
4+4: An Architecture for Evolving the Internet Address
Space Back Toward Transparency∗

Zoltán Turányi, András Valkó, Andrew T. Campbell
COMET Group, Columbia University
2960 Broadway New York, NY 10027

{zoltan,andras,campbell}@comet.columbia.edu

ABSTRACT
We propose 4+4, a simple address extension architecture for Inter-
net that provides an evolutionary approach to extending the exist-
ing IPv4 address space in comparison to more complex and disrup-
tive approaches best exemplified by IPv6 deployment. The 4+4 ar-
chitecture leverages the existence of Network Address Translators
(NATs) and private address realms, and importantly, enables the re-
turn to end-to-end address transparency as the incremental deploy-
ment of 4+4 progresses. During the transition to 4+4, only NATs
and end-hosts need to be updated and not the network routers. The
4+4 architecture retains the existing semantics of Internet names
and addresses, and only proposes simple changes to the network
layer that focus entirely on address extension. Encapsulation is
used as the main tool to maintain backward compatibility. We
present the design, implementation, and evaluation of the 4+4 ar-
chitecture and discuss our implementation experiences and results
from local and wide-area Internet experimentation. The 4+4 source
code is freely available from the Web (comet.columbia.edu/ipv44)
for experimentation.

1. INTRODUCTION
One of the major challenges facing the current Internet is the ex-
haustion of the IPv4 address space. In 1994, the IETF Address
Lifetime Expectations (ALE) Working Group projected the exhaus-
tion of the IPv4 address space to be around 2008 [6]. Currently,
there are two competing solutions to IPv4 address extension: Net-
work Address Translators (NAT) [8] and IPv6 [16]. NATs are
routers that can modify the IP address and port numbers of pass-
ing packets. This enables the reuse of a small number of public
addresses by many hosts behind a NAT, if only a few of those
hosts communicate with the outside world simultaneously. NATs
have helped reduce the rate of address depletion, enabling contin-
ued operation even in regions with shortages of IP addresses. As
discussed widely in the literature [23, 25], NATs also contributed
to the loss of IP transparency [21]. As a result NATs prevent IP
level end-to-end security, reduce robustness, break a number of ap-
plication level protocols, complicate the network, and inhibit novel
uses of the Internet (e.g., peer-to-peer networking). Despite such
disadvantages NATs are widely deployed in the network. And, al-

though NATs adversely impact the global Internet, they represent
an attractive technology for many private network operators for a
number of reasons. First, if the acquisition of public IP addresses is
hard, complicated, and expensive, then setting up a NAT is quick,
easy, and cheap. Next, for many end users a “NAT-ed” connection
seems good enough. Third, alternative solutions (e.g., IPv6 deploy-
ment) seem too complicated and disruptive to deploy at present.
Finally, NATs enable the isolation of a private domain’s addressing
and routing from that of the public Internet.

In 1994, the IETF selected IPv6 [16] as the next generation of the
Internet Protocol. At that time, however, NATs were not yet in
widespread use. The ngtrans Working Group of IETF [29] devel-
oped several transition mechanisms that would allow the temporary
co-existence of IPv4 and IPv6. However, despite the availability of
IPv6 and transition procedures, IPv6 has seen little practical de-
ployment. One reason is the complexity associated with the transi-
tion. If one cannot replace all the routers and hosts in a site at once,
then a period of co-existence follows. During such a period net-
work of co-existence administrators must manage both IP versions,
plus a number of transition mechanisms. While transition to IPv6
would benefit the whole Internet at the expense of the extra work at
individual networks, using NATs benefits the individual networks
directly, but negatively impacts the global Internet. This dilemma
between NATs and IPv6 is best discussed in [24].

If IPv6 is ever fully deployed it is likely that the transition to IPv6
may last for a long period of time in the global Internet. In fact, it is
possible that it may never be completed with a significant portion
of the Internet remaining IPv4 only. Such a situation could occur
if a certain population or sector (e.g., the cellular industry because
of the projected growth in cellular Internet devices, or regions with
shortages of IP addresses) found sufficient incentives to transition
to IPv6 while others remained content with IPv4. This would re-
sult in a possibly lengthy partitioning of the Internet with intensive
use of protocol translation and tunneling mechanisms, a result that
could be even worse than the present situation with NATs. In short,
it is possible that IPv4 and NATs will be a permanent fixture of the
communications infrastructure for sometime to come. If this is the
case, then a markedly different approach is necessary to solve the
address depletion and transparency problems. One important alter-
native approach is represented by NAT extended architectures [27],
which rely on the existence of multiple address realms and extend
the address space by requiring changes only to hosts and NAT de-
vices.

In this paper, we propose the 4+4 architecture [17], which presents
one example of a NAT-extended architecture. 4+4 provides a way



back to unique, global, network layer host addresses, while main-
taining some of the address isolation features of NATs. End-to-
end transparency is restored in the Internet to the extent of 4+4
deployment. If 4+4 deployment becomes complete then IP address
transparency is fully restored. There is no need to change routers.
The transition process provides incentives for networks with both
private and public addresses to upgrade and increase transparent
reachability. During transition, existing IP and NAT mechanisms
are used to communicate with, and between IPv4 hosts, thus, tran-
sition does not affect existing reachability. All transition mecha-
nisms are part of either the current practice or the “final architec-
ture”, thus, there is no need to set up temporary transition features.
The final state of the network is a homogeneous and transparent
Internet that uses 64-bit addresses and a packet format similar to
tunneling.

