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Abstract. For applications relying on the transfer of multimedia, and in particular continuous
media, it is essential that quality of service (QoS) is guaranteed system-wide, including end-
systems, communications systems and networks. Although researchers have addressed many
isolated areas of QoS provision, little attention has so far been paid to the definition of an
integrated and coherent framework that incorporates QoS interfaces, management and
mechanisms across all architectural layers. To address this deficiency, we are developing a
Quality of Service Architecture (QoS-A) which offers a framework to specify and implement
the required performance properties of multimedia applications over high-performance ATM-
based networks. The QoS-A incorporates the notions of flow, service contract and flow
management. Flows characterise the production, transmission and eventual consumption of
single media streams, service contracts are binding agreements between users and providers
and flow management provides for the monitoring and maintenance of the contracted QoS
levels. This paper provides an overview of the QoS-A and focuses particularly on the role of
the transport service and protocol in the architecture. We describe a multimedia enhanced
transport service (METS), flow management and transport layer service contract. We show
how QoS levels contracted at the transport service interface can be assured in the context of
our local ATM environment.

1. Introduction

Recent technological developments in high speed networks and multimedia workstations are making
possible entirely new classes of distributed application such as distance learning, desktop video-
conferencing and remote multimedia database access. In these applications, communication requirements
are extremely diverse and demand varying levels of latency, bandwidth and jitter, etc. Furthermore, for
continuous media such as video and audio it is often a requirement that levels of service are guaranteed.
Other time critical distributed applications such as distributed real-time control systems are also growing
in prominence: e.g. in the OSI Time Critical Communication Architecture (TCCA) forum. These
applications have stringent quality of service (QoS) requirements for both reliability and guaranteed
bounds on message latency.

In most existing communications architectures, however, the notion of QoS is extremely narrow.
The Internet protocol IP, for example, only permits the specification of qualitative QoS hints (using the
type of service field in the IP header) such as ‘low’ delay, ‘high’ throughput and ‘high’ reliability and
even these limited QoS specifications are rarely honoured by the underlying network. Furthermore,
existing architectures are based on a best effort performance model and were never designed to support
quantitative QoS. In the Internet the support of reliable data transfer was a primary design goal and
performance QoS was only a marginal consideration.

A further limitation of most current architectures is the static nature of service provision. In OSI
protocols, the value of a QoS parameter remains the same through the lifetime of a connection: i.e. once
negotiated a QoS parameter is never re-negotiated. One implication of this is that users cannot
dynamically adjust the connection QoS without undergoing a disconnection/re-establishment phase or
opt for trade-offs in the face of limited resources. For example, users cannot choose to scale back the
quality of an existing video connection from colour to monochrome to allow the possibility of opening a
new audio connection. Another implication is that the service-provider is committed to provide the QoS
over the lifetime of the connection. If the provider is unable to maintain its commitment there is no
mechanism to inform the user and allow her to request a suitably lower QoS. The only option is for the
provider to unilaterally close the connection.



To address these deficiencies we are designing an integrated quality of service architecture (QoS-A)
which spans both end-systems and networks and takes the support of performance QoS for a wide range
of applications as its primary goal. The QoS-A retains the best effort service model as a special case but
augments it with new classes of service providing hard and soft end-to-end performance guarantees.
These service classes are designed to fit into a highly dynamic application environment and thus provide
facilities such as performance monitoring, notification of QoS degradation and in service QoS re-
negotiation in addition to the traditional facilities.

In addition to the need for a richer service model which allows the QoS requirements of the new
applications to be fully specified, the QoS-A requires the integration of a range of QoS configurable
protocols and mechanisms in both the end-system and the network. In end-systems, these include thread
scheduling, buffer allocation, jitter correction and co-ordination over multiple related connections
[Campbell,92a]. In communications systems, protocol support such as end-to-end QoS negotiation, re-
negotiation and indication of QoS degradation are required [Boerjan,92]. In networks, suitable resource
reservation protocols [Zhang,93] and service disciplines in switch queues are needed [Keshav,91]
[Parekh,92] [Hyman,93] . The QoS-A also provides a framework for the maintenance and management
of QoS over all system layers. This includes management functions such as admission control for new
connections and monitoring to ensure that QoS levels are being maintained by the service provider.

This paper describes a QoS-A, primarily focusing on the transport layer. Section 2 provides an
overview of the QoS-A and introduces the central notions of flow and flow management. Section 3 then
describes a multimedia enhanced transport service (METS) interface based on the notion of a service
contract agreed between the transport service user and the network provider. Following this, section 4
describes the means by which services contracted at the transport layer are realised in terms of
mechanisms. These include the transport protocol itself together with a low level transport QoS manager
and an overseeing flow management entity. In section 5 we present our ATM based implementation of a
QoS-A using a QoS enhanced Chorus micro-kernel for end-system support. An extended related work
section for the reader’s interest follows in section 6., and finally in section 7. we presents our
conclusion and future work.

2. Quality of Service Architecture

2.1 QoS-A Model

The QoS-A [Campbell,93a] is a layered architecture of services and mechanisms for QoS management
and control of continuous media flows in multiservice networks. The most fundamental architectural
concept we use is the notion of a flow. A flow characterises the production, transmission and eventual
consumption of a single media stream as an integrated activity governed by a single statement of QoS.
Flows are always simplex but can be either unicast or multicast. They may carry a range of data types
including both continuous media and control data such as messages or RPC packets. The realisation of
the flow concept demands active QoS management and tight integration between the device management,
thread scheduling, communications protocol and network components of the end-to-end data path.

In functional terms, the QoS-A illustrated in Figure 1 is broadly divided into a number of layers and
planes. The upper layer consists of a distributed applications platform augmented with services to
provide multimedia communications and QOS configuration in an object-based environment
[Coulson,93]. Below the platform level is an orchestration layer which provides multimedia
synchronisation services across multiple related application flows and jitter correction [Campbell,92a].
Supporting this is a transport layer which contains a range of QoS configurable protocols. For example,
separate protocols are provided for continuous media and constrained latency message protocols
[Garcia,93].

The vertical planes in the QoS-A, of which there are three, are as follows:

i) the protocol plane
This consists of a user plane and a control plane. In our architecture we use separate protocol
profiles for the control and data components of flows because of the essentially different QoS
requirements of control and data. Control generally requires a low latency full duplex assured



service whereas multimedia data generally requires a range of non-assured, high throughput
simplex services.

ii) the QoS maintenance plane
The QoS maintenance plane contains a number of layer specific QoS managers. These are each
responsible for the fine grained monitoring and maintenance of their associated protocol entities.
Based on flow monitoring information and a user supplied service contract, QoS managers
maintain the level of QoS in the managed flow by means of fine grained resource tuning
strategies.

iii) the flow management plane
This is responsible for flow establishment (including flow admission control, resource
reservation and QoS based routing), QoS re-negotiation, QoS mapping (which translates QoS
representations between layers) and QoS adaptation (which implements coarse grained QoS
maintenance control).

The flow management projection of the architecture (the shaded section of Figure 1) illustrates the
relationship between the three planes which work together to monitor and maintain end-to-end QoS.
This aspect of the QoS-A will be further described in section 4 with particular emphasis on the transport
layer
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Figure 1: Quality of Service Architecture

3. A Multimedia Enhanced Transport Service

The success of ATM-based networks is dependent upon the availability of new multimedia services with
their strong emphasis on full end-to-end QoS guarantees. Currently these services and the supporting
protocols are yet to be fully realised. A multimedia service is potentially composed of multiple flows
which, in addition to QoS support, may require orchestration to meet multimedia synchronisation
constraints and multicast for group distribution.

