
Community-Guided Learning: Exploiting Mobile Sensor Users to

Model Human Behavior

Daniel Peebles and Hong Lu and Nicholas D. Lane and Tanzeem Choudhury and Andrew T. Campbell

Department of Computer Science
Dartmouth College
6211 Sudikoff Lab

Hanover, NH 03755

Abstract

Modeling human behavior requires vast quantities of accu-
rately labeled training data, but for ubiquitous people-aware
applications such data is rarely attainable. Even researchers
make mistakes when labeling data, and consistent, reliable
labels from low-commitment users are rare. In particular,
users may give identical labels to activities with character-
istically different signatures (e.g., labeling eating at home or
at a restaurant as “dinner”) or may give different labels to the
same context (e.g., “work” vs. “office”). In this scenario, la-
bels are unreliable but nonetheless contain valuable informa-
tion for classification. To facilitate learning in such uncon-
strained labeling scenarios, we propose Community-Guided
Learning (CGL), a framework that allows existing classifiers
to learn robustly from unreliably-labeled user-submitted data.
CGL exploits the underlying structure in the data and the un-
constrained labels to intelligently group crowd-sourced data.
We demonstrate how to use similarity measures to determine
when and how to split and merge contributions from differ-
ent labeled categories and present experimental results that
demonstrate the effectiveness of our framework.

Introduction

The recent explosion of the sensor-equipped smartphone
market has created an irresistible opportunity for machine
learning researchers. Millions of people now voluntarily
carry more sensors and computational power than was avail-
able on specialized sensing devices just two years ago (Bao
and Intille 2004; Choudhury et al. 2008). Constrained learn-
ing applications for these devices already abound: dozens of
iPhone applications have been released that incorporate ba-
sic human sensing and learning. Citysense (Networks 2008)
for example traces user movement patterns to find nightlife
in San Francisco. But while such applications are encour-
aging, it is not hard to envision even larger, more general
systems for learning more complex trends from user data.

The availability of this data presents an opportunity to
radically change the way we build computational models of
human behavior. No longer will it be necessary to prepare
carefully controlled experiments using specially engineered
sensing devices and fixed label sets; the sensors are already
deployed, and many users already document their lives on

Copyright c� 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

services like Twitter. We believe large-scale learning sys-
tems will benefit greatly from the effective use of such un-
constrained human data. Current approaches, however, are
ill-equipped to deal with such data: they typically rely on a
static well-defined set of labels and cannot deal with seman-
tic discrepancies. Furthermore, to improve generality and
reduce individual user requirements, labels are often pooled
from multiple users—a technique that only works if the la-
bels are consistent across people. In reality it might be ben-
eficial for classification to split a class with a specific textual
label into several sub-classes or merge classes with different
labels. Supervised and semi-supervised learning techniques
assume a rigid closed set of labels, and unsupervised algo-
rithms do not incorporate labels at all.

In this paper, we propose Community-Guided Learning
(CGL), a novel framework for learning in a dynamic human
environment. Community-based models are already widely
used in other domains (e.g., Wikipedia, SETI@home, Free-
base), where they successfully amortize individual users’
shortcomings by incorporating contributions from other
users. Analogously, our approach uses notions of similarity
to incorporate data from multiple users in a flexible man-
ner that neither places excessive weight on labels nor dis-
cards them entirely. More specifically, CGL uses existing
unsupervised and supervised classifiers to find groupings of
the input data that maximize robustness and classifier per-
formance.

The novel contributions of our work are as follows:

• We propose and develop the CGL framework for learn-
ing models of human behavior from crowd-sourced sen-
sor data.

• We demonstrate the effectiveness of similarity measures
to regroup classes specified by imperfect labels from
users.

• We present experimental results showing CGL’s advan-
tages over conventional learning techniques.

