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Abstract

By trading off temporal and spatial quality with available bandwidth, or manipulat-
ing the playout time of continuous media in response to variation in delay, audio
and video flows can be made to adapt to fluctuating network conditions with mini-
mal perceptual distortion. In this article the authors describe the implementation of
an adaptive transport system that incorporates a QoS-oriented APl and a range of
QoS mechanisms that best assist multimedia applications in adapting to fluctuations
in the delivered network QoS. The system, which is an instantiation of the transport
and network layers of a QoS architecture, is implemented in a multi-ATM switch
network environment with Linux-based PC end systems and continuous media file
servers. A performance evaluation of the system configured to support a video-on-
demand application scenario is presented and discussed. A novel aspect of the
system is the implementation of a “QoS adaptation” algorithm which allows appli-
cations to delegate to the transport system responsibility for augmenting or reduc-
ing the perceptual quality of video and audio flows when network resource

availability increases or decreases, respectively.

he interplay between application-level quality of ser-

vice (QoS) requirements, the delivery of scalable

audio and video flows, and end-to-end communication
support is an active area of research [1]. Existing hierarchical
coding techniques used by coders such as Motion Picture
Experts Group version 1 (MPEG-1), MPEG-2, and H.261
make possible a range of creative adaptation strategies where-
by fluctuating bandwidth availability can be accommodated by
selectively adding or removing coding layers.

Transport mechanisms that intrinsically supported adaptive
approaches were first recognized in the late '70s by Cohen [2]
as part of research in carrying voice over packet-switched net-
works. More recently, adaptive mechanisms have been intro-
duced as part of the Internet suite of application-level
multimedia tools (e.g., vat [3], ivs [4], and vic [5]) for
dealing with fluctuations in the delivered QoS. For example,
vat , which is used for voice conferencing, recreates the tim-
ing characteristics of voice flows by having the sender times-
tamp ongoing voice samples. The receiver then uses these
timestamps as a basis for reconstructing the initial flow,
removing any network-induced jitter prior to playout.

In this article we describe the design, implementation, and
evaluation of the QoS architecture (QoS-A) [6, 7] transport

system, called the multimedia enhanced transport system
(METS). METS supports multilayer coded flows in a multi-
cast, multimedia networking environment in which client
workstations have varying capabilities. In terms of services,
METS offers a flexible QoS-configurable application pro-
gramming interface (API) at the transport layer. In terms of
mechanisms, it populates the network layer as well as the
transport layer with a number of modules providing control
over QoS. While application-level multimedia tools such as
vic and vat incorporate QoS mechanisms for adaptivity in
the application itself, we argue that QoS adaptive mechanisms
should be part of the underlying transport system itself.

The novel aspects of METS relate to the protocol, QoS
maintenance, and flow management planes of the QoS-A as
illustrated in Fig. 1. Briefly, the protocol plane is responsible
for transferring media with a target level of QoS. The QoS
maintenance plane is then responsible for the fine-grained
monitoring and maintenance of the protocol plane. For exam-
ple, at the transport layer the QoS maintenance plane moni-
tors rate, loss, jitter, and delay, and takes remedial action
when they fluctuate. Finally, the flow management plane is
responsible for flow establishment (including end-to-end
admission control, and QoS-based routing and resource reser-
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vation), QoS mapping, which translates QoS representations
between layers, and coarse-grained QoS management (e.g.,
renegotiation of QoS).

This article describes flow scheduling, flow shaping, and
basic flow monitoring in the QoS-A protocol plane. Flow
scheduling and shaping are fundamental to the smooth pacing
of media onto the network and regulation of media between
end systems. Flow monitoring also plays an important role in
measuring the performance of the flow as media is delivered
to the receiver. In the QoS maintenance plane, the most
important functions are transport QoS management and jitter
correction, which works in unison with the flow monitor to
smooth out network-induced jitter. In the flow management
plane, METS provides QoS groups which encapsulate multi-
cast sessions in which participants with heterogeneous QoS
capabilities/requirements may participate. The flow manage-
ment plane arranges for per-participant QoS negotiation and
resource allocation to take place, and is also responsible for
informing the user of ongoing QoS performance.

The other key aspect of METS described in this article is
dynamic QoS adaptation. This is a flow management plane
mechanism designed to exploit the layered encoding property
of currently popular media formats. An example of a media
format with layered encoding is MPEG [8]. MPEG structures
video streams in terms of three layers: a coarse or base repre-
sentation of the signal plus successive enhancement layers. In
the case of MPEG-1, the base layer (BL) is represented by |
pictures, and the enhancement layers (E1 and E2) by P and B
pictures, respectively. In our dynamic QoS adaptation scheme,
QoS adapters take remedial action, based on a user-supplied
QoS policy, to scale flows (e.g., by adding or removing
enhancement layers or instantiating filters) when resource
availability and/or user QoS requirements change. Scaling is a
term, first proposed in [9], used to refer to the dynamic
manipulation of media flows by objects called filters as they
pass through a communications channel. Example MPEG filters
are coarse-grained picture droppers and fine-grained low-pass
filters (which trade off bandwidth for picture resolution) [10].