A crucial aspect of a QoS enhanced communications service is the interface at which desired levels of
QoS can be requested, negotiated and contracted. In the QoS-A, the QoS requirements of the user and
the potential degree of service commitment of the provider are unified and formalised in a service
contract agreed by both parties. Applications request the establishment of a continuous media flow with
an agreed service contract via the following primitive:-

flow id flowConnectRequest( tsap_t *source, *sink; service_contract_t *QoS);

This call requests the establishment of a flow from a source transport service access point (zsap) to a
destination tsap with a QoS as specified in the third argument, the service contract. Note, that the sink
tsap may also represent a group address to accommodate multicast flows [Garcia,93].



The service contract subsumes the well accepted QoS parameters of jitter, loss, delay and
throughput, but also allows the specification of a wider range of options. These are characterised in
terms of the following clauses:-

flow_spec_t characterises the user's traffic performance requirements [Partridge,92];
commitment_t specifies the degree of resource commitment required from the lower layers;
adaptation_t identifies actions to be taken in the event of violations to the contracted service;
maintenance_t selects the degree of monitoring and active QoS maintenance required;
connection_t either negotiated, fast reservation or forward reservation connection services;
cost_t specifies the costs the user is willing to incur for the services requested.

In implementation, the clauses are collected together into a C structure as follows:-

typedef struct {

fl ow spec_t fl ow_spec;
conmmi tnent _t conmmi t nent ;
adaptation_t adapt ati on;
mai nt enance_t mai nt enance;
connection_t servi ce;
cost _t cost;

} service_contract _t;

The following sections motivate and describe the QoS options specified in this structure in further detail.
3.1 flow_spec_t

The ability to guarantee traffic throughput rates, delay, jitter and loss rates is particularly important in
networks supporting distributed multimedia applications. These performance-based metrics are likely to
vary from one application to another. Moreover, the relative importance of these parameters for a
particular flow is also application dependent. For example, a digital voice connection requires a moderate
throughput (e.g. 32 Kbits/s), a low degree of reliability (1071), a stringent upper bound on end-to-end
delay (e.g. 100 ms) and a maximum permissible jitter of 10 ms.

To be able to commit transport and network resources, the QoS-A must have prior knowledge of the
expected traffic characteristics associated with each flow. The flow_spec structure below permits the
user to specify such metrics. In the flow spec, throughput is described in terms of frame size, frame
rate, burst size and peak rate. The frame size and frame rate represent the average throughput
requirement, whilst the maximal throughput is captured by the peak rate performance parameter. In
addition, the flow spec accommodates the potential burstiness of the offered traffic using the burst
parameter.

typfedef struct {

i nt flow.id; /* flow specification identification */
i nt medi a_t ype; /* comon flows for video, voice, data */
i nt frame_size; [* frame/tsdu size */
i nt frane_rate; /* token generation rate */
i nt bur st ; /* size of the burst */
i nt peak_rat e; /* max transmission rate */
i nt del ay; /* end-to-end delay */
i nt | oss; /* loss rate */
i nt i nterval ; /* interval */
i nt jitter; /* end-to-end delay variation */
} flow spec_t;

The precise interpretation of the performance parameters (i.e. throughput, delay, jitter and loss) is
determined by the commitment specification as described below. The flow id field, which is allocated by
the QoS-A and returned to the user for subsequent use, uniquely represents the flow in the system. The
media type field is used by the upper layer architecture to specify commonly used flows with pre-
specified flow specifications such as StandardVideo, HifiAudio and LowQoSVoice; see [Campbell,93a]
for more details.



3.2 commitment t

While the flow spec permits the user to express the required performance parameters in a quantitative
manner, the commitment clause allows these requirements to be refined in a qualitative way so as to
allow a distinction to be made between hard and soft network performance guarantees. There are broadly
three classes of service commitment the network can support [Ferrari,92]:-

1) deterministic, which is typically used for hard real-time performance applications;

i) statistical, which allows for a certain percentage of violations in the requested flow spec, and is
particularly suitable for continuous media applications; and

ii1) best effort, the lowest priority commitment and synonymous with a datagram service.

The format of the commitment_t structure is illustrated below.

typedef enum{ deternministic, statistical, best effort } commit _t;

typedef struct {

commt _t cl ass; /* comitment class */
i nt percentage; /* only used for statistical service */
} class_t

typedef struct {

class_t t hr oughput ;
class_t | oss;
class_t del ay;
class_t jitter;

} commitnent t;

Note that the commitment structure allows separate specification of the commitment required of each of
the performance parameters. The motivation behind this choice is that applications often need to treat
commitment on different performance parameters as orthogonal. For example, file transfer may require a
deterministic bound on loss (commitment.loss.class = deterministic) but only best effort on throughput
(commitment.throughput.class = best_effort). A real-time control application, on the other hand, may
require deterministic hard real-time guarantees on both loss and delay. A deterministic bound on delay
(commitment.delay.class = deterministic) is a statement that no end-to-end delays will exceed the
amount specified in the flow spec.

Many continuous media applications require soft real-time guarantees as selected by the statistical
service commitment. A statistical commitment allows for a certain percentage of violations of each QoS
performance parameter. Taking loss as an example: an uncompressed digital video flow may suffer 50%
loss (commitment.loss.class = statistical, commitment.loss.percentage = 50) and still reconstruct
enough of the video signal to maintain acceptable playout picture quality. In the case of statistical
commitment, the performance parameter values in the flow spec are interpreted as a target for the QoS-A
which, however, may be violated if resources become scarce.

An important distinction between the deterministic and statistical commitments is that the
deterministic commitment is based on fixed resource allocation where no resource gain is feasible; in
contrast, the statistical commitment is based on shared resource allocation which encourages a high
degree of resource utilisation [Campbell,93a It is for this reason that the QoS-A pricing policy must
encourage the user to select statistical commitment over the deterministic commitment when at all
possible.

Together the flow spec and the commitment class are used by the flow reservation and admission
control functions of the flow management plane to establish end-to-end QoS. In a QoS-A, resource
reservation and admission control are conducted at each layer of the architecture. This means there is a
set of admission tests for the end systems (for cpu, memory and network access) and the network (for
bandwidth, delay, memory); for full details of these admission control tests see [Robin,94].



3.3 adaptation_t

Many continuous media applications can tolerate small variations in the QoS delivered by the network
without any major disruption to the user’s perceived service. In some cases quite severe service
fluctuations can be accommodated. In such cases, however, it is often appropriate to inform the
application of the service degradation so that it can scale to the new QoS baseline. If the delivered
performance violates the contracted QoS then the user may choose to take some remedial action (i.e.
adjust its internal state to accommodate the current load conditions, re-negotiate the flow’s QoS,
disconnect from the service or take no action).