Related Work

There is much prior work that carefully collects and la-
bels high-quality training data (Bao and Intille 2004; Lester,
Choudhury, and Borriello 2006; Choudhury et al. 2008;
Huynh, Blanke, and Schiele 2007) for learning models of

human behavior. Unsupervised activity discovery is an-
other active area of research where no labeled data is used
during training. Both approaches need labels to be spec-
ified at some stage to perform useful classification. To
achieve reasonable performance, the domain is often re-
stricted to simple behaviors (Thad et al. 2006) or relies
on output from low-level supervised models (Huynh, Fritz,
and Schiele 2008) during unsupervised learning. Semi-
supervised (Stikic, Van Laerhoven, and Schiele 2008; Mah-
daviani and Choudhury 2007) and multi-instance learning
approaches (Stikic and Schiele 2009) have been proposed to
deal with limited and inconsistent labels. In multi-instance
learning, labels are associated with a set of data points that
includes at least one positive data point but may also include
points that are not from the labeled class. In all of these
cases, class labels are considered to be fixed.

We are not the first to identify sensor-enabled consumer
devices as an opportunity to radically alter an existing
paradigm. In recent years researchers have been consid-
ering ways that mass deployments of mobile sensors (e.g.,
embedded in cell phones) can change people-centric data
collection (Abdelzaher et al. 2007; Campbell et al. 2006;
Burke et al. 2006; Krause et al. 2008). This work has fo-
cused primarily on privacy, mobile device resource limita-
tions, and data fidelity. Lane et al. (Lane et al. 2008) pro-
pose a community-based technique that groups people based
on their social clique and partitions their data accordingly to
improve learning. However, the grouping is social-network-
based and the label domain is still fixed. Hence, the chal-
lenges we identified above remain unsolved.

Community-guided Learning

Inevitably, any large learning system will have to deal with
mislabeled data for reasons ranging from simple misunder-
standings to malicious behavior. Naı̈vely accepting free-
form user-provided labels will almost certainly undermine
learning, as these may be overly broad or narrow and either
way, will rarely be textually equal. For example, distinguish-
able (from the point of view of the sensor data) classes may
be given a single label like “work”. In such cases, model-
ing the distinct subclasses separately may lead to better per-
formance. On the other hand, similar or indistinguishable
classes may be given labels like “driving” and “commuting”
and a joint model will perform better.

We present Community-Guided Learning as a framework
to build classifiers using inconsistently labeled sensor traces.
To achieve this, CGL trains data in groups not only defined
by users’ labels but also by properties of the data. In essence,
we account for “soft ground truth” by first performing a clus-
tering step to refine the classes suggested by labels and then
training a supervised classifier on those clusters. We list
specific steps below and provide figure 1 for a schematic
overview:

• Take as input inconsistently labeled mobile sensor data
from multiple users.

• Measure intra-class similarity between segments that
have the same label to decide whether to keep the orig-
inal grouping of the data or to split dissimilar segments

Community sourced
imperfectly labeled
data forms the
orginal set of
classes/behavior

Classes clustered
into sub-classes
based on intra
class similarity

Sub-classes merged
based on inter class
similarity and the final
set of classes defined

Figure 1: The main steps of CGL. Segments are first grouped
according to user-provided labels. The class groupings are

redefined based on inter- and intra-class similarity measures.
Classifiers are built based on the resulting groupings.

into sub-groups and model them as different classes.

• Train classifiers using groupings from previous step.

• Measure the inter-class similarity between segments that
have different labels and decide whether to keep the origi-
nal groupings based on the labels or to merge similar seg-
ments that have different labels and model them as one
class.

• Retrain classifiers using groupings from previous steps.

In a deployed system, the above process can be applied
iteratively using new contributions from the community to
update classifiers.

Splitting and Merging User-Defined Classes

A primary goal in CGL is to preserve the user-provided la-
belings, as these are what they expect. But users cannot be
expected to understand how to label their data such that the
classifiers perform reliably. Instead, the reasoning system,
guided by the labels and the input data, should make the fi-
nal decision on how to re-partition that data to achieve good
performance.

To that end, CGL first uses clustering to determine
whether distinguishable classes have been assigned the same
label. If so, the data is split into logical subclasses. Next,
if indistinguishable classes have been assigned different la-
bels, CGL unifies them. For example, data labeled by a user
as ‘driving’ may include both urban and stationary segments
– these different types of driving data will likely have differ-
ent sensor signatures. This example should be clustered and
split into two classes. However, in the merge phase, CGL
may find the stationary subclass to be indistinguishable from
other similar data, such as waiting at a drive-through, and
will thus merge and model it as a single class. In the follow-
ing section, we describe the two types of similarity metrics
we use to split and merge the contributed segments and how

we utilize these similarity measurements in the learning pro-
cess.