The remainder of this article is structured as follows. We
first present, in the following section, a detailed description of
the METS API and some of its key internal mechanisms.
Then, in the third section, we present a performance evalua-
tion of our METS implementation which throws light on the
feasibility of the proposed mechanisms and identifies bottle-
necks and pointers for further optimization. We present our
conclusions in the final section.

Qo0S-A Adaptive Transport System

Transport Application Programming Interface

The METS API is realized as a set of extensions to the Berke-
ley socket API.1 QoS is specified at the API in terms of a flow
specification and a QoS policy. The flow specification includes
parameters such as delay, throughput, and jitter. The QoS
policy allows the user to advise the infrastructure on how to
deal with the flow when resource availability changes. For
example, the QoS policy may require that the system reduce
QoS when resources are in short supply (perhaps by frame
dropping [11] or shaping filters [12]), or simply that the user

1The APl is based on a new protocol family called AF_METSBY preserv-
ing compatibility with the current Berkeley socket API, existing applica-
tions (e.g., those using AF_INET) can run unchanged or easily be
modified to take advantage of underlying QoS support; see the next section
for more details of the implementation environment.
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Figure 1. QoS-A model.

be informed of any degradations. A QoS policy may also
require that QoS be raised when resources become available;
for example, by adding an enhancement layer to a hierarchi-
cally structured video flow [13, 14].

The API assumes a client-server model in which servers
(i.e., applications offering layer-encoded media flows to
potential clients) create QoS groups with a given flow specifi-
cation and QoS policy. After a group has been created and
advertised, interested clients may join QoS groups by deter-
mining the flow specification and QoS policy, and selecting an
appropriate (set of) component part(s) (viz. BL, E1, E2) of
the flow. They are then free to join the group (in effect, estab-
lish a connection to an underlying multicast switched virtual
circuit, SVC) via a set of connection management primitives.
In addition to requesting information about the server’s QoS
profile, clients and servers may also retrieve detailed statistics
about membership of a particular group.

The API provides three types of socket:
= Media sockets, used for the transfer of continuous media;

simplex and QoS-configurable via a flow specification and

QoS policy
= Control sockets, used for the transfer of application-level

control information; full duplex and ensured (i.e., they pro-

vide a reliable delivery service)
= Management sockets, used to interface with the QoS mainte-
nance and flow management planes
The API primitives are structured into the following cate-
gories:
= Group management primitives, which allow the user to open
a multicast group, get group information, and gracefully
close a group
= Connection management primitives, which allow both clients
and servers to join and leave QoS groups

= Flow management primitives, which allow both clients and
servers to perform ongoing management and monitoring of
flows in which they are participating

The group management and connection management prim-
itives are conceptually straightforward; the flow management
primitives (Table 1) provide most of the QoS support. These
allow servers and clients to register flows, to change the QoS
of flows, and to receive QoS signals associated with a particu-
lar flow. Whenever clients and servers create media sockets
they register them using the registerSoc primitive. This
allows the underlying flow manager to interact with the applica-
tion over the associated management socket to provide moni-
toring and maintenance information about the ongoing flow.

At any point during a session, group members may change
the QoS negotiated during the connection establishment
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registerSoc

Management socket, media socket

scheduling and shaping, those in the QoS mainte-

changeQoS Req
changeQoS Ack

Management socket

changeQoS Nak

Status

options (flowSpec | QoSPolicy | maint | moni-
tor | signal | adapt | filter | event),

structure (flowSpec | QoSPolicy | maint |

monitor | signal | adapt | filter | event),

sizeof (flowSpec | QoSPolicy | maint | moni-
tor | signal | adapt | filter | event)

nance responsible for controlling jitter, and those
in the flow management plane responsible for
coarse-grained adaptation to changes in QoS by
means of adding/removing enhancement layers
and/or instantiating filters. These mechanisms are
the main focus of the performance evaluation in
the third section.

signalQoS type (signal | event)

option (QoSMetric | QoSEvent )

Transport QoS Mechanisms

Flow Scheduler — The flow scheduler operates in

Table 1. Flow management primitives.

phase using the changeQoS primitive. The options accepted by

this primitive are as follows:

= FlowSpec is used to submit a new flow specification to
renegotiate QoS.2

= QoSPolicy is used to submit a new QoS policy.

< Maint , Monitor , and Signal are used to select QoS
maintenance options: in Maint mode the transport QoS
manager actively maintains3 the flow; in Monitor mode it
maintains the flow and also forwards periodic QoS “signals”
(via signalQoS ) to the user via the management socket;
in Signal mode it does not maintain the flow but forwards
QoS signals anyway.

= Adapt is used to change the adaptation mode (viz. discrete
or continuous). Discrete mode refers to the addition/removal
of enhancement layers, whereas continuous mode involves
the instantiation of, for example, source bit rate filters [16],
which permit fully continuous adaptation of bit rates.

e Filter  is used to explicitly select new filters (e.g., a jitter
filter at the receiver or picture dropping and lowpass filters
[10] in the network)

« Event is used to allow applications to attach alarms to the
occurrence of particular event thresholds. Should the
threshold be exceeded, a message is asynchronously sent to
the interested party via a signalQoS primitive on the
management socket.