To meet this requirements, we use the adaptation_t structure:-

typedef enum{ loss, jitter, throughput, delay, disconnect } event t;
typedef enum{ renegotiate, indication, disconnect_flow, no_action } action_t;

typedef struct {

event t event; /* QoS degradation */

action_t actionl; /* action */

action_t actionz; /* auxiliary action */

fl ow spec_t *new_fl ow, /* new Fl owSpec for QS scaling */
} adapt _t;

The user can select up to two actions to be taken in response to each event. As an example of the use of
the adaptation facility, consider the following:-

adapt _t action_list = {{delay, indication, no_action, 0},
{throughput, indication, renegotiate, &newrl owSpec},
{loss, no_action, no_action, 0},
{jitter, indication, no_action, 0}};

The user is informed of QoS degradations in one of the following ways: (i) via a
qos_degradation_indication: this is an upcall from the lower layers which notifies that one or more
performance parameters in the flow_spec_t or commitment_t has been violated;(ii) via a
disconnect_indication, the QoS-A unilaterally initiates a disconnect; and (iii) via a
qos_renegotiation_indication: this is issued when the user has delegated the responsibility for re-
negotiation to the QoS-A and the QoS-A has just initiated a re-negotiation. Note that any combination of
actions i), ii) and iii) can occur for any one violation.

To complete the example above, the following are the actions taken in response to the various
possible events. If the maximum end-to-end delay is exceeded then the QoS-A will inform the user of
the event qos_degradation_indication(event, measured_value, required_value) upcall. The second
action/event pair deals with degradation of measured throughput. If the throughput falls below the
predefined minimum specified in the flow spec the QoS-A will initially inform the user of the event via a
qos_degradation_indication and a qos_renegotiation_indication, then initiate a full end-to-end re-
negotiation based on the newFlowSpec, and finally issue a qos_renegotiation_confirm to the user to
inform him of the outcome of the re-negotiation.

3.4 maintenance_t
The options available in the service contract for control over QoS maintenance are as follows:-

typedef enum {nonitor, naintain, no_naintenance} nai ntenance_t;

The monitor option instructs the QoS-A to periodically deliver measured performance assessments
relating to the specified flow. The maintain option, on the other hand, attempts to transparently exert fine
grained corrective action (e.g. thread scheduling [Coulson,93], communication buffering, flow
regulation and scheduling, queueing delays) to maintain QoS levels according to the service contract, but
does not deliver periodic assessments. In both cases, coarse corrective action (i.e. re-negotiation),



should the contracted QoS drop below the prescribed levels, may be taken depending on the selected
adaptation_t option.

The default case is to maintain deterministic and statistical flows, but to ignore the achieved service
of best effort flows. Finally, the no_maintenance option explicitly disables maintenance. However,
users can still choose to asynchronously solicit flow assessment updates on demand.

3.5 connection_t

Connection oriented transport and network protocols can support full end-to-end negotiated service
[Garcia,93] and in some cases, a fast connect service [Danthine,92] where the reservation and data
transfer phases coincide. In addition to these connection styles, the QoS-A also offers a forward
reservation mode where network and end-system resources are booked ahead of time; here the user
specifies the expected starting time and duration of a flow. This service is useful to multimedia
applications that require a high degree of QoS availability such as collaborative sessions.

We define three connection_t classes in a fully generalised service contract to accommodate the
connection styles described above:-

typedef enum {fast, negotiated, forward} service_t;

typedef struct {

service_t servi ce; /* fast, negotiated or forward service */
time_t start; /* start of service hrs:min:sec */
time_t end; /* termination tine hrs:mn:sec */

} connection_t;

The connection_t includes a start and end time for the forward reservation service. However, it is clearly
difficult to determine the duration of interactive communication sessions, and therefore we remain
somewhat sceptical about enforcing such a regime upon the user. We include the duration time in the
service as a marker for further study. In [Ferrari,92] an advance reservation mechanism is described
whereby the network may allow the user an extension after the specified duration has expired. This is
achieved without disruption to other users who have pre-reserved resources.

3.6 cost_t

The QoS-A project has not yet addressed the issues of cost and tariffing in any great detail, as we have
been mainly concerned with a realisation of the architecture in a local ATM environment. However, even
in a local environment, cost is still likely to be an important factor. If there is no notion of cost involved,
there is no reason for the user to select anything other than maximum levels of service commitment! This
philosophy would inevitably lead to resource inefficiencies in a QoS-A. To counter this condition the
cost function must incorporate pricing differentials [Chocchi,91] to encourage the user to select the
optimum QoS commitment; such as, a lower-commitment-costs-less pricing policy.

In contrast to a cost based policy, Kelly [Kelly,93] describes a simple tariff structure based on the
user predicting a connection’s effective bandwidth requirement. The tariff structure encourages the user
to accurately declare this quantity over the duration of the connection. The incentive to accurately
predicts the effective bandwidth requirement is realised by admitting of more flows, in addition to
optimising the network resources. The penalty for over estimation of connection’s bandwidth is
potentially a reduction in QoS provided.

4. Flow Management at the Transport Layer

In this section we focus on mechanisms to realise the transport service interface described above. The
mechanisms are embedded in the QoS-A flow management projection of Figure 1. The flow
management projection is shown in more detail in Figure 2. Note that Figure 2 only shows the transport
layer and below; the upper layers have been omitted for clarity.
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Figure 2: Flow Management Projection of QoS-A

4.1 QoS Interfaces

At each layer, the various mechanisms in each plane present well defined interfaces to their peers. At the
transport layer the support of QoS is dependent on interactions between the transport protocol, transport
QoS manager, the flow management plane (viz. QoS adaptation, resource reservation and admission
control, QoS mapping) and the network layer. In contrast to traditional communications architectures,
the QoS-A carries all flow management and control messages on distinct out-of-band signalling
channels. To reflect this logical division, the transport service access point is internally divided into flow
management /signalling (fin-tsap) and data (data-tsap) components (there are also equivalent primitives at
the network layer) as illustrate in Figure 2:-

e the fm-tsap interface contains primitives: get_tsap, free_tsap, flowConnectRequest,
qgos_renegotiation, qos_degradation, qos_report, monitor_flow, flow_assessment, maintain_flow
and flowDisconnetRequest.

* the data-tsap interface contains primitives: data_request, data_indication, data_response and
data_confirm.

Later sections describe the use of the various primitives on these interfaces in more detail. In addition
to the transport user’s interface, the QoS-A defines the following internal interfaces between the three
planes at the transport layer and below as illustrated in Figure 2 and Figure 3:-

* aresource control interface used to allocate, tune and release transport protocol resources, and
alert the QoS management plane if protocol resources are short. It contains the following
primitives: alloc_resource, tune_resource, resource_alert, and free_resource;

* a monitor interface used by the transport QoS manager to configure and control monitoring of
flows in the transport protocol, and to receive reports of actually achieved QoS performance over
a preceding interval. It contains the following primitives: start_monitor, set_rate, qos_assessment,
and stop_monitor;

* acontrol interface used by the QoS manager to set, modify and read internal transport protocol
states during flow connection, data transfer and re-negotiation. The interface contains the
following primitives: set_state and report_state;

* amaintenance interface that is supported by the transport QoS manager and used by the flow
management plane. It contains the following primitives: start_maintenance, set_attributes,
free_attributes, assessment, qos_alert and stop_maintenance;



4.2 User Plane

Our transport protocol is based on a continuous media protocol developed by [Garcia,93]. The protocol
provides an ordered but non-assured, connection oriented communication service and features resource
allocation based on the user’s QoS specification. It allows the user to select upcalls for the notification of
corrupt and lost data at the receiver, and also allows the user to re-negotiate QoS levels.