Defining Similarity. CGL uses intra-class and inter-class
similarity measures, as described below:

Intra-class similarity. This is used during the splitting
stage. The goal is to find the underlying groupings in data
that share a label. This is purely data-driven and is effec-
tively a clustering operation. Although many clustering al-
gorithms exist and our technique can use any of them, in our
experiments we choose Euclidean k-means (Bishop 2007)
for its simplicity. Unfortunately, there is no agreed-upon so-
lution for choosing the number of clusters k. We estimate
k by evaluating the objective function for varying values of
k—typically the objective function decreases rapidly when
k is smaller than the correct number of clusters and flattens
when k is larger. Thus, the location of an elbow in the ob-
jective function is a good choice for k (Milligan and Cooper
1985). The intuition behind this procedure is that there is
some optimal clustering of the data, and if k is lower than
the optimal number of clusters, the objective function will
be high because distant points are being clustered together.
On the other hand, if k is greater than the optimal value,
clusters will get divided, causing a comparatively small de-
crease in objective.

If a class is split into two or more sub-classes, CGL treats
them as independent classes for training, but associates them
with the same user-visible label. This is purely for the user’s
benefit, and a different front-end could instead ask the user
to refine the subcluster labels.

Inter-class similarity. Unlike the purely data driven intra-
class similarity, we measure inter-class similarity by com-
paring the output of two different classifiers on the same in-
put. The aim is to identify classes that may be labeled differ-
ently but belong to or is better modeled as a single category.
For example, ‘talking’ and ‘conversation’ classes may both
represent scenarios where a person is speaking. If the data
belonging to two or more labels represent the same underly-
ing class then these classifiers are likely to “agree” and are
potential candidates for merging. Let us assume two classi-
fiers, CA and CB . On a given test segment S, we compute
CA’s performance on B and CB’s performance of A—let us
assume they are based on confusion matrices confAB and
confBA respectively. The agreement between the classifiers
is defined to be the f -score computed from the combined
confusion matrix confAB+BA = confAB + confBA.

The intuition behind the similarity score is as follows:
if two classes A and B are the same or very similar, CA

will perform well on B’s data and CB will perform well on
A’s data and the combined f -score will also be high. If the
classes are dissimilar, CA will perform poorly on B’s data
and vice-versa, resulting in a low combined f -score.

If the inter-class similarity score is greater than a ex-
perimentally determined threshold, the classes CA and CB

are merged and used to train a unified classifier CAB . We
set this threshold such that merging operates conservatively,
causing it only to be applied at levels of similarity that
caused high subsequent f -scores during exploratory experi-
ments. If classes are merged, the system associates the union

of the labels to the newly defined class. But as with the split
case described above, users could be prompted by a different
front-end to confirm whether the classes should be merged
and whether they want to re-label.

Training Classifiers

After classes are redefined based on the similarity mea-
sures, any classification algorithm can be trained and used
for recognition. Since our primary goal is to test the ef-
fectiveness of CGL, we use simple boosted decision-stump
classifiers (Friedman, Hastie, and Tibshirani 1998) in our
current experiments to train binary activity classifiers. As
with the clustering algorithms used during the splitting
phase, we are not tied to a specific type of classifier and
can use more sophisticated models if needed. However,
boosted decision stumps have been used successfully in a
variety of classification (Torralba and Murphy 2007) tasks
including human activity recognition (Lester et al. 2005;
Blanke and Schiele 2009).

For each activity Ai , we iteratively learn an ensemble of
weak binary classifiers Ci = c1

i, c2
i, c3

i, ..., cM
i and their

associated weights αm
i using the variation of the AdaBoost

algorithm proposed by (Viola and Jones 2001). The final
output is a weighted combination of the weak classifiers.
The prediction of classifier Ci is:

Ci = sgn(
�

m

αm
icm

i)

Supervised training is done after both the split and merge
steps based on the new class groupings produced by those
stages.

Evaluation

In this section, we describe our dataset and the experiments
we conducted to evaluate the performance of CGL, and test
CGL’s ability to cope with two common forms of human
labeling error: (i) inconsistencies in user-provided labels and
(ii) incorrect user-provided label boundaries.