The paper is organized as follows. Section 2 provides a brief
overview and discussion of previous address extension proposals.
Section 3 and Section 4 describe the architecture and operation of
4+4, respectively. The 4+4 transition process with a brief compar-
ison to IPv6 is presented in Section 5. A minimal impact 4+4 im-
plementation is described in Section 6. In Section 7, the resilience,
performance, and application compatibility of 4+4 is evaluated
through experimentation using local and wide area 4+4 testbeds.
Finally, Section 8 presents some concluding remarks.

2. RELATED WORK
There has been a considerable amount of work on IPng docu-
mented in the literature. Much of this work, however, predates
the design and deployment of NATs. The Simple Internet Proto-
col Plus (SIPP) [10], which later became IPv6, includes a built in
address extension mechanism. In SIPP, host addresses were orig-
inally 64-bits long with an additional “cluster-addressing” mecha-
nism. Cluster addresses are 64-bit unicast addresses referring to a
set of nodes behind boundary routers. When complemented with a
64-bit host address they enable the extension of the address space
in quite a similar manner to 4+4. The cluster address selects the
boundary router and the host address selects the host. Other uses of
cluster addressing include mobility and provider selection. Later
the IPv6 address space was extended to 128 bits and cluster ad-
dressing was omitted and merged into source routing.

Mike O’Dell proposed the separation of identifiers from locators
in his 8+8 proposal, later known as GSE [15]. In 8+8 half of the
128-bit IPv6 address is used as a locator (termed “routing goop”)
and the other half as a host identifier. End systems are not aware
of their full routing goop, only the part that describes their loca-
tion inside their site. Site border routers place the missing part of
the routing goop into the source address of outbound packets. Al-
though there are some similarities between 4+4 and 8+8, a number
of differences exist. First, in 4+4 no part of the address is used as a
location independent host identifier. Second, border routers in 4+4
do not rewrite addresses; although realm gateways associated with
4+4 rearrange addresses when forwarding packets, no new address-
ing information is added to the packet. Next, 4+4 hosts are aware
of their full addresses. Finally, the aim of the two proposals is
different. While 8+8 introduces new address semantics to achieve
a number of goals, the purpose of 4+4 is address space extension
with minimal changes to address semantics. Analysis of 8+8 can
be found in [18].

An alternative approach proposed for IPng is Nimrod [13], which
also separates host identifiers from routing locators. Routing loca-

tors are hierarchically organized based on provider-customer rela-
tionships to allow natural prefix aggregation. The PIP proposal [7]
is similar in separating identifiers and locators. The locator used by
PIP is a list of values that can be thought of as locally significant
addresses at a given level of the topology. The list effectively spec-
ifies a source route. Hosts may learn parts of the locator from the
configuration, incoming packets, and the directory. PIP eventually
merged into SIPP and its locator semantics are reflected mostly in
SIPP’s cluster addressing. We note that the idea of using a list of
fields for addressing has already been considered during the design
of IP [1]. The primary reason was for address extension, but again
the idea was abandoned as the final 32-bit address seemed large
enough. 4+4 is similar to PIP, cluster addressing and [1] in using
a two-level address as a locator. However, 4+4 is different because
it is incremental to the existing Internet addressing and protocol.
See [9] for a detailed discussion of addressing issues.

In contrast to the IPng proposals, a number of other ideas are built
on the reuse of the existing 32-bit address space. The separation of
private and public address space was first proposed in [4] and then
in [11]. Address translation and NATs emerged as a way to con-
nect private networks to the global Internet. Realm Specific IP [28]
starts from private address realms and NATs. It provides an explicit
way for hosts in private address realms to obtain a public address
when there is a need to contact a peer in a public address realm.
Such hosts would then tunnel their traffic destined to a public peer
through a private realm to the NAT. The NAT, in turn, de-capsulates
the traffic and forwards it to the public Internet. The drawback of
realm specific IP is that while it does restore network layer trans-
parency it does not extend the address space, and as such, can only
be considered a temporary fix to the problem.

Robert Hinden proposed a “medium term” routing and addressing
scheme [12] that also uses tunneling as its main tool. Border routers
of Autonomous Systems (AS) encapsulate egress traffic and put the
source and destination AS numbers into the outer IP header. A
block of IP addresses is set aside to identify ASes in such head-
ers. These addresses are injected into the interior routing of tran-
sit ASes so only border routers need to recognize them as being
special. When the packet reaches its target AS, the ingress border
router de-capsulates the traffic and forwards it into the AS. If IP
addresses are not globally unique then Hinden suggests the use of
an AS address/host address pair as an extended address and adds
that “this could be the basis for the long term solution”. This idea
is very similar to 4+4, but 4+4 addresses have no AS significance.
Also the swapping of the two parts is new and central in 4+4 rout-
ing. The use of tunneling as a tool to solve the NAT problem is also
mentioned briefly in [21, sec. 5.2.1.3] as something that “has never
been fully developed, although is fully compatible with end-to-end
addressing”. 4+4 aims to fill that gap.