Note that while a change in QoS initiated by a client only
affects the local client’s QoS, a change by the server may
impact all active clients in the current session.

METS Mechanisms

We now describe key aspects of the implementation of the
METS transport system. This section focuses on the mecha-
nisms used to support QoS maintenance and flow manage-
ment. Mechanisms in the end system and in the network are
described in separate subsections.

The transport system comprises four implementation mod-
ules which map closely to the QoS-A control plane, user
plane, QoS maintenance plane, and flow management plane,
respectively. As illustrated in Fig. 2, within each of these per-
plane modules METS provides a range of QoS mechanisms.
Rather than describe the full range of mechanisms (all
detailed in [15]), we concentrate here on those mechanisms
(highlighted in Fig. 2) in the user plane responsible for flow

2 We do not exhaustively specify the various fields in a flow specification or
QoS policy in this article; these details are available in [15].

3 This means that it instantiates mechanisms such as those detailed in the
next subsection to attempt to deliver the required QoS in the face of QoS
fluctuations in the underlying network/end systems.

conjunction with the flow shaper (Figs. 2 and 3)
to provide appropriate rate control to ensure per-
flow bandwidth guarantees and help in jitter
management.

The role of the flow scheduler is to schedule application-
level frames (ALFs) [17] on a coarse-grained frames-per-sec-
ond basis. It is implemented in a user space library and used
in both transmission and reception. In transmission, the
scheduler uses the standard Linux clock timer to dispatch
application-level frames to the flow shaper stage according to
deadlines derived from the flow specification. A variable-bit-
rate service is provided by isochronously scheduling variable-
sized packets to the lower layers. At the receiver, the flow
scheduler relies on the jitter filter (described below) to pro-
vide the scheduling deadlines.#

A problem with implementing the flow scheduler in the
Linux environment is that it relies on the coarse-grained
Linux clock, which can result in slippage or drift. To alleviate
this problem a drift compensation function [18] is used which
takes into account any missed deadlines. If a deadline has
been missed, the flow scheduler immediately allows the appli-
cation to transmit or receive media. The duration of the next
scheduling opportunity is then calculated and takes any drift
in the isochronous rate of the transmitter into account. The
flow scheduler keeps track of any missed deadlines and
informs a module in the flow management plane should the
number of missed deadlines exceed a predefined missed dead-
line threshold. As described previously, flow management can
upcall applications (via the management socket) to inform
them of such events.

When layered-encoded flows are being used, QoS-A appli-
cations are generally designed to only transmit BL frames
when deadlines are missed consistently. When congestion has
cleared, flow management informs the application via a QoS
event signal to resume the original rate. Of course, the flow
scheduler does not understand the semantics of layered flows.

Flow Shaper — The flow shaper provides open loop flow con-
trol based on a token bucket scheme that paces cells to the
network interface. It is implemented as part of the kernel-
level asynchronous transfer mode (ATM) device driver and is
invoked every 1 ms using a dedicated hardware timer. The
token bucket scheme is a variant of the leaky bucket algo-
rithm. In this scheme, flows accumulate credits which repre-
sent the number of ATM cells that can be transmitted to the
network over the next interval.
The flow shaper maintains the following per-flow state:
= A token budget, b, which represents the capacity or depth of
the token bucket
= A token credit, r, which represents the remaining credits (0
< r < b) left in the token bucket at any point in an interval

4 In this role, the jitter filter adjusts the deadline of delivered frames but
not the rate.
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Figure 2. METS transport system.

= A token refresh rate, p, which represents the rate at which
the token bucket is refilled

= A token timeout, t, which represents the number of ticks
remaining until the token refresh rate expires and token
credits are refreshed

The token bucket scheme operates in a rather simple fash-
ion. When the token timeout expires, the token credit is set
equal to the token budget. One credit represents one cell
transmission opportunity. When the flow shaper executes, it
visits all the per-flow queues in a round-robin fashion and, if
the queue contains cells and has available credits, the shaper
transmits one cell from the queue and decrements the token
credit state variable. This achieves the desired effect of inter-
leaving cells from different SVCs onto the network.

There are two possible outcomes at the end of a token
refresh interval: either all the cells have been drained, or cells
remain in the queue. If cells remain in the queue, all the cred-
its have been used during the interval. If no cells remain
queued, all queued cells have been dispatched to the network
during the interval with (0 < r < b) credits potentially remain-
ing. At the end of a token refresh cycle, any credits remaining
at the end of the interval are lost.

litter Filter — The objective of the jitter filter is to restore the

timing properties of the originally transmitted data flow at the
source before the flow is delivered to the playout device at the
sink (i.e., to remove end-system- and network-induced jitter).

It is a straightforward process to recover the original timing
in communication systems that provide a hard bound on delay
(it is only required to buffer packets at the sink until time T +
D, where T is a timestamp placed in the packet at the source
and D is the bounded maximum end-to-end delay). Many net-
works, however, are unable to guarantee a hard maximum
delay bound; in such cases the receiver must form a continu-
ously updated estimate of the maximum delay as the basis on
which to calculate buffering time. In the algorithm we have
adopted (based on work in [19, 20] and using synchronized
clocks [21]) statistical analysis of per-packet delay to estimate
the maximum delay; thatis, D = d + r * s, where d is the
average delay (see below), s is the standard deviation (see
below), and r is a filter coefficient that is chosen as a function
of the form of the distribution curve and the number of fail-
ures one is ready to accept [22].