Dataset

We collected a 33-hour audio dataset of high-level activities
and their associated contexts, as shown in table 1. We re-
cruited five researchers to run a custom audio logger on jail-
broken iPhones and instructed them to loosely but truthfully
provide freeform labels of anything they chose. In the result-
ing dataset, we found that the labels consisted of activities
performed (e.g., driving, eating, working) or the type/name
of places the users visited (e.g., supermarket, office, library,
restaurant).

It is worth noting that while the labels themselves were
freeform, they were semantically meaningful to the user
(i.e., the user did not lie or attempt to mislead the label-
ing process in any way). Also, our subjects made sure to
provide good label boundaries for their data, so that the seg-
mentation of activities is correct in our dataset. For the ex-
periments involving incorrect boundaries, we intentionally
disrupt boundaries between classes in our data to simulate
real scenarios and then evaluate against our original data.

Category Labels

Working working, office, name of the building/room
Driving driving, car, vehicle
Transport bus, vehicle, cab, airplane
Eating eating, lunch, dinner, kitchen, Dirt Cowboy,

Quiznos, Boloco, Ramuntos, Five Olde, Novack
Shopping shopping, supermarket, grocery store
Gym gym

Table 1: Audio dataset

Domain Features

Time ZCR, RMS, low energy frame rates
Frequency Spectral entropy, flux, centroid, bandwidth,

normalized phase deviation, band energy
Cepstral 13 MFCC with DC component removed

Table 2: Features extracted from audio dataset

Data processing and feature extraction

To calculate similarity scores and perform classification, we
extract a set of features from the recorded audio. We choose
acoustic features that emphasize important characteristics of
the data and have been used successfully in other mobile
audio sensing applications. Our feature set contains 39 fea-
tures, computed from the time, frequency, and cepstral do-
mains. Table 2 gives an overview of these features.

Of the time-domain features, the root mean squared
(RMS) value is a measure of the average amplitude of a
frame, the zero-crossing rate (ZCR) is the number of time-
domain zero-crossings within a frame and correlates with
the frequency content of a signal. Low energy frame rate is
the number of frames within a window that have an RMS
value less than 50% of the mean RMS for the entire window
(Scheirer and Slaney 1997).

In the frequency domain, the spectral entropy gives cues
about the frequency pattern of the sound; spectral flux is the
L2-norm of the spectral amplitude difference vector of two
adjacent frames and measures the change in the shape of
the spectrum; the spectral centroid is the balancing point of
the spectral power distribution; spectral bandwidth (Li et al.
2001) is the width of the range of the frequencies that the
signal occupies; normalized phase deviation, introduced in
(Dixon 2006), shows the phase deviations of the frequency
bins in the spectrum, weighted by their magnitude.

Finally, we use coefficients of the Mel-frequency cepstral
domain, a very commonly used feature in speech recogni-
tion systems that mimics human perception (Peltonen et al.
2002) (Mckinney and Breebaart 2003).

As we deal with large datasets and seek to summarize the
sound of high-level activities, we chose a fairly long frame
length (window of samples used to calculate features) com-
pared to that common in speech applications: a half-second,
with non-overlapping frames.

CGL Stages

Here we explain the experimental procedure for each stage
of CGL. According to the framework, user-contributed data
is initially grouped based on user-provided labels, the data

in these groups is then clustered during the intra-class sim-
ilarity step. Classifiers are trained based on the clusters
found with similar classes then merged together before a fi-
nal training step occurs to complete the process.

Intra-class similarity measurements. We start by clus-
tering the data using Euclidean k-means, determining k as
described previously. Note that this procedure can pick
k = 1, and often does.

Figure 2 shows the result of principal component analy-
sis (PCA) on the driving data. The figure clearly demon-
strates three distinct clusters and in fact k-means also splits
the driving class into three clusters but operates on the full
39-dimensional data. Table 3 lists the classes that had more
than one cluster.

Classifier training. The clusters produced by the previ-
ous step are then used to train boosted decision stump clas-
sifiers. Assuming that a class C gets broken into subclasses
by the previous step, we construct a classifier for C in the
following manner:
• For each subclass, consider points within its cluster as

positive examples and points outside (including other sub-
classes of the same class) as negative examples.