The IETF also investigated the use of IP options for address exten-
sion, as suggested by Brian Carpenter [5]. This idea was abandoned
and never implemented mostly because it is based on IP options and
hence requires changes to ARP, DNS, SNMP, and routers within a
site. 4+4 is similar to this idea, as well, but uses tunneling instead
of IP options to carry the extended addressing information.

The ideas discussed above naturally point toward NAT-extended
architectures. The recent IP Next Layer (IPNL) [27] proposal is
an early example of a NAT-extended architecture. IPNL uses ex-
isting IP address realms as “links” to an overlay (or next layer)
protocol. The new protocol is tunneled in IP packets and operates



below the transport layer. Enhanced NAT boxes, called nl-routers,
route packets realm by realm toward the destination. IPNL intro-
duces realm numbers to identify different realms behind the same
frontdoor - an nl-router that connects private realms to the pub-
lic Internet. The public IPv4 address of a frontdoor concatenated
with a realm number identifies a private realm. The (frontdoor ad-
dress, realm number, host address) triplet, called IPNL address,
fully identifies a host in a private realm. However, IPNL addresses
are not used as long-term host identifiers, only as locators that can
change frequently. One reason for change might be a switch to a
new frontdoor (e.g., when the old one fails). IPNL uses fully qual-
ified domain names (FQDNs) as host identifiers. Nl-routers are
able to route packets based on both FQDNs and IPNL addresses.
During the initial packet exchanges peers use FQDNs in packet
headers to address each other. At the end of such an exchange
peers learn both their own and each other’s IPNL addresses, and
uses those addresses for subsequent communications. If a connec-
tion toward two peers exits through different frontdoors then a host
may learn two or more different addresses for itself. Hosts are not
aware of all their possible addresses. This is not necessary, as the
FQDN can be used in packets to identify the host. If the IPNL ad-
dress changes during a session, then peers can automatically detect
this and switch to using the new address. To facilitate such rout-
ing a new routing protocol is installed among nl-routers behind the
same frontdoor that distributes DNS and realm number informa-
tion among nl-routers. Nl-routers are also aware of the FQDNs and
host addresses of all hosts in the realms they are attached to. This
enables them to resolve FQDNs to IPv4 addresses for incoming
FQDN-addressed packets. Nl-routers are also capable of perform-
ing realm number translation to allow two realms behind the same
frontdoor to use the same realm number.

While we believe that IPNL is much easier to deploy than IPv6,
IPNL is a fairly complex architecture that represents a significant
departure from the current routing and addressing paradigm. Hosts
are no longer aware of their full network layer addresses, only their
names. Host identifiers are DNS names once and for all. More-
over, the routing infrastructure becomes irrevocably intermingled
with the DNS. Domain names are intentionally aggregate adminis-
tratively and not topologically. A distinction between the current
public address realm and private address realms is maintained in
the architecture. It is not clear if, or how, this distinction can be
removed later and the Internet made homogeneous again. Besides
the more important architectural impact, IPNL routing raises some
performance issues too. Nl-routers need to manage DNS related
routing information and a per-host database. Per-packet process-
ing is complicated for some packets. The packet header is also
quite large, 44 bytes for intra-realm packets and 60 bytes for global
packets, plus the size of FQDNs if used.

TRIAD [26] is also a new Internet architecture that builds on the
existence of IPv4 address realms and uses names as identifiers. Its
primary focus is content distribution. TRIAD introduces a content
layer and Content Routers. Content routers hold DNS information
and forward combined name lookups/connection setup requests to-
ward destinations. The result of this lookup represents transport
connection information and a list of relay identifiers that specify a
path through several consecutive address realms. A shim header is
added to IP packets that contains the list of relays, enabling relays
at the border of address realms to forward packets. IP addresses be-
come locally significant with names representing globally unique
identifiers. In comparison, 4+4 proposes simple changes to the net-
work layer focusing entirely on address extension while retaining

existing semantics as far as possible.

3. 4+4 ARCHITECTURE
The primary goal of the 4+4 address extension is to provide nodes
currently in private address realms with an end-to-end address. The
4+4 extended address is formed by concatenating two 32-bit IPv4
addresses: a public and a private one. The public address selects the
address realm, while the private address selects the node inside the
realm. In fact, the public part is the address of the NAT connecting
the realm to the public Internet. Nodes in the public Internet use
their existing address as the public part and 0.0.0.0 as the private
part.

4+4 packets are minimally encapsulated IP packets [14]. They con-
tain two 32-bit fields for each of the source and destination ad-
dresses. The two parts of the extended address are placed into the
two 32-bit address fields. The fields are managed such that the
outer header always contains addresses that are understood by the
IPv4 routers in the realm the packet is transiting; that is, in a pri-
vate realm the private half of the extended address is visible in the
outer header, while in the public Internet the public half is visible.
This ensures that routers can forward packets toward the destina-
tion without understanding 4+4.

In what follows, we describe addressing and the header format,
while routing is discussed in Section 4.

3.1 Network Model
We define an address realm as a collection of networks using ad-
dresses from the same address block, while using one address only
once; that is, an IP address unambiguously identifies an interface
within an address realm. We further differentiate the one and only
public address realm that uses the public IPv4 address space and
several private address realms, each of which may re-use the private
address space designated by [11]. It is also possible for a private
address realm to use a block of IP addresses not belonging to [11],
if none of those addresses are used anywhere in the public address
realm. This allows a private realm to maintain any existing address-
ing when transiting to 4+4. For the sake of clarity in this paper, we
use the term “private” for realms and addresses outside the public
realm. Both the public and private realms contain the usual TCP/IP
networks with routers and hosts. Today, private realms connect to
the public realm via NATs.