Each failure corresponds to a transmission delay larger
than the estimated maximum. Packets that arrive after D are
considered too late to help reconstruct the signal; in this case
flow management is informed of a late packet event, and the
packet is dropped. A popular value for r is 2, which corre-

BL E2

FPS

A scheduler

Synchronous packet delivery to METS

El E2 E2

Variable
packet size

User space
|

b

Goischeduled ( BlB PBB) l

I
l Kernel space

Per-SVC queuing in ATM device driver |

v v

Cell shaping to network interface

v v v

Figure 3. Flow scheduling and shaping.

IEEE Network = March/April 1997

21



Magpie

194.80{36.200

()

atc

huff
I:I c

sparrow

work to test for resources that have just
become available or unavailable. At the start
dwp of each cycle (called an era), the local QoS
I:I adapter instance of each receiver determines

its local resource availability and sends an

X

G

mr-little ¢
scaup
E campus-atm
— (ASX200s)
1
194.80.36.224 194.80.36.221

194.80.36.212 194.80|36.193 194.80.36.216 194.80(36.192 194.80.36.210

RESsignaling message containing an indica-
tion of the additional bandwidth required to
support the addition of enhancement layers.
This is inspired by a similar mechanism in the
Reservation Protocol (RSVP) [23]. In the
case where the adaptation protocol deter-
mines that congestion® has been detected
over the preceding interval, it reduces its

Figure 4. METS testbed.

sponds to an accepted loss of about 1 percent if one assumes
a Gaussian distribution of the delays [22]. From an intuitive
point of view the 2s term is used to set the playout time to be
“far enough” beyond the delay estimate so that only an
acceptable fraction of the arriving packets should be lost due
to late arrival [20]. For a full discussion of these issues see [19].

The jitter filter continuously estimates the average delay
and standard deviation. It is based on the “lowpass filtering
algorithm” used in Transmission Control Protocol (TCP) for
the estimation of the acknowledgment delay time [19], and
operates as follows. When a METS packet arrives, the trans-
mission delay, t, is determined as the difference between the
received time and the emission timestamp. The average delay
and standard deviation are then calculated as follows: d = dg4
+ a(t-d), s = sgqg + b(Jt—d] —s). The constants a and b (a,
b < 1) are smoothing coefficients. Typical vales are 1/8 and
1/16, respectively, which make the calculation of d and s par-
ticularly efficient.

Having determined a method for calculating a continuously
updated estimate of D, it is necessary to decide on an appro-
priate time granularity at which D, and thus the playout time,
should be updated. It is clearly not desirable to continuously
alter the playout time on a frame-by-frame basis. In our
scheme, the playout time is only used to influence playout at the
beginning of each MPEG “group of pictures” (GOP). The
objective (as in the vat audio tool [3]) is to keep any adjust-
ments as imperceptible to the human visual system as possible.
If flow management determines that too many losses have
occurred, it calculates a new playout time. When no losses are
detected, the same playout point is adhered to. If no losses
occur over a number of monitoring periods, the playout time
is recalculated. In this way the jitter filter can, wherever possi-
ble, “pull in” the playout estimate to decrease end-to-end delay.

Network QoS Mechanisms

Distributed QoS Adapter — The distributed QoS adapter
resides in the flow management plane and is responsible for
informing source and sink applications (in a manner controlled
by the QoS policy) when additional resources become avail-
able that can be used to support additional enhancement lay-
ers (i.e., E1 and E2) in layer-encoded flows. Note that in our
scheme the QoS of the BL is guaranteed, based on end-to-end
admission control and resource reservation (for full details see
[15]). The base layer is therefore independent of the QoS
adaptation process, and the latter only manages the enhance-
ment layers. The QoS adapter may also unilaterally choose to
discard an enhancement layer (again, dependent on the QoS
policy) if resources become scarce. Instances of the QoS
adapter are present in both end systems and network switches.

The QoS adapter operates by periodically probing the net-

request (from E2 to E1 or E1 to 0) before

sending the RESmessage. Once the QoS

adaptation protocol notes that congestion has
passed — that is, when it notes that no congestion indications
have been received over the last interval — it increases its
bandwidth demands accordingly. RESmessages are forwarded
toward the core switch [24] of the multicast SVC. These mes-
sages can be updated on their way to the source by all inter-
vening switches to reflect the resource availability at traversed
switches. When the RESmessage arrives at the source, it indi-
cates the advertised rate (i.e., bandwidth available) to the
source over the next era. The advertised rate can be zero, E1,
or E2 cells/s. Because we support the concept of end-to-end
adaptivity in the QoS-A, the adaptation protocol at the source
also takes into account end-system resource availability. This
allows the source-side adaptation protocol to reduce the
advertised rate (e.g., E2 to E1 or E1 to zero) in the RESmes-
sages if need be. Following this, the source informs the appli-
cation (via its management socket) should there have been a
change in the advertised rate over successive intervals. If there
is a change, the QoS adaptation protocol requests the flow
shaper to reconfigure the per-token bucket flow state (see the
next subsection) based on the new advertised rate. The source
then responds to the RESmessage by multicasting an ADAPT
message to all receivers indicating the available bandwidth
over the coming era. When it receives an ADAPTmessage
indicating that it may add or must remove an enhancement
layer, the QoS adapter at a receiver informs the application so
that it can arrange to start dealing with a modified flow.