• Run 10 iterations of Adaboost on the above to get a clas-
sifier for each subclass, making sure to give the positive
and negative classes equal weight.

• The output of our classifier for class C is the disjunction
of the outputs of each of its subclasses’ classifiers.
For example, if a class is found to have three subclasses,

we train one boosted decision stump classifier for each of
these. The compound classifier returns true for a given sam-
ple if (and only if) any of the three classifiers returns true on
that sample.

Inter-class similarity measurements. After obtaining
the set of classes and classifiers from the split stage, we
determine the inter-class similarity between each pair of
classes. Given two classes A and B and their respective clas-
sifiers CA and CB , we compute the similarity as follows:
• Run classifier CA on B’s data and classifier CB on A’s

data
• Compute the confusion matrix confAB for CA’s when ap-

plied to B’s data, and vice versa
• Compute the f -score of the combined confusion matrix

confAB+BA = confAB + confBA

• The combined f -score is used as the similarity measure
between A and B

The similarity matrix thus generated can be seen as a com-
plete graph with edge weights corresponding to pairwise
similarity. Raising this matrix to a power simulates transitiv-
ity of similarity. For example, raising it to the second power
“walks” one step over all the edges, accentuating similar el-
ements and de-emphasizing dissimilar ones.

Based on the similarity matrix, we chose a conservative
threshold experimentally chosen to favour merges only for
highly similar classes.

Classifier re-training. After classes are merged, clas-
sifiers for the new categories are trained using the same

Figure 2: Two-dimensional PCA on driving data, showing three
clear clusters.

!"#$%&'$

(")*&(+$

,%(

,%&%-%

,%%./0%)$

,1/

-(,

-#/
'")0-%2,%3

')"#"+4

$(0"+4

!%%'/0%*

435

."0-6$+

&(,

&",)()3

+%#(-.

%!!"-$

71"8+%/

)(51+0%/

Figure 3: Multidimensional Scaling results for similarity
between classes. MDS axes have no meaningful units.

boosted decision stump classifier. If classes A and B get
merged in the previous step, we construct a classifier CAB

in the following manner:

• Consider points in A or B as positive examples and points
outside as negative examples.

• Run 10 iterations of Adaboost on the above to get the pa-
rameters for classifier CAB .

• The output of the classifier on A, B, or AB is simply the
classification output of CAB .

Class k
f -score Precision Recall

pre post pre post pre post
Driving 3 80.4 82.3 89.4 89.2 73.0 76.5
Eating 2 64.4 60.6 70.2 68.1 59.5 54.6

Gym 2 83.7 85.6 83.4 82.0 84.0 89.4
Lab 3 81.5 81.1 78.5 71.3 84.6 93.9

Office 2 85.4 85.5 77.8 76.9 94.8 96.3

Table 3: Performance pre and post splitting on classes that
contained multiple clusters.

Class
f -score Precision Recall Accuracy

pre post pre post pre post pre post
eating 87.5 90.2 84.6 88.5 90.6 92.0 87.1 90.0

communal places 88.6 91.7 85.6 89.2 91.8 94.4 88.2 91.5

transportation 93.6 83.5 95.4 93.4 91.9 75.6 93.7 85.1

Table 4: Performance before and after for two examples where
CGL will merge two subsets of a tight cluster (visible in figure 3).
In the third row we see the result of merging related sub-clusters
that CGL would not select for merging, although all subclusters
are associated with transportation merging the results in worse

performance.

Scenario
Precision Recall Accuracy f -score

naive CGL naive CGL naive CGL naive CGL
gym/driving 76.4 97.2 69.5 93.6 69.5 95.5 67.4 95.4

eating/lab 81.7 77.2 81.7 88.2 81.7 81.1 81.7 82.3
airplane/bus 91.4 99.0 91.9 99.8 91.6 99.4 91.7 99.4

Table 5: Performance under the class boundary errors
experiment for a model using CGL relative to one that does not.