Figure 1 shows a typical network scenario assumed by 4+4. The
“grey colored” networks belong to the public address realm and
each “white colored” network represents a separate private realm.
For example, networks 1 and 3 represent realm A and realm B,
respectively, and both can re-use the entire private address space.

Upgraded NATs, called realm gateways, represent an integral part
of the 4+4 architecture. In addition to the address translation func-
tion, realm gateways perform a few simple operations on 4+4 pack-
ets. Note that the use of these address translation functions will di-
minish as transition to 4+4 progresses and be fully removed once
full deployment is complete. Realm gateways also act as legacy
routers that forward IPv4 packets with public destination addresses.
Realms may be interconnected using arbitrary topology and an ar-
bitrary number of realm gateways. The only requirement is that
each interface of a realm gateway must strictly belong to either a
private or the public realm to separate the address spaces. Note that
the public address realm need not be contiguous.



In Figure 1 private realm A and B are connected to the public net-
work 2 via realm gateways with public addresses A and B, respec-
tively. These addresses are separate from the address pool assigned
for the address translation function. The figure also shows four
hosts, two in the public realm (nodes C and D) and two in private
address realms (nodes X and Y).

network 1

network 2

realm

public address realm
private address realm
realm gateway
host

realm
network 3A

B
B

X

C

Y

network 5

n. 4

n.7n. 8 n.6
D

A

Figure 1: Example networks with arbitrarily interconnected
realms.

IPv4 addresses in the public realm are called level 1 addresses (ad-
dresses A, B, C and D in Figure 1), while addresses in private
realms are called level 2 addresses (X and Y). In the remainder
of this paper bold capitals are used to denote 32-bit IPv4 addresses
and the nodes having those addresses. The term router always de-
notes a legacy IPv4 router that is unaware of 4+4.

The routers inside private address realms are configured with the
routing information for both private and public addresses; that is,
they know how to route toward both level 1 and level 2 destina-
tions. For example, assume that node D in network 6 posts a packet
to node C in network 2, as illustrated in Figure 1. The packet uses
public source and destination addresses and is delivered unaltered
to the destination through the routers and realm gateways of net-
work 3. The routers in the public address realm, on the other hand,
are configured to route toward public addresses only. This means
that realm gateways must filter out routing information of private
addresses when communicating with routers in the public address
realms. Note that realm boundaries do not have to coincide with
autonomous system boundaries.

3.2 Addressing
The 4+4 address of a node inside a private realm is a concatena-
tion of two IPv4 addresses: the public address of a realm gateway
and one of the node’s own private addresses. We denote this as
A.X, where A represents the realm gateway and X represents the
node’s own address. The first and second parts of the address are
called level 1 and level 2 parts, respectively. 4+4 nodes may have
multiple addresses if the host has multiple interfaces or the realm is
‘multihomed’ (i.e., there are multiple realm gateways with different
addresses). Any (level 1 part, level 2 part) combination constitutes
a valid address of a node. Multiple addresses of the same node are
treated the same way as in IPv4, that is, nodes accept packets on all
of their addresses and may use any of their addresses as the source
address for outgoing packets. Transport layer semantics remain un-
changed where sockets are bound to a tuple of two 4+4 addresses

and two port numbers.

The DNS is used to store and retrieve 4+4 addresses in conceptu-
ally the same manner as with IPv4. There are two possible alter-
native ways to store 4+4 addresses in the DNS. First, a new record
type could be defined. Second, two type A records could be used
to store the level 1 and level 2 parts of the 4+4 address. The two
records would be accessible through a prepended domain name,
similar to SRV records [20]. For example, the level 1 and 2 parts
of the 4+4 address of the machine foo.bar.edu could be stored
under _l1.foo.bar.edu and _l2.foo.bar.edu. The ben-
efit of the latter approach is that it requires no modification to DNS
servers. Our implementation, which is discussed later in this paper,
uses this approach.

A host may have multiple level 1 and level 2 address parts. This
is similar to a host having multiple IPv4 addresses today. The
level 2 address of a host inside a private realm is also advertised
as a legacy IPv4 address to allow IPv4 communications inside a
realm. Similarly, the level 1 address of a host in the public Internet
is also available as an IPv4 address. Reverse DNS can be provided
by prepending the reverse of the level 2 address part to the usual
d.c.b.a.in-addr.arpa DNS name.

One important feature of 4+4 is the isolation of routing and address-
ing between various realms. The administrator of one private realm
may choose arbitrary routing and addressing plans inside the realm
without affecting other realms. Realms can also be extended with-
out involving any globally coordinated address allocation process.
The isolation also permits the migration of a private realm (e.g.,
because of a change of provider) without changing the addresses
and communication inside the realm. Naturally, if a private realm
changes the public address of its realm gateway, the 4+4 address
of all the hosts inside will change. This, however, does not affect
IPv4 routing and the traffic inside the domain. Provider change af-
fects only the level 1 part of the 4+4 address and the old level 1 part
can co-exist with the new one for extended periods of time. Dur-
ing such a coexistence new sessions with external hosts can start
with the new level 1 part allowing smooth migration. We note that
such isolation also exists when using NATs. Besides easy address
expansion, this is another important feature of NAT that makes it a
popularity technology.