It is the responsibility of the protocol to share communications resources in end-systems among
flows with widely different QoS requirements. To meet this need the protocol incorporates buffer
sharing, rate regulation, scheduling, and basic flow monitoring modules. Also included is a resource
management component responsible for overseeing the allocation and adaptation of the various protocol
resources. The buffer management scheme is structured to avoid copies across layers [Hehmann,91] and
uses separate pools for each commitment type [Robin,94]. Deterministic flows each receive a fixed
buffer allocation based on the flows peak rate whereas statistical flows share a common pool. For
deterministic and statistical flow’s the loss field in the Flow Spec is also taken into consideration when
determining the buffering needs at the end-system and in the network. Best effort flows also use the
common pool but are given a lower priority than any statistical flow. The remaining transport protocol
modules, rate regulation, scheduling, flow monitoring and resource management, are described in more
detail below (see also Figure 3).
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Figure 3 : Transport Protocol Mechanisms and Interfaces

Flow Regulator. The transmission of frames to the network must be regulated to prevent buffer
overflow at receivers and rate violations at the user-network interface and intermediate nodes. In the
QoS-A, the throughput rate of a continuous media source is characterised by the performance parameters
and the service commitment clause. The regulator is configured, at flow establishment or re-negotiation
time, to shape the flow in accordance with this characterisation by assigning an eligibility time to each
frame segment to be transmitted. Only deterministic and statistical are given eligibility times; best effort
flows are sent at a rate determined by the workload of the scheduler (see below). Figure 3 shows that a
flow can be viewed as a stream of data taking a specific path through the sequence of buffers, regulators
and scheduling queues.

Flow Scheduler. Once a flow has been shaped, the scheduler arranges for the transmission of frames
in accordance with a pre-determined end system delay allocation. End system delays are allocated at flow
establishment time when each intermediate switch commits to meeting a particular fraction of the
permitted end-to-end delay [Anderson,91] [Robin,94]. By limiting the number of deterministic and
statistical flows (as part of flow admission control schedulability test) we ensure that each deadline will
be met and each frame delay bounded. No such test is required for the best effort service queue.
Scheduling at the transport layer is based on hierarchical deadline scheduling. Three scheduler
communication service queues are used [Ferrari,92]: one each for deterministic, statistical and best effort
flows. The deterministic and statistical queues are sorted by deadline where deadline is calculated as



eligibility time plus the delay component. The scheduler queues are serviced in strict order of priority
which is given first to the deterministic queue, second to the statistical queue and lastly to the best effort
queue. The scheduler services frames from deterministic and statistical queues using a non pre-emptible
discipline.

Flow Monitor. In addition to the above described mechanisms, the protocol includes a component
which gathers statistical information on the ongoing flow of data, both at the source and the sink of the
transport connection. This information is used by the transport QoS manager in the QoS maintenance
plane. The transport QoS manager and transport protocol interact over the resource, control and monitor
interfaces described in section 4.1 and illustrated in Figure 2 and Figure 3.

In essence, the transport protocol monitors a flow’s on-going performance and the transport QoS
manager maintains it. Flow monitoring is initiated when a start_monitor command is received by the
transport protocol from the transport QoS manager at the protocol’s monitor interface. When monitoring
is enabled, the source transport entity monitors the flow and records its transmission statistics as data is
injected into the network. Measurements are made over a predefined flow measurement interval which is
the reciprocal of the frame rate specified in the flow spec (i.e. for a frame_rate of 25 frames per second
the interval is 40ms). The receiving protocol entity also monitors the achieved performance of the frame
during the same interval. Based on its own measurements and the information from the receiver, the
sending transport entity periodically compiles a qos_assessment message which is passed on to the
transport QoS manager at the end of an assessment period called an era! [Nahrstedt,93]. The choice of
the era period is critical. The QoS feedback in the qos_assessment report needs to be temporally
correlated with the on-going flow to be useful. For example Kanakia et. al. [Kanakia,93] show that
variable rate encoders can track QoS variations as long as the QoS feedback arrives within four frame
times or less. Depending upon measured performance the transport QoS manager may exert some fine
grained corrective action on the on-going flow. .

The information passed periodically from the receiver to the sender is carried in a control message
which is already a part of the rate based transport protocol [Garcia,93], the format of this message is as
follows:-

typ_edef struct {

i nt frane_seqno; /* Seqno of frame which generated nmsg */

i nt time_stanp_echo; /* echo tinmestanp received in frame */

i nt measur ed_del ay; /* end-to-end delay */

i nt measured jitter; [* jitter */

i nt measur ed_| oss; [* frame | oss rate */

i nt measur ed_rat e; /* bytes received */

i nt i nterval ; /* measurenent interval */

i nt rtimer; /* burst rate */

i nt bur st ; /* max nunber of bytes per segment */

i nt credits; [* avail abl e buffer segnments at receiver*/
} control

The transport protocol’s monitoring mechanism is able to build up a statistical representation of the end-
to-end QoS using the performance data supplied in control messages. The resulting flow statistics
represents the actual end-to-end QoS experienced by the receiver. The qos_assesment message is
partitioned into sender and receiver QoS statistics; these include delay, jitter, throughput and loss rate
measured during the era.

Resource Manager. The resource interface gives access to the protocol’s buffer management,
regulation and scheduling functions which are used both during the flow establishment time and QoS re-
negotiation time. During flow establishment the various mechanisms are configured in accordance with
the flow spec and commitment clauses in the service contract. Table 1 shows the performance
parameters together with the mechanisms required for their support and the resource configuration
required for the three types of service commitment.

1 The transport protocol receives control messages based on an interval. QoS assessments are generated by the protocol
based on an era which must be greater or equal to the control message interval.



Deterministic flows achieve guaranteed QoS by reserving dedicated communications buffers (based
on peak rate allocation) and using non pre-emptible deadline scheduling and admission control.
Statistical flows achieve a higher degree of resource utilisation by using a flexible resource allocation
policy whereby pools of communication buffers are shared based on average rate allocation. Statistical
flows also use deadline scheduling and admission control, and can be pre-empted by deterministic
flows. In this case statistical flows can potentially miss a percentage of their deadlines and still achieve
the desired QoS (missed deadlines are bounded by an admission test for statistical flows [Robin,94]).
Best effort traffic receives no resource or service commitment in the QoS-A; however, if resources
(buffers, scheduler, etc.) are available and not currently in use by statistical flows they can be borrowed
by best effort traffic. These borrowed resources, however, can be reclaimed at any point, making the
resources available to a best effort service pre-emptible

commitment class
QoS parameter QoS mechanism | deterministic statistical best effort
from flow_spec
Loss Buffer Management | fixed buffer allocation. | shared buffers based no guaranteed buffer
based on peak_rate on average rate allocation
Throughput Regulation eligibility time eligibility time no regulation
based on peak_rate based on average rate | resources committed
Delay and Jitter Scheduling flow always flow scheduled at flow scheduled if
scheduled eligibility time scheduler idle
at eligibility time resources permitting

Table 1: Commitment Class Based Resource Reservation

4.3 QoS Maintenance Plane

The protocol and QoS manager are tightly coupled to operate in the same time domain. This is crucial for
fine QoS adjustment as the QoS maintenance plane must be able to detect and react to real-time
performance fluctuations which may occur in the protocol time domain.