Experimental Results

Two common types of human error from low-commitment
users during labeling are: (i) inconsistent class definitions
between people since they are free to use their own defini-
tions and (ii) unreliable boundaries that mark the start and
end of classes that often occur due to user distraction. To
study the ability of CGL to cope with these deficiencies we
perform individual experiments, each of which focuses on
one of these sources of error. In all experiments we evaluate
CGL using standard five-fold cross-validation and tables 3
and 5 show the mean of the folds. As performance will not
change for unsplit classes, we provide the average perfor-
mance numbers: 88.7% accuracy and 89.3% f -score.

Intra-class similarity and splitting performance. In our
experimental data we find frequent disagreement of class
definition occurs within our users (e.g., users providing dif-
ferent labels for the same activity). Table 3 and 4 demon-
strate the ability of CGL to handle this type of human error.
Table 3 shows classification performance for both the user-
provided groupings (pre) and CGL’s split groups (post). For
the majority of these classes, we see an improvement in the
overall performance as measured by the f -score—usually
the best number to use for evaluating whether the classifier
is correctly recognizing the true examples and rejecting the
false ones. In particular, the recall numbers go up signifi-
cantly for all but one class (eating). But as we will see later,
eating may be a candidate for merging with other classes
that are capturing eating related events (i.e., the classes cor-
responding to various eateries).

Inter-class similarity and merging performance. To
evaluate the empirical result of inter-class similarity, we
apply non-classical multidimensional scaling (MDS) to the
similarity matrix and plot the result in figure 3. Distances be-
tween points in this figure are proportional to the differences
in the similarity. The figure shows a clump of highly similar
eateries in the bottom-left region as well as some fairly dis-

similar transportation classes. The strange position of the ‘li-
brary’ class in the plot may be explained by the fact that our
library includes a cafeteria area (‘novack’, also present in
the plot). Additionally, we computed the similarity between
the two eating subclasses and the various eateries. One of
the eating subclasses is quite similar to the eateries (f -score
= 0.70) and is a potential candidate for merging while other
subclass is completely dissimilar (f -score = 0.0).

Performance of regrouping. To calculate the perfor-
mance of the post-split (post) classifiers, we consider the
disjunction of each subclass classifier’s output. To evalu-
ate the benefits of merging, we evaluate individual classes’
performance before merging and see if retraining merged
classes improves the original performance. Table 4 shows
that performance increases consistently for merging classes
CGL determines to be similar. In this table each class refers
to more than one user-provided grouping with the follow-
ing associations in use, obtained by picking all classes that
exceed a threshold of similarity: eating→ { dirtcowboy, no-
vack, quiznos, ramuntos }, communal places→ { dirtcow-
boy, novack, quiznos, ramuntos, boloco, fiveolde, library }.
In contrast, if semantically similar classes like transportation
→ { cab, airplane, driving, bus }, that our technique consid-
ers dissimilar are merged blindly, the performance decreases
significantly, as shown in the third row of table 4.

Handling boundary errors. To measure the impact of
pronounced class boundary errors we perform an experi-
ment which uses the original data set but synthetically in-
creases class boundary errors. We deliberately splice addi-
tional audio from a different activity into a class segment
identified by the user. We base each of these synthetic ex-
amples of class pollution off naturally occurring scenarios
we observe during the experiment. We present three sce-
narios in table 5 such as: data from the gym is mistakenly
mixed with data sampled during the drive home or data ac-
quired while eating is accidently combined with data from
in the lab. We compare the performance of CGL to boosted
decision stump classifiers that treat the labels from users at
face value. In the first scenario in the table, “gym/driving”,
CGL outperforms the naı̈ve benchmark’s accuracy by 41.5%
and its other metrics by a similar margin. In contrast, CGL’s
accuracy is marginally outperformed in the second scenario
“eating/lab”. The reason for this is that the gym and driv-
ing classes are very easily split due to their large similarity
distance (see figure 3). Due to the CGL is cleanly able to
separate this class pollution and so it has little impact on
the classifiers that are trained. However, in the case of “eat-
ing/lab” the classes themselves are have similar signatures
(some of the eating data was even collected in the lab) so the
improvement can only ever be minor.