The adaptation protocol is complicated by the potential
presence of QoS filters and media selectors (see the next sub-
section) at switches in the network. QoS filters and media
selectors are a concern in that the bandwidth requirement on
the input side (i.e., upstream) of a filter/media selector may
not be equal to the bandwidth requirement on the output side
(i.e., downstream). This issue is resolved by treating network
nodes supporting filters and media selection as virtual sources
and/or virtual sinks. To understand the concept of virtual
sources and sinks refer to Fig. 4. If a filter is located at the
rook ATM switch, a client consuming media at dwp from a
source at atc would consider rook a virtual source. Similar-
ly, atc  would consider rook as a virtual receiver.

In order to support QoS adaptation in a multicast environ-
ment, switches must be able to merge RESmessages from dif-
ferent downstream branches of the multicast distribution tree.
Merging is rather simple in our system: a merged RESmes-
sage carries a {min,max} pair (i.e., either {0,0}, {0,E1}, or

5 If a switch detects that queues are building beyond a predefined thresh-
old, the switch sets the congestion bit in the ATM header of cells. The flow
monitor detects this condition and notes it in the flow’s congestion state
(see Fig. 3). At the end of an era the QoS adaptation protocol reads the
congestion state and resets it to uncongested. See [7] for full details.
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{E1,E2}) which corresponds to the aggregation of all possible
enhancement requests. As a consequence of this process the QoS
adaptation protocol provides support for merging and forwarding
of the RESmessages in the network. It does this by building
periodic merged messages based on all RESmessages received
over the last RESinterval. Conversely, if no RESmessages
have been received at a merge point during the last RESinter-
val, the timer is simply reset and no further action is taken.

Another issue addressed by the adaptation algorithm is the
fair allocation of residual bandwidth resources among all
flows competing to add new enhancement layers. Residual
resources are those remaining once all BL reservations are
accounted for. Each switch and end system uses a simple “fair
share” bandwidth allocation algorithm which allocates the
residual bandwidth equally among competing flows. This plays
an important part in providing the advertised rate, that is, the
portion of the residual bandwidth which can be used by a par-
ticular flow as it traverses a switch. The fair share algorithm
only allocates resources to enhancement layers if it can meet
one of the {min,max} constraints in the RESmessage. In the
case where a flow’s fair share is insufficient to support an
enhancement layer, resources are returned to the pool and
the advertised rate appropriately adjusted. For full details of
this scheme see [14].

Media Selector — The media selector resides in network
switches and works with the QoS adapter to ensure that the
appropriate combinations of BL and enhancement layer(s) of
flows are forwarded to appropriate switch output ports of the
ATM switch.

As an example of the operation of the media selector, con-
sider a multicast virtual connection between a source located
at the atc end system and two clients at mr-little and
dwp (Fig. 4). The source node, atc , transmits full-resolution
video (i.e., BL + E1 + E2), dwp selects the E1 resolution,
and mr-little selects the E1 and E2 resolutions. If an E1
cell arrives at the chuff switch and the network can meet
both recipients’ QoS demands, the media selector will forward
the cell to both dwp and mr-little . On the other hand,
when an E2 cell arrives on the same connection, the media
selector will forward it to mr-little only.

In order to carry out such functions, the media selector
must be able to delimit individual ATM adaptation layer type
5 (AALDS5) frames in the cell stream so that BL, E1, and E2
frames can be distinguished (BL, E1, and E2 packets are all
carried on the same SVC).6 To delineate AALS5 frames, the
media selector exploits the ATM user-to-user bit: a user-to-
user bit of 1 represents the first cell of an AAL5 packet, and
the first 16 bits of the AAL5 payload then represent the frame
type (BL, E1, or E2). It is important to note that the media
selector does not have to buffer AALS5 packets to determine
the type before forwarding. All that is required is to continu-
ously monitor the user-to-user bits of cells traversing a switch
and to perform a 16-bit comparison on the first 16 bits of the
payload of the first cell of a new AALS5 frame. As a result,
cells are streamed through the switch with very little addition-
al delay over the unmodified switch code. A fundamental
assumption is that the switch architecture is capable of sup-
porting such a scheme in software; see the following section
for details of the ATM switches used in the implementation.

6 The media selector must also know which output ports of which multi-
cast SVCs require which AALS5 frames to be copied to them; this informa-
tion is obtained from the QoS adapter.

Experimental Evaluation

The Experimental Environment

The METS testbed consists of four Linux-based PCs and two
RAID-3 storage servers. Each PC and storage server is
equipped with ATM network interface controllers (NICs) for
connection to the ATM network. The storage servers, NICs,
and ATM switches are all experimental devices supplied by
Olivetti and Oracle Research Laboratories (see [25]).