Finally, we note that more than two levels of address parts is possi-
ble, if the amount of address extension provided by the two levels
is not sufficient. Details can be found in [31] that address this issue.

3.3 Header Syntax
The 4+4 header is shown in Table 1. On the one hand it can be
viewed as an IPv4 encapsulated IPv4 packet with a syntax similar
to minimal IP-in-IP encapsulation [14]. This is how legacy IPv4
routers view the packet; they process only the IPv4 header part
leading to backward compatibility. On the other hand, the full 4+4
header can be viewed as a new network protocol header with 64-bit
source and destination addresses. This is how 4+4 capable end-
hosts view it.

The first three rows of fields in the 4+4 header are interpreted in
the same manner as the IPv4 header, with the exception that the
Protocol 1 field is set to a value that specifies 4+4 encapsu-
lation. Currently this value is 233. The Source Address 1
and 2 fields collectively contain the full 4+4 address of the source
node, while the Destination Address 1 and 2 fields con-



Ver. Hlen DS byte Total Length
Identification Flag Fragment offset

TTL Protocol 1 Header Checksum 1
Source Address 1

Destination Address 1
Source Address 2

Destination Address 2
Protocol 2 SPos DPos Header Checksum 2

Table 1: The 4+4 header

tain the full destination address.

The SPos and DPos fields indicate how the source and destination
4+4 addresses are partitioned into the two 32-bit fields. A value of
0 means that the address is unswapped, that is, the level 1 address
part is in the outer header and the level 2 is in the inner header. A
value of 1 means that the two address parts are exchanged and the
address is swapped.

The Protocol 2 field indicates the transport protocol, while the
Header Checksum 2 covers the end-to-end information in the
4+4 header. This includes the addresses, the Protocol 2 field,
and the payload length, which is the total length minus the IP
header length.

Similar to IPv6, only end hosts may fragment IP packets. This is
accomplished by setting the Don’t Fragment bit in the IPv4
header and using path MTU discovery [3]. The fragmentation re-
lated fields of the IPv4 header are used exactly as in IPv4. All frag-
ments contain the inner header as well. Reassembly is performed
at the final destination only.

A system using extension headers similar to IPv6 can be defined
for 4+4. This would allow the reuse of several mechanisms defined
for IPv6. Fragmentation can also be made part of the extension
header mechanism leaving the second row of the header mostly un-
used. Due to the change in addressing, the TCP and UDP pseudo-
headers also change to include the full 64-bit address in calculating
checksums when sending 4+4 packets.

We note that an alternative way of storing the 4+4 address infor-
mation in packets would be the use of a new IP option. Legacy
routers would only need to transparently forward this option un-
changed. However, it may seriously impact performance caused by
slow-path processing in many routers for all 4+4 packets. In ad-
dition, packets with unknown IP options are often dropped in the
Internet. As a results of these issues, we did not pursue this alter-
native further.

4. ROUTING
One of the benefits of 4+4 is that IPv4 only nodes can essentially
communicate as today. They use IPv4 packets, the existing IPv4
routers and if they are in different address realms then they use
NATs. Therefore, no new transition mechanisms are needed to pro-
vide service to legacy IPv4 hosts.

Four different scenarios are possible with regards to the relative lo-
cation of two IPv4 only nodes. If the two nodes are located in the
same private realm, the private IPv4 addresses and the IPv4 proto-
col are used. If both nodes reside in the public address realm, then
they can use their public addresses and the IPv4 protocol to com-

municate, even when the nodes are separated by one or more pri-
vate realms. This is possible because the routers inside the private
realms have public address routing information and are capable of
forwarding packets with public addresses. If one of the IPv4 nodes
is in a private realm and the other node is in the public Internet, then
address translation is performed as it is done today using a NAT. In
this case, the known problems of NATs apply. These limitations
can be resolved by upgrading the nodes to 4+4. Finally, if both
nodes are in different private address realms then it is impossible
for them to communicate unless they upgrade to 4+4. In what fol-
lows, we describe, how two 4+4 nodes in different private address
realms can communicate with each other.

4.1 Routing between two Private Realms
Assume that a node X wishes to send a packet to node Y, as illus-
trated in Figure 2 and shown with solid arrows. Assume further,
that both nodes are 4+4 aware, that is, their operating systems can
send and receive 4+4 packets. First, node X checks if any of the
level 1 address parts returned by DNS for node Y match any of its
own level 1 address parts. If that is the case then the two nodes
are in the same address realm and the node uses IPv4 packets to
communicate. If this is not the case then X selects one level 1 and
level 2 part from the set of address parts of node Y to form the
destination address (e.g., B.Y). A source address is also selected
(e.g., A.X).