Conclusion

In this paper, we introduced CGL as a novel framework
for building robust context classifiers. The experimental re-
sults showed that CGL can overcome the limitations of ex-
isting techniques in coping with inconsistent labels, which
are inevitable in real-world scenarios. By dynamically re-
grouping the classes that are modeled, CGL can recognize

a wide range of classes more robustly than the conventional
“train in a controlled environment then deploy” approach.
Furthermore, user contributions can be intelligently shared
to minimize unnecessary duplication of effort. Our work
on CGL raises a number of open questions that directs our
future work. The results presented, although promising,
were validated using a community of five people, not hun-
dreds, and the experiments were conducted offline. There
are both implementation and algorithmic challenges to de-
ploying CGL at a large scale. In particular, repeated retrain-
ing will not be scalable for a mobile inference systems. We
plan to investigate online learning algorithms (Blum 1998;
Oza and Russell 2001) to reduce computational demands.
The CGL paradigm assumes that the users provide some la-
beled training data. Sensor data is straightforward to collect
but labels are considerably harder because user interaction
is required (Horvitz and Apacible 2003; Horvitz, Koch, and
Apacible 2004; Fogarty et al. 2005). A key challenge in
context modeling, which we plan to address, is to automati-
cally detect opportune moments when users would be will-
ing to label small chunks of their data. In summary, we plan
to develop online and active learning techniques to address
scalability and labeling challenges with the eventual goal of
creating a large-scale CGL deployment.

References

Abdelzaher, T.; Anokwa, Y.; Boda, P.; Burke, J.; Estrin, D.; Guibas, L.; Kansal, A.;
Madden, S.; and Reich, J. 2007. Mobiscopes for human spaces. IEEE Pervasive
Computing 6:20–29.

Bao, L., and Intille, S. S. 2004. Activity recognition from user-annotated acceleration
data. In Ferscha, A., and Mattern, F., eds., Pervasive, volume 3001 of Lecture Notes
in Computer Science, 1–17. Springer.

Bishop, C. M. 2007. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer, 1 edition.

Blanke, U., and Schiele, B. 2009. Daily routine recognition through activity spot-
ting. In LoCA ’09: Proceedings of the 4th International Symposium on Location and
Context Awareness, 192–206. Berlin, Heidelberg: Springer-Verlag.

Blum, A. 1998. On-line algorithms in machine learning. In Developments from a June
1996 seminar on Online algorithms, 306–325. London, UK: Springer-Verlag.

Burke, J.; Estrin, D.; Hansen, M.; Parker, A.; Ramanathan, N.; Reddy, S.; and Sri-
vastava. 2006. Participatory sensing. In In: Workshop on World-Sensor-Web (WSW):
Mobile Device Centric Sensor Networks and Applications.

Campbell, A. T.; Eisenman, S. B.; Lane, N. D.; Miluzzo, E.; and Peterson, R. A.
2006. People-centric urban sensing. In WICON ’06: Proceedings of the 2nd annual
international workshop on Wireless internet, 18. New York, NY, USA: ACM.

Choudhury, T.; Borriello, G.; Consolvo, S.; Haehnel, D.; Harrison, B.; Hemingway,
B.; Hightower, J.; Klasnja, P.; Koscher, K.; LaMarca, A.; Landay, J. A.; LeGrand, L.;
Lester, J.; Rahimi, A.; Rea, A.; and Wyatt, D. 2008. The mobile sensing platform:
An embedded system for activity recognition. Appears in IEEE Pervasive Magazine -
Special Issue on Activity-Based Computing 7(2):32–41.

Dixon, S. 2006. Onset detection revisited. In Proc. of the Int. Conf. on Digital Audio
Effects (DAFx-06), 133–137.

Fogarty, J.; Hudson, S. E.; Atkeson, C. G.; Avrahami, D.; Forlizzi, J.; Kiesler, S.; Lee,
J. C.; and Yang, J. 2005. Predicting human interruptibility with sensors. ACM Trans.
Comput.-Hum. Interact. 12(1):119–146.

Friedman, J.; Hastie, T.; and Tibshirani, R. 1998. Additive logistic regression: a
statistical view of boosting. Annals of Statistics 28:2000.

Horvitz, E., and Apacible, J. 2003. Learning and reasoning about interruption. In
ICMI ’03: Proceedings of the 5th international conference on Multimodal interfaces,
20–27. New York, NY, USA: ACM.