The Olivetti NICs deliver ATM cells at 100 Mb/s and inter-
faces to a standard PC ISA bus. An AALS5 adaptation layer is
implemented in software in the Linux device driver [26]. The
ATM switches are 4 x 4s and share the same port design as
the NICs. The switches have a measured aggregate switching
capability of 200,000 cells/s. The switch architecture comprises
an ARM processor connected via direct memory access
(DMA) channels to the ports. Because switching is performed
in software on the ARM processor, it has proved relatively
easy to modify the switches to support the QoS adapter proto-
col, multicasting, and media selection. The multicasting imple-
mentation is based on the notion of a designated “core
switch” at which all clients involved in a single flow “ren-
dezvous” with the output provided by the server [24]. For
example, an appropriate core switch for a multicast flow
sourced at scaup and sinked at njy and dwp would be
rook . In the current implementation, the core switch is not
changed during the lifetime of a flow, even if the newly joined
recipients cause the topology to become less than optimal.

As illustrated in Fig. 4, the testbed includes the following
client nodes: the atc and dwp end systems, which are 90
MHz Pentiums, and the mr-little and njy end systems,
which are 66 MHz 486 machines. The RAID-3 storage servers
(the magpie and scaup end systems) utilize the ARM 610
RISC processor and incorporate five SCSI interface con-
trollers and disk drives.

The Experiments

In order to gain experience with the METS testbed (which is
based on a native ATM communication stack) and evaluate its
performance, we have designed a set of experimental test
suites:
= Bandwidth analysis, which evaluates the ability of the flow
scheduling, flow shaping, and ATM infrastructure to
respond to varying bandwidth demands
= Loss analysis, which evaluates the role of the flow scheduler
and shaper in reducing losses
= Delay analysis, which evaluates the effect of multiple flows
on delay distributions
= Jitter filtering analysis, which evaluates the jitter filter’s
delay estimation and playout algorithms at the receiver
= Adaptation analysis, which evaluates the QoS adapter
mechanisms at the end systems and network
All performance measurements are taken from video flows
sourced at the atc end system and played out at the dwp end
system. In this configuration we utilize the higher-end 90
MHz Pentium machines. The designated core ATM switch
used during the multicast sessions is chuff . All measure-
ments are captured and logged at the atc and dwp end sys-
tems. The distance between the server and clients is three
hops (i.e., flows emanating from atc are played out at dwp
traversing the chuff , sparrow , and rook ATM switches,
respectively). In all cases the server and clients maintain logs
of METS packet departure and arrival times, respectively. The
Network Time Protocol [21] provides global timing facilities
between all end systems involved in the experimentation and
logging process. The client log includes arrival times, absolute
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Figure 6. METS frame loss distribution with and without traffic
shaping.

delay, and jitter of received packets and loss of METS packets
at the transport level. While the testbed comprises a limited
number of switches and end systems, we found it more than
adequate to test the transport system software.

Bandwidth Analysis

The object of this experiment is to determine the maximum
possible transmission rate achievable from application space
to the network. This is a measure of the maximum throughput
of the METS communications stack in the end system. The
Canyon video clip is transmitted as rapidly as possible. Addi-
tionally, the traffic shaper and ATM device driver receive
interrupt are disabled. Media traverse the METS transport
system, AALS5, and ATM NIC without consideration of the
receiver’s ability to consume media.

The results are presented in the upper curve of Fig. 5,
which shows the throughput achieved when the METS packet
size is varied incrementally between 1 byte and 32 kbytes. The
maximum transmission rate attained is 32,000 cells/s (13.6
Mb/s) compared to the theoretical NIC line rate of over
235,000 cells/s.

This experiment (the lower curve in Fig. 5) measures the
“goodput” achieved between a server and a client using flow
scheduling and open loop flow control (through the flow
shaper). Goodput is the maximum transmission rate at which
cells can be injected into the network and consumed by the
receiver with no significant loss resulting. To achieve the opti-
mum goodput, cells are “paced” into the network at a rate
agreed on between the transmitter and the receiver. A maxi-
mum goodput of 17,500 cells/s (7.4 Mb/s) was measured. This
is 54 percent of the maximum transmission rate obtained in
the open loop test.

Loss Analysis
The objective of this experiment (Fig. 6) is to determine the

percentage of lost packets at the receiver as a function of the
number of video flows received. Video was played at 12
frames/s (fps). Tests were performed both with and without
traffic shaping at the source.

The upper curve in Fig. 6 depicts the loss occurring from
an unregulated source; the lower curve depicts the loss result-
ing from flows shaped by the METS flow shaper. The number
of received video flows varies from 1 to 8. The maximum per-
centage loss measured at the receiver varies between 33 and
60 percent for regulated and unregulated traffic, respectively.
In the case of unregulated traffic, performance degrades
rapidly when four flows are received simultaneously. This rep-
resents a loss of greater than 10 percent — which is starting to
be significant to the end user. Regulated traffic, on the other
hand, exhibits 10 percent loss when the number of flows
approaches 5.

Delay Analysis

Single-Flow Delay — The configuration of this experiment is a
lightly loaded network with one video flow running at 24 fps.
The average delay (Fig. 7) measured by the transport protocol
at the receiver is 4 ms. The minimum and maximum delays
recorded are 2 ms and 19 ms, respectively, with a standard
deviation of 2 ms.