Next, the source node creates a 4+4 header and fills in the source
and destination address fields as follows. The level 1 part of the
source address is placed in Source Address 2 and the level 2
part in Source Address 1. The level 1 and level 2 parts of
the destination address are placed in Destination Address
1 and 2, respectively. In other words the source address in the
packet is swapped, while the destination address is unswapped.
This packet header is denoted symbolically as,

X

A
→

B

Y

where the upper row represents the addresses in the outer IPv4
header (source address is X, destination address is B) and the lower
row represents the addresses in the inner header (source address is
A, destination address is Y). The full 4+4 source address A.X is in
the left column and is swapped. The full 4+4 destination address
B.Y is in the right column and is unswapped. The IPv4 routers in
realm A only see X → B.

A
X

Y
B

X
A

B
Y

B
Y

A
X

X
A

C
0

C
0

A
X

Internet
public

realmB

Y

B

C

A

X

realmA

Figure 2: Routing between two 4+4 nodes in different realms.



As a result, the routers will forward the packet toward node B, as
shown in Figure 2. When it reaches the border of realm A, the realm
gateway exchanges the content of the fields Source Address
1 and 2 leaving the source address unswapped. This is depicted
visually at the bottom of Figure 2. Following this the packet is for-
warded into the level 1 (public) Internet. At this point the addresses
in the packet are as shown in Figure 2. The IPv4 routers see only
A → B and continue forwarding the packet toward node B. We
note that in the case of a ‘multihomed’ realm, it may be a realm
gateway other than A that executes the change. When node B re-
ceives the packet and sees that it is a 4+4 packet, then it swaps
Destination Address 1 and 2. The outer header contains
A → Y allowing the routers inside realm B to forward the packet
to node Y. When node Y receives the packet, it recognizes itself in
the full destination address. If it is required to send a response, it
gets the complete 4+4 address of the sender from the packet. The
response packet is routed across realm boundaries in the same way
as the forwarded packet. Realm gateways B and A will swap source
and destination addresses, respectively. The addressing fields of the
packet will be,

Y

B
→

A

X
,

B

Y
→

A

X
,

B

Y
→

X

A

as the packet travels through realm B, the level 1 realm and realm A,
respectively.

This swapping procedure ensures that private IPv4 addresses are
never used in the outer header outside the private realm they belong
to. Therefore, IPv4 routers in both private and public realms only
see the addresses on which they have routing information. When
realm gateways swap source or destination addresses, they also set
the SPos or DPos fields accordingly. Realm gateways also decre-
ment the TTL field and recalculate the Header Checksum 1.
In this manner TTL scoping remains unchanged with each router
and realm gateway counting as one hop.

4.2 Routing between Public and Private
Realms

In what follows, we describe routing between a node in the public
Internet and a node in a private address realm (e.g., node C and
node X in Figure 2).

If both nodes are 4+4 capable then they can use the full 4+4 header
to communicate. The 4+4 address of node C is C.0. Here 0 refers to
the all-zero IP address 0.0.0.0. The realm gateway performs exactly
the same address swapping operation as described in the previous
section. The addresses in a packet sent from X to C are shown in
Figure 2 next to the dotted arrows. On the return path, the fields
are the same with the source and destination exchanged. If any of
the nodes is not 4+4 capable, for example when no 4+4 address is
available from the DNS, then IPv4 and traditional address transla-
tion is used. Note that here we use an existing mechanism (i.e.,
address translation) as a transition tool to enable communication
between upgraded and non-upgraded hosts in different realms.

4.3 ICMP Message Routing
ICMP messages provide important error feedback, control, and de-
bugging functions that are an integral part of the Internet Protocol
suite. ICMP messages are used in 4+4 conceptually the same way
as in IPv4. The current definition of the ICMP protocol is used un-
changed, although it is possible to restructure the ICMP protocol
as done in the case of IPv6. ICMP messages generated by 4+4

end-hosts, such as Echo or Port Unreachable are addressed and
routed just like any other 4+4 packet. End-hosts include the full
4+4 header plus 8 bytes of the original packet. This allows for the
inclusion of protocol and port numbers.

Some ICMP messages generated by routers in response to packets
not addressed to them require special attention from realm gate-
ways and 4+4 hosts. These ICMP messages include Redirect,
Host and Network Unreachable, Fragmentation Required, Time
Exceeded, Parameter Problem and Source Quench messages. Other
messages, such as Router Discovery messages or Echo and Echo
Reply are either always sent inside subnets and thus are not affected
by 4+4 or are end-to-end messages. Since routers along a path may
only be IPv4 routers, the ICMP messages may not be sent to the
original source, but to the outer IPv4 source address of the packet.
The following paragraphs discuss this issue in more detail.

Assume that node A.X sent a packet (packet p) to node B.Y, but
the packet cannot be delivered and router R generates an ICMP
message in response. If R is in realm A then the outer source ad-
dress field of p contains the level 2 address of the source node X.
In this case, the ICMP message will reach the source node without
any special treatment. The source node is able to recognize that the
ICMP message is sent in response to an 4+4 packet by looking at
the ICMP payload.

If the router R is in the public address realm, then the ICMP mes-
sage will be sent to the realm gateway A. This realm gateway de-
termines that the packet included in the ICMP message is a 4+4
packet and converts the IP header of the ICMP message to 4+4.
The destination address will be A.X (swapped) copied from packet
p included in the ICMP message. The source address will be R.0.
This allows the original sender to identify the router that generated
the ICMP message.