According to the three maintenance policies available (see section 3.4), the transport QoS manager
operates as follows. In both the maintain and the monitor policies the manager receives periodic QoS
assessment messages generated by the transport protocol. The monitor policy merely passes these
messages on to the flow management plane, whereas the maintain policy attempts to actively uphold the
end-to-end performance parameters via a monitor-measure-adjust loop which measures the receiver QoS
against the sender QoS in the assessment messages, and, if necessary, makes fine grained adjustments
via the tune_resource primitive on the transport protocol’s resource interface. Fine resource adjustment
counters QoS degradation by adjusting loss via the buffer manager, queueing delays via the flow
scheduler and throughput via the flow regulator. From the sender/receiver measurement pair (e.g.
s_measured_delay/ r_measured_delay, etc.) the manager determines which, if any, of the performance
parameters have degraded and then tunes the appropriate resource(s). If the manager fails to recover
from a QoS degradation, then a qos_alert message is sent to the flow management plane which may take
appropriate action as discussed below in section 4.4. In the no_maintenance policy, no explicit action is
taken by the QoS manager (although the manager will request QoS assessment messages from the
protocol when explicitly asked to by the flow management plane).

In addition to its role in supporting the various maintenance policies described above, the QoS
manager is also responsible for implicitly maintaining the commitment clause in statistical flows by
means of the same monitor-measure-adjust loop. Note that it is not necessary to actively maintain
deterministic flows or best effort flow. The former have resources exclusively dedicated to them and the
latter are not maintained by definition. However, we anticipate service fluctuations from time to time in
statistical flows because they share transport and network communication resources.

4.4 Flow Management Plane

The flow management plane is responsible for a number of static and dynamic QoS control functions.
The major functions, to be described below, consist of the provision of a network signalling
infrastructure, a resource reservation, and QoS adaptation for the realisation of course grained dynamic
QoS management as specified in the flow spec’s adaptation clause. The flow management plane also



performs other management functions such as the mapping of QoS representation between layers, the
support of the forward connection mode (see section 3.5), and the provision of a history function to
gather network loading statistics. More detail of these subsidiary functions can be found in
[Campbell,93a].

Flow Reservation. A major part in flow establishment is the reservation of resources in the source
and sink nodes and in the network, according to the requirements of the user supplied service contract.
Resource reservation allocates resources in accordance with the QoS commitment specified in the service
contract. For a deterministic service all resources are allocated based on the peak rate. For the statistical
service resources are allocated based on the sustained rate. No resources are allocated for best effort
commitment.

For the purposes of efficient flow management and QoS control, we logically partition the network
into flow management domains [Crosby,93] which constitute arbitrary collections of network devices
(network devices can be switches, routers, multimedia workstations, continuous media storage
servers, etc.). In each domain, the network aspects of the flow management resource reservation
function are realised as a single network server which we call a resource server [Campbell,93b].

A number of architectural choices were possible for resource server realisation. One proposal in the
literature [Cidon,92] advocates a fully distributed architecture capable of making resource management
decisions such as flow admission control at any node. This has the advantage of reducing connection
setup time because all the required state is available locally. However, corresponding disadvantages
include the latency involved in maintaining consistency between multiple nodes and the additional
network load incurred. Our approach is partially distributed in nature (one server per domain) and thus
reduces the overhead of maintaining database integrity while simultaneously avoiding bottlenecks
introduced by an excessively centralised solution.

The resource server, as the central resource controller for its flow management domain, is the arbiter
of communication resource allocation requests. For the negotiated service, when a flowConnectRequest
is issued by a transport user, the resource server consults its local representation of domain wide
resource availability. If the request can be satisfied, the flow management plane provisionally marks the
requested resources as allocated and then multicasts a set_attribute_request primitive to the network QoS
managers at all nodes in the data path (plus the transport QoS manager on the sink nodes) to request that
they allocate the resources requested. The resource server sends a confirmation to its requesting
transport service user when all the QoS managers involved have acknowledged (via
set_attribute_confirm) allocation of the requested resources.

The fast connect service largely follows the above procedure except that the resource immediately
replies to the requester as soon as it determines that the requested resources are available. This
connection mode eliminates the latency of the round trip communication with the QoS managers, but at
the expense of being an unconfirmed service. The forward connection mode is implemented as an
additional time dimension in the server’s resource table. When a forward request is granted, resources
are marked to be allocated at the time specified, and for the duration specified, in the request.

QoS Adaptation. In its QoS adaptation role, the flow management plane is responsible for initiating
the coarse grained QoS adjustments specified in the service contract’s adaptation clause. The behaviour
of the flow management plane is also determined by the maintenance clause. If the maintenance mode is
no maintenance the flow management plane takes no explicit action; it merely responds to individual
user requests for a flow assessment by passing the request on to the QoS manager and returning the
corresponding flow_assesment to the user. If the mode is monitor, the flow management plane simply
receives periodic flow_assessments from the QoS manager and passes them on to the application. If the
commitment is maintain, the flow management plane does not receive any flow_assessments as the
responsibility for flow management has been delegated to the layer specific QoS managers. However,
the flow management plane may still receive flow_alerts from the QoS manager if the latter is unable to
maintain the flow within the prescribed bounds. In this case, the flow management plane takes
appropriate action based on the adaptation clause. These actions consist of the issuing of a
QoS_degradation_indication to the user, the initiation of a QoS re-negotiation on one or more specific
performance parameter (via set_attributes and free_attributes primitives on the QoS manager), or both.
The flow management plane is also responsible for explicitly switching on and switching off
maintenance via the start_maintenance and stop_maintenance primitives.



From the application's viewpoint flow maintenance can be initiated at flowConnectRequest time, or at
any point during the lifetime of a flow. In latter case the application uses the maintain_flow primitive to
dynamically request flow maintenance services.

S. ATM Based Implementation

At Lancaster we are currently evaluating an ATM based QoS-A implementation which uses an extended
Chorus micro-kernel for end-system support. In this section we provide an overview of the
implementation; a companion paper [Robin,94] describes our ATM implementation in full details.

5.1 Micro-kernel Extensions

Our experimental systems consists of a distributed applications platform and communication suite
embedded in a Chorus microkernel augmented with services to provide multimedia communications and
QOS configuration in an object-based environment.

The Chorus micro-kernel is implemented using modern techniques such as multi-threaded address
spaces and inter-process communication with copy-on-write semantics. The basic Chorus abstractions
are actors, threads and ports, all of which by globally accessible identifiers. Actors are address spaces
and containers of resources which exits in either user or supervisor space. Threads are units of
execution which run code in the context of and actor. Ports are message queues to hold incoming and
outgoing messages. Unfortunately, Chorus' real-time support is not fully adequate for the QoS-A
requirements, principally because there is no support for QoS specification, resource reservation and
QoS commitment.

To remedy its current deficiencies for QoS specification and real-time support, we have extended the
Chorus’ system call application programmers interface (API) to support suitable QoS-A abstractions
derived from section 3:

e rtports: these are extensions of standard Chorus ports which are used as tsaps for real-time
communications. Rtports have an associated QoS which is realised as part of the
flowConnectRequest procedure.

* rthandlers: these are user supplied C routines which provide the facility to embed application code
in a real-time infrastructure. They are attached to rtports and upcalled on real-time threads by the
infrastructure. They encourage an event driven style of programming which is appropriate for
real-time applications and also avoid the additional context switches associated with send()/recv()
based interfaces.

* QoS adaptation handlers: these are upcalled by the infrastructure in a similar way to rthandlers but
are used to implement the QoS adaptation policy supplied by the user in the service_contract.
This mean that applications which require notification of QoS degradation or re-negotiation (i.e.
QoS scaling) must supply an address of a QoS adaptation handler.