Effect of Multiple Flows on Delay — This second experiment in
the delay suite measures the delay statistics experienced when
the number of transmitted flows is varied between one and
eight. As can be seen in the lower curve of Fig. 8, there is lit-
tle difference, just 6 ms, in the average delay measured as the
number of flows increase. Variation in the maximum delay
experienced, however, is significantly large at 42 ms, the maxi-
mum delay measured being 61 ms This indicates that there
are significant spikes in the measured delay, while the average
remains close to the unloaded case identified previously.

Jitter Filtering Analysis

This experiment investigates the ability of the jitter filtering
mechanism to adaptively adjust the playout delay experienced
by flows at the receiver to meet end-to-end delay and jitter
requirements. The source packetizes a single video stream and
attempts to transmit it at an isochronous rate of 24 fps. At the
same time, four other background flows are being handled
simultaneously by the same receiver.

In Fig. 9, the playout curve tracks the arrival time curve to
the first point of loss — the region between 42,500 and 43,000
ms. The first point of inflection represents a sudden increase
in the end-to-end delay and subsequent loss of a number of
METS packets. The second point of inflection (between
43,000 and 43,500 ms) also represents a large increase in mea-
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Figure 7. Per-packet end-to-end delay statistics for one flow.
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sured delay, subsequent loss of packets, and then the simulta-
neous arrival of a group of packets at the receiver. It can be
seen that significant packet loss occurs between 43,000 and
43,500 ms due to underestimation of the maximum end-to-end
delay.

QoS Adaptation Analysis

The final experiment demonstrates the ability of the QoS
adaptation algorithm to switch new enhancements in and out
at the receiver as the available bandwidth fluctuates. In the
experiment, the network provides “hard” guarantees to the
BL of a multilayer flow but gives no such guarantees to the
enhancement layers, E1 and E2, which must compete for
residual bandwidth with all other flows, as discussed earlier.

In the experiment (Fig. 10) the receiver selects three flows
for playout in the first instance. These are:
= A “Canyon.mpg” video flow (selecting the BL, E1, and E2

components) at 24 fps
= A “video flow” (selecting the BL only) at 5 fps
= A “Flight.mpg” video flow (selecting the BL only) at 5 fps

The scenario shows the consumption of the Canyon and
Flight video clips beginning at time zero. Both BLs are sup-
ported. The QoS adapter determines that none of the Canyon
flow’s higher resolutions can be accommodated given the
available resources. 20 s into the scenario trace the Flight
video terminates, thus freeing up resources. At this point the
QoS adapter judges that the highest resolution of the Canyon
video (i.e., BL + E1 + E2) may be displayed.

This situation remains until the user chooses to display the
Lougher video 50 s into the trace. Resources are thus allocat-
ed to meet the BL QoS requirements of the new video. The
QoS adapter protocol sends an RESmessage toward the core
requesting resources to meet the highest resolution (E2) of
the Canyon.mpg video. In this instance, however, there are
insufficient resources available to meet the QoS requirements
of the highest resolution, although resources are adequate to
support the lower resolution (E1).

Discussion of Results

The results of the first three experiments show the raw perfor-
mance limitations of the experimental implementation.
Regarding the bandwidth analysis, the bottleneck appears to
be a combination of the limitations imposed by the ISA sys-
tem bus and the experimental prototype NIC. For example,
the host central processing unit (CPU) must perform the seg-
mentation and reassembly of AALS5 SDUs, and copying of
cells to/from host memory. Other limitations of the NIC are
limited buffering and the fact that there is an interrupt at the
receiver for each ATM cell delivered by the NIC.7 Although
an obvious solution to these problems would be to employ an
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NIC that offered AAL processing and DMA data copying
onboard, the experimental NIC is very valuable to us for
experimentation because we have the flexibility of host CPU
control of functions such as flow scheduling and shaping.

As presented in Fig. 5, receivers in our testbed can accom-
modate a maximum transmission rate of up to 8000 cells/s,
after which they start to drop cells. In the case of the current
implementation the loss of one cell causes an entire AAL5
packet to be lost. Thus, the loss of a few isolated cells can
have a seemingly disproportionate effect on the delivered
bandwidth, especially if packets are large. By adding “dummy”
replacement cells at the receiver whenever cell loss is detect-
ed, it should be possible to improve the results shown in Fig.
5.

The loss analysis experiments show that traffic shaping is a
valuable technique for reducing cell loss. Receivers could con-
sume four regulated Canyon flows at 12 fps with an overall
frame loss of 10 percent. This rose to 33 percent loss for eight
flows consumed. Corresponding performance for the unregu-
lated case was measured to be 15 percent and 60 percent for
four and eight flows consumed, respectively.

The video sequences selected [viz., canyon.mpg,
lougher.mpg,flight.mpg] for the experiments represents a
selection of high-motion bursty traffic and talking-head-type
scenarios.