If the router is in realm B,or in any private address realm different
from A, then the ICMP message will be routed toward the realm
gateway A. However, because the ICMP packet is an IPv4 packet
containing a private source address, it needs address translation and
will be captured by the realm gateway at the realm border, (i.e., B
in our case). Recognizing the ICMP message as a response to a 4+4
packet, the realm gateway converts the ICMP message header into
4+4, with the destination address A.X unswapped and source ad-
dress B.R unswapped and forwards it into the public address realm.
This packet is then routed to node A.X as a regular 4+4 packet.

4.4 Routing Configuration
Realm operators may use their own addressing plan inside a pri-
vate realm. Nodes need not renumber their level 2 address parts
when the level 1 address parts of the realm changes, e.g., the realm
switches providers or a realm gateway is added or removed. It is
also possible to partition a private realm by separating the two net-
works and changing the level 1 parts of the two partition differently.

Multihoming private realms may be configured in several ways.
One extreme is to assign a different IPv4 address to each realm
gateway. Any of these addresses can be used as the level 1 part of
the 4+4 address for hosts inside the realm. In this case, the hosts
need to be configured with all or some of the possible level 1 ad-
dress parts. By selecting the level 1 address part, nodes can effec-
tively select the ingress realm gateway for the traffic addressed to
them. An additional benefit of such a realm gateway configuration
is that the address of realm gateways can be easily aggregated in



the core of the Internet. This, however, comes at the expense of
resilience. If a realm gateway or its provider fails, no other realm
gateway can take over.

To overcome this problem, realm gateways can advertise and use
the address of another gateway in addition to their own. If one
realm gateway fails, traffic addressed to it will be rerouted to an-
other realm gateway advertising its address. The extreme case is
when all realm gateways are configured with the same address, re-
sulting in a single possible level 1 address part for the hosts inside.
Since realm gateways hold no per-flow state, if one of the realm
gateways fails, another one can take over in forwarding the flows
for the failed realm gateway. This feature of realm gateways opens
the way for a number of further multihoming setups that are outside
the scope of our current work.

We note that the situation discussed above is very similar to the is-
sue of multihoming in IPv4 or IPv6. With 4+4, however, the inter-
nal addressing of the realm can be hidden from the public Internet.
This reduces both the amount of routing information (i.e., the num-
ber of prefixes) and the number of changes needed in the core of
the Internet. In addition, there is no need to request a new, possibly
separate, address block whenever a realm grows beyond its current
allocation.

5. TRANSITION TO 4+4
Technically the transition to 4+4 represents a straightforward, step-
wise upgrade of NATs and hosts. To upgrade a private access realm
at least one of its NATs must be upgraded first to act as a realm gate-
way. The new functions required include (1) the ability to swap
addresses in 4+4 headers; (2) the conversion of ICMPv4 message
headers; and (3) the participation in routing and filtering of private
addresses. The last function is already part of many NATs today.

Once the private realm has at least one realm gateway, hosts inside
the realm can start upgrading. To upgrade a host, its operating sys-
tem must be augmented with the ability to send and receive 4+4
packets. Auxiliary protocols, such as DHCP, ARP, RARP, router
discovery, etc., need not be modified. Similar to IPv6, some ap-
plications also need to be upgraded at least to handle larger ad-
dresses. Bump-in-the stack address translation [19] developed for
IPv6 might be used allowing applications that do not carry IP ad-
dresses in payloads to run unchanged.

The DNS itself need not be modified if 4+4 addresses are stored
as two type A records, as discussed in Section 3.2. However, if a
particular upgraded host needs a domain name its address needs to
be included in the DNS zone files and made available to the outside
world.

5.1 Transition Incentives
Transition is likely to be started by networks that have an insuffi-
cient amount of IPv4 addresses. These may be existing networks
using NATs or new networks that find the acquisition of many IP
addresses too costly. This is part of the incentives, as transition
is directly motivated by the problem the 4+4 architecture aims to
solve, i.e., address depletion.

Upgraded hosts immediately gain access to all other 4+4 nodes
globally regardless of location. This immediately enables several
new applications, such as file sharing or peer gaming that are com-
plicated today because many hosts and therefore users are behind
NATs. Upgraded hosts use IPv4 inside a realm and IPv4 plus NATs

outside a realm to communicate with non-upgraded hosts, just as
they did before the upgrade. This means that hosts can be upgraded
one-at-a-time without impacting other hosts. Also, transition builds
on the popularity of NATs by using a similar network setup.

As the number of upgraded hosts increases in private realms, hosts
in the public address realm also have a growing incentive to up-
grade to 4+4. They can do so at any time individually. As a re-
sult, upgraded nodes gain access to hosts in other already estab-
lished private 4+4 domains, (e.g., to run peer-to-peer applications).
At this point IP transparency between such hosts is accomplished.
End-to-end transparency is restored in the Internet to the extent of
4+4 deployment. When, if ever, deployment becomes complete
then IP address transparency will also be fully restored. Note that
this would be accomplished without replacing or even reconfigur-
ing routers. Backbone operators, for example, may remain com-
pletely unaffected. Of course, if a router has not been upgraded,
its control plane cannot be reached from outside the address realm,
(e.g., for management purposes). But because routers are usually
managed from within the same domain this problem may not be
serious. In addition, a control software upgrade of the router would
solve this problem.