Horvitz, E.; Koch, P.; and Apacible, J. 2004. Busybody: creating and fielding per-
sonalized models of the cost of interruption. In Proceedings of CSCW ’04, 507–510.
New York, NY, USA: ACM.

Huynh, T.; Blanke, U.; and Schiele, B. 2007. Scalable recognition of daily activities
with wearable sensors. In 3rd International Symposium on Location- and Context-
Awareness (LoCA).

Huynh, T.; Fritz, M.; and Schiele, B. 2008. Discovery of activity patterns using topic
models. In UbiComp 2008.

Krause, A.; Horvitz, E.; Kansal, A.; and Zhao, F. 2008. Toward community sensing.
In Proceedings of IPSN ’08. Washington, DC, USA: IEEE Computer Society.

Lane, N. D.; Lu, H.; Eisenman, S. B.; and Campbell, A. T. 2008. Cooperative tech-
niques supporting sensor-based people-centric inferencing. In Indulska, J.; Patterson,
D. J.; Rodden, T.; and Ott, M., eds., Pervasive, volume 5013 of Lecture Notes in
Computer Science, 75–92. Springer.

Lester, J.; Choudhury, T.; Kern, N.; Borriello, G.; and Hannaford, B. 2005. A hybrid
discriminative/generative approach for modeling human activities. In In Proc. of the
International Joint Conference on Artificial Intelligence (IJCAI, 766–772.

Lester, J.; Choudhury, T.; and Borriello, G. 2006. A practical approach to recognizing
physical activities. In Fishkin, K. P.; Schiele, B.; Nixon, P.; and Quigley, A. J., eds.,
Pervasive, volume 3968 of Lecture Notes in Computer Science, 1–16. Springer.

Li, D.; Sethi, I. K.; Dimitrova, N.; and McGee, T. 2001. Classification of general
audio data for content-based retrieval. Pattern Recogn. Lett. 22(5):533–544.

Mahdaviani, M., and Choudhury, T. 2007. Fast and scalable training of semi-
supervised crfs with application to activity recognition. In In Proc. of the Advances of
Neural Information Processing Systems 20 (NIPS 2007).

Mckinney, M., and Breebaart, J. 2003. Features for audio and music classification.
In Proceedings of the International Symposium on Music Information Retrieval, 151–
158.

Milligan, G. W., and Cooper, M. C. 1985. An examination of procedures for deter-
mining the number of clusters in a data set. Psychometrika 50:159–179.

Networks, S. 2008. Website. http://www.sensenetworks.com/.

Oza, N. C., and Russell, S. 2001. Online bagging and boosting. In Jaakkola, T.,
and Richardson, T., eds., Eighth International Workshop on Artificial Intelligence and
Statistics, 105–112. Key West, Florida. USA: Morgan Kaufmann.

Peltonen, V.; Tuomi, J.; Klapuri, A.; and Jyri. 2002. Computational auditory scene
recognition. In In IEEE Intl Conf. on Acoustics, Speech, and Signal Processing, 1941–
1944.

Scheirer, E., and Slaney, M. 1997. Construction and evaluation of a robust multifeature
speech/music discriminator. In ICASSP ’97: Proceedings of the 1997 IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing (ICASSP ’97)-Volume
2, 1331. Washington, DC, USA: IEEE Computer Society.

Stikic, M., and Schiele, B. 2009. Activity recognition from sparsely labeled data using
multi-instance learning. In Proceedings of LoCA ’09, 156–173. Berlin, Heidelberg:
Springer-Verlag.

Stikic, M.; Van Laerhoven, K.; and Schiele, B. 2008. Exploring semi-supervised and
active learning for activity recognition. In In Proc. of IEEE International Symposium
on Wearable Computing.

Thad, D. M.; Minnen, D.; Starner, T.; Essa, I.; and Isbell, C. 2006. Discovering
characteristic actions from on-body sensor data. In In Proc. of IEEE International
Symposium on Wearable Computing, 11–18.

Torralba, A., and Murphy, K. P. 2007. Sharing visual features for multiclass and
multiview object detection. IEEE Trans. Pattern Anal. Mach. Intell. 29(5):854–869.
Senior Member-Freeman, William T.

Viola, P., and Jones, M. 2001. Robust real-time object detection. In International
Journal of Computer Vision.