The delay analysis highlighted that, while there were minor
variations in the average end-to-end delay as more flows were
consumed, there was considerable variation in the maximum
end-to-end delay measured. The average delay difference
experienced between one flow and eight flows was found to
be 6 ms, showing that the average delay did not increase sig-
nificantly as the number of consumed flows increased. This

7 The ISA ATM device driver, however, reduces this overhead by checking
whether any cells have arrived at the end of each receive interrupt cycle.
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was not so for the maximum delay measured during the two
experiments. As the number of flows increased from 1 to 8,
the maximum delay measured increased from 19 to 61 ms.
Since the jitter filter works by estimating the maximum delay,
the latter results are significant in adjusting the playout time
and buffering requirements of continuous media.

Turning to the jitter filter analysis itself, the jitter filter
proved to be highly successful. One remaining problem is that
sudden, unexpectedly large jitter, such as that evident in Fig.
9, is difficult to deal with. A solution is to increase the value
of the “confidence factor” 2s; overestimation of this kind,
however, can lead to large buffer requirements at the receiver
and an overall increase in end-to-end delay. Note that the jit-
ter filter’s playout algorithm adjusts to fluctuations detected in
the measured maximum delay, but these adjustments are
rather conservative in nature. Conservatism, however, appears
to be a good policy in the long term since, as is seen, the esti-
mate is quickly back on track. Appropriate choice of filter
coefficients, which influence the responsiveness of the playout
algorithm to track changes in arrival patterns, is another key
issue. Choosing larger coefficients would cause the playout to
mirror fluctuations in the arrival time distribution; this, how-
ever, is not always the best policy. Optimally, the playout time
should evolve in response to trends in the arrival time pat-
terns and not in response to occasional spikes. During experi-
mentation, the coefficient values of a = 1/8 and b = 1/16 were
determined to be the most appropriate for our local-area
ATM environment. For a full discussion on filter coefficients
see [19, 20]

Regarding the QoS adaptation experiments, it was demon-
strated that the distributed QoS adaptor scheme successfully
maximizes the utilization of the available bandwidth by
dynamically adjusting the resolutions of flows to meet the spe-
cific needs of different clients. While discrete adaptation was
noticeable, the resulting perceptible changes were not unac-
ceptable to casual users, and the concept appears to be very
promising. One disadvantage of the currently implemented
scheme, however, is that discrete fluctuations may be undesir-
able in certain application contexts. A solution to this problem
is the notion of continuous adaptation using the dynamic-rate-
shaping filter [12]. The integration of dynamic rate shaping
into the current testbed is an issue for future work.

Conclusion

his article has described and evaluated an instantiation of

the QoS-A transport layer in a local ATM environment.
Although the implementation is successful, it remains to be
seen how well the design — particularly the QoS adapter pro-
tocol and multicasting mechanisms — will translate to a wide-
area context with large numbers of receivers with
heterogeneous QoS demands. The implementation was car-
ried out in a conventional OS environment (Linux), in con-
trast to our previous implementation work [27], which was
embedded in a more deterministic system based on the Cho-
rus microkernel. The fact that two separate instantiations of
the Qo0S-A now exist provides evidence that the QoS-A
framework is valid and useful.

It has been demonstrated by performance evaluation that
the METS QoS mechanisms (viz. flow scheduling, flow shap-
ing, and jitter filtering), which were specifically designed to
operate in an adaptive environment, can successfully mask
many of the finer-grained effects of fluctuating network and
end-system resource availability. In addition, we have shown
how the distributed QoS adapter protocol permits a far gross-
er level of adaptation while still maintaining a high degree of
transparency for applications. We believe that our results vin-

dicate the QoS-A approach of selective transparency of QoS
mechanisms. Applications can choose QoS management
strategies from a range of possibilities on a continuum, from
delegating all responsibility for dynamic QoS management to
the underlying system, to simply exploiting API upcalls to per-
form all dynamic QoS management for themselves (cf. vat ,
vic , etc.). In all cases, applications choose their preferred
strategy by appropriately initializing a QoS policy.

While throwing light on performance measures, our imple-
mentation has also made possible a qualitative assessment of the
METS API. The relative complexity of the API was, in fact,
found to be fairly easy to use in practice. The separation of con-
cerns achieved through the use of separate sockets for data,
control, and management proved successful, and application
writers porting the NVS system from a standard Berkeley
sockets environment found little difficulty. The potential complex-
ity of QoS specification was largely avoided through the use of
sensible default values for QoS parameters and policies.

Future Work

any adaptive algorithms reported in this article are appli-

cable to wireless and mobile networking environments
due to the existence of large-scale mobility requirements, lim-
ited radio resources, and fluctuating network conditions. As
part of a new research initiative in wireless media systems
research [28] we are developing a QoS-aware middleware
platform called mobiware [29] which comprises a number of
QoS adaptive algorithms. The mobiware adaptive algorithms
include QoS-controlled handoff [16] and an active transport
system [30] designed to operate over wireline/wireless ATM
networks. QoS-controlled handoff uses the notion of an adap-
tive network service to provide hard guarantees to base layers
and soft guarantees to enhancement layers as mobile devices
roam. The active transport system uses the notion of mobile
transport objects [31] which can be dispatched on demand to
strategic points in the network (e.g., base stations) to provide
value-added QoS support when and where needed.
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