scientists may want to run a library video clip along with the current sample. This is



achieved by passing the handle of a new source/stream/sink configuration to the
synchronisation manager which derives the physical locations of the sources and sinks and
passes them to the HLO. The HLO then issues the Orch.Add.request primitive for the new
stream. Subsequently, Orch.Prime, Orch.Start and Orch.Stop will take effect on the new
stream in addition to the established session.

6. CONCLUSIONS

We have motivated the need for comprehensive real-time synchronisation support in
distributed multimedia systems, and have described the low level components of a design
which performs synchronisation of continuous information streams in such a system. The low
level orchestration services provide a mechanism to group existing transport connections and
control the flow of information in these connections according to given synchronisation
constraints. Primitives are provided to prime, start and stop the information in the grouped
connections as an atomic unit, and also to regulate the rate of flow in each connection with a
flexible degree of granularity. Although the system acts mainly on transport connections,
primitives are provided which supply hints to end systems when they are running to slow to
meet the required end-to-end synchronisation constraints.

The low level orchestration services are embedded in a larger design which presents the
functionality of the lower layers to applications through a distributed object-based
computational model. The orchestration services can be used as a component of a range of
possible higher level services including playout services for complex multimedia components
with encapsulated synchronisation specifications.

In terms of implementation, we currently have the low level orchestration services in place
and have also completed the high level application platform. The implementation has been
carried out in the context of a collection of standard workstations augmented with transputer
based multimedia network interface (MNI) units [16] which handle both network interfacing
and all continuous media source and sink mechanisms such as video and audio capture,
restitution and storage. The workstations are connected by means of a real-time transputer
based emulation of an FDDI network. We use a specially designed rate based transport protocol
which provides simplex connections with a high degree of QOS configurability [13]. More
details of the implementation can be found in [17].

Finally, our future plans involve the development of the high level orchestrator component
which acts as the link between the platform abstractions and the low level orchestration
mechanisms. This component is expected to be fairly complex as it is required to
simultaneously monitor and control a number of orchestrated connections in real-time according
to an arbitrarily application defined specification. However, because of the support provided by
the lower layers, the HLO will not have to consider real-time communication and distribution
issues as these are delegated to the LLO services.
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