Full details of the continuous media API and the scheduling architecture are specified in [Coulson,93]
5.2 Baseline Architecture.

In our implementation we realise the flow management plane as a per end-system connection manager
supported by a network level flow management protocol, as illustrated in Figure 4b. The connection
manager and the flow management protocol (FMP) together subsume the flow management and control
plane functions (viz. signalling, QoS mapping, resource reservation and admission control, QoS
adaptation).

The flow management protocol provides a framework for the management of network resources in
both local and wide-area networks using out-of-band signalling. The FMP in the local ATM area has
two main resource reservation functions: i) to request the allocation of CPU and memory resources on
remote end-systems, and ii) to allocate and manage resources in the network itself. The FMP uses a
specialised signalling protocol stack consisting of a subset of RSVP [Zhang,93] which we encapsulate
in ICMP, and an ATM signalling protocol, called ATMSig [Campbell,93b], which is based on a subset
of the ATM Forum’s user-network interface 2.4 specification [ATM Forum,93].

The user plane is illustrated in Figure 4a. and consists of a connection oriented, rate based, transport
protocol [Garcia, 93] which provides support for METS [Campbell,93b]. The protocol facilities include



support for QoS configuration, performance monitoring, jitter correction, notification of QoS
degradations, and in service QoS re-negotiation as described in sections 4. QoS maintenance is provided
at the end-systems by peer transport QoS managers which are tightly coupled to the transport protocol
itself. In fact the transport QoS manager is integrated into the existing protocol [Garcia,93].

The IP layer, called IP++, allows us to interwork outside the ATM network in a heterogeneous
environment. It offers QoS enhanced facilities along the lines of those proposed in Deering’s Simple
Internet Protocol Plus (SIPP) [Deering,93]. In particular, IP++ uses a new packet header field called a
flow-id to identify IP packets as belonging to a particular flow or connection, and a flow-spec
[Campbell,93b] to define the QoS associated with each flow. Flow-specs are held by IP++ routers and
used to determine the resources dedicated to the router’s handling of each IP++ packet on the basis of its
flow-id. The state held by routers is initialised at resource reservation time by the flow management
protocol. Below the IP layer we use an ATM Adaptation Layer service to perform segmentation and
reassembly of IP packets into/from 53 byte ATM cells. We use a minimal AALS service for this

purpose.
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Figure 4a: Flow Protocol Projection Figure 4b: Flow Management Projection

The lowest layer of our architecture is based on the Lancaster Campus ATM network. This delivers
ATM to a mix of workstations, PCs, and multimedia devices designed at Lancaster [Blair,93]
[Lunn,94], and also interconnects a number of Ethernets and interfaces to the rest of the UK via the
SuperJANET 100 Mbps Joint Academic Network. The PCs which run the system described in this
paper are directly connected to ATM switches manufactured by Olivetti Research Limited (ORL) via 4x4
ORL ATM interface cards. The ATM switches are implemented using ‘soft” switching and run a small
micro-kernel called ATMos as identified in Figure 4a and 4b.

5.3 Realisation in Chorus

User and QoS Maintenance Planes. In implementation, we map the baseline architecture partly
onto per-actor user level libraries and partly onto a single, per machine, supervisor actor called the
network actor. The transport protocol signalling is implemented in the connection manager actor (see
below). The remain transport functions and facilities of METS and its related transport QoS manager are
implemented in the same user level library that supports the flow API and delta service contract
discussed below so that its service interface can be provided using the rtport and rthandler abstractions.
The data transfer aspects of transport protocol (described as the data-tsap in section 4.1) communicates
with the network actor via system calls for send side communications, and software interrupts for
receive side communications. All signalling associated with a flow (described as the fm-tsap also
described in section 4.1) communications with the connection manager actor via system calls for the
send side, and software interrupts for the receive side.



Below the transport protocol, the rest of the communications architecture, including the ATM card
device driver, is implemented in the network actor. The major complexity involved in the IP++
implementation is in supporting the routing function. This is required when the current host is neither the
source or the sink of a flow but is merely routing it from one network to another. In this case, CPU and
memory resources are dedicated to flows on the basis of a flow-spec supplied by the FMP. Otherwise,
the function of the IP++ layer is effectively null.

AALS is also implemented in the network actor. A software AALS implementation is required

because our ATM interface cards only support data transfer at the granularity of ATM cells which is
required for our cell based scheduling experimentation. The AALS implementation uses per-flow threads
to perform segmentation and reassembly on both the send and receive side, and a per-flow selectable
crc-32 option. This implementation choice reduces multiplexing in the stack to an absolute minimum as
recommended in the literature [Tennenhouse,90]. Currently, the maximum service data unit sizes for the
AALS, IP++ and transport layers alike is restricted to 64 KBytes. This means that no further
segmentation/ reassembly is required above the AALS layer2. The ATM cards generate an interrupt every
time a cell is received, and every they are ready to transmit. Communication between the interrupt
service routines and the per-flow AALS threads is via Chorus mini-ports which are specially optimised
for this purpose.
Flow Management and Control Planes. Flow management in a QoS driven system is much more
than the establishment of communication between remote machines. It includes all the dynamic aspects
of the QoS semantic such as signalling, resource reservation, admission control, QoS mapping and QoS
adaptation.

The communications resources in the end system are managed by three resource managers (viz.
CPU, memory and network) which given a resource request (on the resource control interface in section
4.1) conduct admission tests and if successful allocate resources to the appropriate flow. It is the task of
the connection management to arrange the allocation of suitable CPU, memory and network resources
according to the specified QoS of the requested connection This includes partitioning the responsibility
for QoS support among individual resource managers. For example, the connection manager partitions
the flow spec delay QoS parameter between the network and the CPU resource managers on each end
system.

connectRequest  connectlndication
connectConfirm connectResponse
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Figure 5: Flow Management

We realise the functionality of the flow managment and control planes under a connection management
scheme which adopts a split level structure to the end-systems and communications resources. First,
when a new flowConnectRequest for QoS controlled connection is requested, the QoS mapping function
( see [Campbell,93a] for an example of QoS mapping, and [Robin,94] for the full details of the QoS
translation algorithm) in a user level library determines the resource requirements of new connection
requests. The output of the QoS mapper is then directed to a per-machine connection manager actor
which performs admission testing and resource allocation for the end-system and network resources .
The connection manager must communicate with each of the CPU, network and memory resource

2 1t would be a relatively straightforward extension to support arbitrarily sized buffers at the API level by supporting
segmentation and reassembly in the transport protocol if this proved necessary.



managers independently, and only if all are able to provide the required resource commitment can the
connection request be granted.

The connection manager has to deal with both local and remote CPU and memory resources. The
necessary signalling and communication functionality for the remote case is provided by the FMP
described above. Figure 5 illustrates the relationship between the connection manager and the FMP
(which is situated in the network actor). The figure shows two separate sites, each with its own
connection manager.

5.4 Delta Service Contract

Prior reservation of resources to connections is necessary to obtain real-time performance. In this section
we describe the resource reservation framework in our implementation and show how the user level
service_contract is used to derive the resource requirements of the connections and to make appropriate
reservations. The are two stages to resource reservation: QoS mapping is the process of transforming the
service contract's flow_spec and commitment into resources and flow admission control determines
whether sufficient uncommitted resources are available to fulfil those requirements.

Our experimental ATM platform only uses a subset of the general service contract API described in
section 3. This delta service contract visible at the API is as follows:

typedef struct {

fl ow spec_t fl ow_spec;
conmmi tnent _t conmmi t nent ;
delivery_ t delivery;
mai nt enance_t mai nt enance;
adapt ation_t adapt ati on;

} service_contract _t;

We omit the cost clause in the delta service contract as our ideas on tariffing have not matured enough to
warrant its inclusion at the present time. Another omission is the connection_t and resource server:
currently we only support the negotiated connection service; the area of fast connect, forward reservation
and the realisation of the resource server in the local area are for further study. A new clause has been
recently added to the delta service contract (the rationale for this addition is given later).

QoS commitment expresses a degree of certainty that the QoS levels requested will actually be
honoured. Currently, our infrastructure only supports guaranteed and best effort commitment classes as
shown below; realising a statistical class is also for further study by the QoS-A project. If commitment is
guaranteed, resources are permanently dedicated and allocated at peak rate to support the requested QoS
levels. Otherwise, if commitment is best effort, resources are not permanently dedicated and may be
preempted for use by other activities.

typedef enum {best effort, guaranteed} commitnent t;

The flow spec described in section 3.1 is also revised by our experimental infrastructure - to take into
account the currently supported commitment classes. Only peak rate flow spec parameters are required
since guaranteed flows must allocate resource based on the worst case scenario. Therefore, frame rate
which represents the statistical average rate is not included. Likewise, we drop the media type field
which has not been implemented to date.

typedef struct {

i nt flow.id;

nt frame_size;
nt peak_rate;

nt bur st ;

nt del ay;

nt | oss;

nt interval;

nt jitter;
} flow spec_t;



Delay refers to the maximum tolerable end-to-end delay, where the interpretation of ‘end-to-end’ is
dependent on whether rthandlers are attached to the rtport. If rthandlers are attached, latency subsumes
the execution of the rthandlers; otherwise it refers to rtport-to-rtport latency. Loss is used in conjunction
with interval and refers to the maximum permissible number of buffer losses and corruptions over a
given interval.

Frame size, peak rate and burst combine to describe the required rate at which buffers should be
delivered at the sink of the connection. Jitter, measured in milliseconds, refers to the permissible
tolerance in buffer delivery time from the periodic delivery time implied by peak rate. For example, a
jitter of 10ms implies that buffers may be delivered up to 5 ms either side of the nominal buffer delivery
time.

typedef enum {i sochronous, workahead} delivery t;

We have augmented the service contract with a delivery option described above. Delivery refines the
meaning of throughput (frame rate, frame size and burst). If isochronous delivery is specified, the QoS-
A delivers precisely at the rate specified by throughput otherwise, if delivery is workahead, it attempts
to ‘work ahead’ (ignoring the jitter parameter) at rates temporarily faster than throughput. One use of the
workahead delivery mode is to support applications such as real-time file transfer. Its primary use,
however, is for pipelines [Coulson,93] of processing stages where isochronous delivery is not required
until the last stage. At the moment the delivery parameter remains part of our delta service contract only
since it is dependent upon the type of scheduling adopted. In our implementation we have selected the
earliest deadline first (EDF) scheduling discipline for the end systems and are experimenting with EDF
and weighted fair queueing [Keshav,91] in our ORL ATM swicthes. Promoting the delivery parameter
to the generalised service contract is for further study in the QoS-A project.

6. Related Work

There is currently very little literature available on the integrated treatment of QoS across all architectural
layers. One early contribution [Sluman,91] examined the requirements for QoS support in Open
Systems standards and made preliminary proposals for QoS related enhancements to the existing OSI
RM. Standards have an important role to play in promoting a unified view of QoS. In ISO, a new
project on QoS has been initiated (ISO/IEC JTC/SC21, and in the UK IST21/-/1/5) which addresses
QoS in a consistent way. This activity covers QoS very broadly and has investigated user requirements
for QoS and architectural issues [ISO,92a]. The QoS-A project at Lancaster University has provided
input on our QoS-A [Campbell,92b] [Hutchison,94] work into this activity.

The subject of integrated QoS has recently emerged as an important activity in another ISO project on
Enhanced Communication Functions and Facilities (ECFF) for the lower layers of the OSI RM. As a
member of the ESPRIT-funded OSI 95 project we participated in the initiation of the project on ECFF in
the ISO. In addition, we were instrumental in introducing what we considered to be the key multimedia
communication requirements [Hutchison,92], [Danthine,92], [Boerjan,92] into the ECFF guidelines
document [ISO, 92b]. The context of Lancaster's work in standards is to feed the results of our research
into SC6/WG4 and SC21/WG1 on the enhanced multimedia transport service and protocol
[Campbell,93b] and QoS-A respectively. We feel strongly that the research community should play a
more active role in influencing the shape of future communication standards.

In contrast to the integrated view of QoS, the subject of providing QoS guarantees in integrated
service networks has been widely covered in the literature [Kurose,93] [Keshav,93] and is now
progressing rapidly towards implementation in experimental gigabit network testbeds [Lazar,93]. In
[Clark,92] a distinction is made between three different service commitments: (i) guaranteed service for
real-time applications; (ii) predicted service, which utilises the measured performance of delays and is
targeted towards continuous media applications; and (iii) best effort service, where no QoS guarantees
are provided. A unified traffic scheduling mechanism is also discussed which is based on a combination
of weighted fair queuing and static priority algorithms. In our QoS-A, commitment is supported both at
the end-systems and in the network. The idea of QoS commitment introduced by Clark et al. is extended;
that is, each performance parameter identified in the flow spec can be configured to meet a specific level
of service commitment. More recently, and following on from their earlier work, Shenker, Clark and



Zhang have developed their ideas on service commitment and scheduling architecture. In [Shenker,93] a
new scheduling service model is described in some detail. The service model is made up of two
components: (i) a delay related component which supports two kinds of real-time service viz. guaranteed
and predictive, and also multiple classes of ASAP elastic services which are synonymous with a best
effort style of service; and (ii) a link-sharing component (based on similar work by Floyd [Floyd,93])
which addresses the need to allocate bandwidth between entities through sharing and regulating of the
aggregate bandwidth of a link.

In [Lazar,90] an Asynchronous Time-Sharing network which provides a QoS capability is
proposed. The switching provided by the network is novel in that the concept of QoS explicitly appears
in the design specification at both the edge (at call level) and the core (at cell level) of the network. The
network supports four well-defined traffic classes which support circuit emulation, voice and video, file
transfer and network management flows. Following on from this work [Hyman,92] describes a joint
scheduling and admission control mechanism used to guarantee the QoS of each traffic class.

The area of resource reservation is fundamental in providing end-to-end QoS guarantees. There have
been a number of significant contributions to resource allocation in communication networks which have
emerged over the past few years. In particular, ST-II [Topolcic,90] is a significant contribution,
designed specifically for packetised audio and video communications across the Internet. In contrast to
ST-II which provides source initiated point-to-multipoint flows, RSVP [Zhang,93] provides receiver
initiated reservation and multipoint-to-multipoint support. SRP [Anderson,92] also designed for the
Internet supports end-system and networks resource allocation. The QoS-A connection manager and
flow management protocol is tailored for the local ATM environment and borrows heavily from ST-II
and SRP. Our flow reservation service differs from the above ST-II, SRP and RSVP in that it supports
a fast and forward reservation service.

In the area of QoS configurable transport systems, [Wolfinger,91] describes a protocol intended to
run over a network layer offering comprehensive QoS guarantees. The protocol offers QoS
configurability and includes an algorithm for bounding buffer allocation given throughput and jitter
bounds. The design uses a shared memory interface between user and protocol threads. The HeiTS
project [Hehmann,91] also investigated the integration of transport QoS and resource management
(scheduling). HeiTS puts considerable emphasis on an optimised buffer pool which minimises copying
and also allows efficient data transfer between local devices. The scheduling policy used is a rate
monotonic scheme whereby the priority of the thread is proportional to the message rate accepted. The
role of QoS monitoring, maintenance and commitment are not addressed by either of the above
mentioned pieces of work.

[Danthine,93] reports on the development of an enhanced transport service in the OSI 95 project.
Three transport level QoS semantics are proposed in addition to best effort service. Each performance
parameter is specified by a structure of three types viz. compulsory, threshold and maximal QoS. When
a compulsory value is selected the transport protocol commits to monitor the connection and will abort
the service should the QoS drop below the requested value. The threshold QoS value, which is
motivated by the needs of a multimedia service [Boerjan,93], commits the service provider to monitor
the on-going performance of the connection. In this case however, a QoS indication informs the user
should the QoS degrade below the requested value. The maximal QoS value deals with limiting the over
utilisation of communications resources on a connection. It is possible to associate all three QoS values
to the same performance parameter. In [Danthine, 93] a number of negotiation rules are laid out for each
of the QoS value. The threshold value is suitable for multimedia communications where applications
may accommodate service fluctuations. The compulsory value however, is not a suitable semantic for
the multimedia communications as many applications prefer degraded service to no service. The OSI 95
transport service provides a set of QoS features which are suitable for a wide range of transport service
user’s needs; however QoS maintenance and adaptation have not been addressed in any detail.

Several projects in the European funded RACE program are concerned with QoS for integrated
broadband networks. A significant contribution has been made by the QOSMIC (R.1082) project which
studied QoS concepts in broadband networks, focusing on the user—network interface in particular. The
major goal of the project was the specification of a QoS model for service life-cycle management which
maps the user communication requirements to network performance parameters in a methodical manner.
The model takes into account the life cycle of service from both the user and network provider



viewpoints, and QOS performance mapping between the viewpoints based on the decomposition of end-
to-end services into elements. The service life cycle covers conception, planning, provision and
operation of multimedia services in an integrated broadband environment. In some related work Jung
and Seret [Jung,93] propose a framework for the translation of the performance parameters between the
ATM Adaptation Layer (AAL) and ATM layers. They extend the QOSMIC model to include QoS
verification. In this case the user can verify whether the achieved bearer QoS provided by the ATM
network meets the contracted requirements expressed in terms of performance parameters.

Work carried out at the University of Pennsylvania [Nahrstedt,93] describes a brokerage model
which incorporates QoS translation, and QoS negotiation and renegotiation. The notion of eras is
introduced to describe variations in QoS parameters for complex, long-lived applications. Negotiation
and renegotiation provide a mechanism to signal variations in QOS performance parameters at the user—
network interface. They are invoked at era boundaries, and can aid resource allocation. In the model,
application requirements and network resource allocation are expressed in fundamentally different terms
and languages. A key part of the model, called a broker, is responsible for the translation of QoS at the
user—network interface.

In related end-system support, work on real-time extensions to the Mach micro-kernel, consisting of
real-time threads, real-time synchronisation primitives and time driven scheduling, is described in
[Tokuda,92]. The scheduling mechanism is derived from the ARTS kernel and permits hard real-time
scheduling based on EDF. For end-to-end continuous media support, the main limitation of this work is
the lack of API level QoS specification and integration with the communications sub-system. As an
example of the latter, the API provides means to create periodically executable threads, but there is no
way to associate this periodicity with the arrival of messages on a Mach port. More recent work by the
same group has addressed QoS issues, including QoS monitoring through the concept of deadline
handlers which are invoked when deadlines are missed [Tokuda,93].

Media scaling [Delgrossi,93] and codec translation [Schulzrinne,93] at the end systems, and filtering
media traffic [Pasquale,92] [Zhang,93] in the network are very topical areas of QoS research at the
moment. Media scaling3 matches the source with the receivers’ QoS capability by manipulating flows at
the network edges. In contrast, filtering accommodates the receivers’ QoS capability by manipulating
flows at the core of the network as they traverse bridges, switches and routers. Both schemes
compensate for variation in network load/performance by re-scaling or filtering the delivered QoS
respectively. Potentially this includes manipulating hierarchical flows; for example, delivering the I
frames of an MPEG encoded flow and dropping the P and B frames to match the end system or network
QoS constraint. Network level filtering looks very promising when used in conjunction with multicast
protocols for dissemination of continuous media in support of heterogeneous receivers; for example,
Pasquale et. el. [Pasquale,92] suggest that several receivers having disparate QoS communication
requirements, and needing to access the same video flow simultaneous can be supported by a
propagating filter scheme which deliver the appropriate QoS to each receiver. This scheme promotes
efficient use of network resources, and as the literature suggests, reduces the likelihood of the on set of
congestion.

7. Conclusion and Future Work

In this paper we have described in detail our QoS architecture with particular emphasis on the enhanced
transport service interface and dynamic QoS management. The notion of a flow and a service contract
were introduced as key concepts in capturing, requesting and negotiating end-to-end QoS. We also
introduced the idea of flow management [Campbell,94] which provides for the monitoring and
maintenance of the contracted QoS. These QoS concepts emerged from work carried out on the OSI95
[Danthine,92] [Boerjan,92] [Campbell,93] project and are motivated by the widely accepted
communication needs of distributed multimedia applications.

The proposed QoS-A promotes the idea of integrated QoS, spanning the end-systems and the
network, and takes the support of QoS for a wide range of applications as its primary goal. Many
researchers to date have concentrated on either the network or the end-system in isolation. In contrast,

3" The QoS-A supports media scaling as part of dynamic QoS adaptation management.



QoS concepts are coherently applied across all architectural layers, resulting in a complete framework for
the specification and implementation of the multimedia flows in the local ATM environment.

At the present time we are experimenting with an infrastructure consisting of three 486 PC’s running
Chorus and connected to an ORL ATM switch via ISA bus ORL ATM interface cards. Our intention is
to connect the ORL QoS testbed to our campus ATM network which comprises Netcomm and Fore
switches. The PCs also contain VideoLogic audio/ video/ JPEG compression boards as real-time media
sources/ sinks. The current state of the implementation is that the API, connection manager and flow
management protocol, scheduling infrastructure, transport protocol and ATM card drivers are in place.

The next phase of our implementation will include network support. This work will draw heavily
from the recent literature on providing QoS guarantees in fast packet switched networks. In particular we
plan to experiment with suitable switch scheduling disciplines [Parekh,92] [Keshav,91] [Hyman,93],
resource management [Shenker,93] [Floyd,93] and filtering strategies (see below) for the QoS-A, given
the types of service commitment and flow management we are advocating at the transport service
interface.

At Lancaster we are developing specialised hardware support called filter servers [ Yeadon,93] which
are based on MEND technology [Lunn,94] and are located close to end-systems. These servers can
implement intelligent filters such as MpegTolpeg codec translators, and are the functional equivalent of
Schulzrinne’s filter bridges [Schulzrinne,93]. In addition to filter servers we are also implementing
simple cell level filters for our ORL switches by augmenting the ATMSig?. The outcome of this phase
of the research will be the subject of a forthcoming paper.
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