As the number of hosts reachable via 4+4 increases, organizations
that had no NATs before may see the benefits of setting up their
own address realms. By doing so, they have the opportunity to in-
stall new equipment without obtaining more public IP addresses.
The existing nodes need not be renumbered; public addresses may
remain to be used inside the realm even for communicating with
the outside world. In addition, the routing information of the realm
may be hidden from the outside world. The address translation
function of realm gateways is required only for communicating
with IPv4 only hosts. As transition progresses it will be invoked
less frequently and can be completely removed once the majority
of the nodes have transitioned. This way 4+4 provides a way out of
using NATs.

One benefit of the above transition process is that the upgrade of
individual realms is de-coupled and may happen at different paces.
The most complex transition tool is the NAT itself. This provides
communication between hosts if no native IPv4 or 4+4 path is avail-
able. There is no transition mechanism to allow communication
between certain hosts (e.g., IPv4 only hosts in different private ad-
dress realms). However, such a possible lack of reachability would
not discourage starting the transition, as it is already in place to-
day. In contrast, it provides an incentive as transition provides the
missing reachability.

5.2 4+4 and IPv6
The major benefits of 4+4 over IPv6 are its backwards compatibil-
ity, the ease of transitioning, and the isolation of realms. Due to the
backward compatibility of the packet header and addressing, the
transition can be gradually started, gradually evolving to the new
4+4 architecture. There is no need for temporary transition mech-
anisms (such as tunneling, tunnel brokers, 6to4, 6over4 or DSTM,
as discussed in [29]), all new mechanisms are final. There is no
need for a new addressing plan, dual routing, new network man-
agement tools, new routing protocols, or new routers. The transi-
tion requires little new software and minimal changes to a running
network. Full backward compatibility is maintained even when all
hosts have transitioned. 4+4 and IPv4 only hosts/networks can co-
exist without new overhead. 4+4 immediately provides a large ad-
dress space for realms without introducing new routers and a new



protocol. This may be beneficial for larger organizations where
most of the traffic is local.

On the other hand, many of 4+4 features (e.g., the header format)
include a number of design compromises necessary for backward
compatibility. Therefore, in comparison to the IPv6, 4+4’s design
is not based on a clean slate. The extended address space is substan-
tially smaller than that of IPv6. Applications placing IP addresses
in payloads also need to be modified if they are to be used between
realms. This, however, is unavoidable if the address space is truly
extended, since the number of possible destinations may not fit into
32-bits. If operators and users choose to undergo the IPv6 transi-
tion, 4+4 is not needed. However, if IPv4 and NATs prevail, 4+4
provides a plausible solution to the known problems discussed in
this paper.

6. IMPLEMENTATION
We implemented 4+4 under the Linux operating system using ker-
nel version 2.4.18. The 4+4 source code is publicly available from
the web [32] for experimentation. One of the key goals driving
the 4+4 implementation is a minimal impact implementation on
the kernel and applications. Hence, no modification has been made
to the kernel itself. All the 4+4 functionality is provided in the
form of a kernel module and an accompanying user space daemon
that can be loaded and unloaded to/from a running kernel. As a
result of our minimum impact implementation we sacrificed some
performance. The implementation includes both the end-host and
the realm gateway functionality. It does not contain NAT functions
itself but interworks with the standard Linux NAT. The kernel mod-
ule and userspace daemon comprise roughly 2200 and 1200 lines
of C code, respectively. In what follows, we describe our imple-
mentation.

6.1 Peer Identifiers
To implement socket network programming with a new address
space, the obvious solution is to define a new address family as
is the case with most IPv6 implementations. This, however, re-
quires the revision and porting of existing networking code to the
new address family. In addition, applications need to be modified.
To achieve backward compatibility with existing applications and
to minimize the implementation work, we adopted a different strat-
egy. The end-host functions are implemented using a transparent
protocol translation mechanism similar to [19]. 4+4 addresses are
mapped to 32-bit peer identifiers that are of local significance only
and are taken from a yet unused block of the IPv4 address space.
By default the block 1.0.0.0/8 is used. Our implementation trans-
parently translates between IPv4 packets with peer identifiers and
4+4 packets. Applications are only presented with peer identifiers.
The mapping between peer ids and 4+4 addresses is established by
incoming 4+4 packets and DNS queries. These mappings are auto-
matically timeout if they remain unused by incoming or outgoing
packets for a period of time. In addition to the translation function,
an API is defined and implemented that provides functions to es-
tablish, query, and remove peer mappings. In this manner, the full
functionality is available to 4+4 aware applications without com-
promising backward compatibility.

The 4+4 kernel module is configured with the list of level 1 and
level 2 addresses of the node. Configuration is automated: if an in-
terface has a private address it is considered level 2 by default, and
level 1 otherwise. If a node has no level 2 address then 0.0.0.0
is used assuming that it is in the public Internet. If a node has no
level 1 address then the DNS is queried for the hostname to obtain

the level 1 address. The kernel module operates using the Netfilter
architecture of the Linux 2.4 kernel [30]. More information on the
4+4 implementation can be found on the project webpage [32].

6.2 DNS Translation
To maintain compatibility with the deployed DNS infrastructure,
4+4 addresses are stored as discussed in Section 3.2. The 4+4 ker-
nel module intercepts incoming DNS reply messages from type A
queries if the reply contains no valid answer. Such packets are
passed to the 4+4 userspace daemon, which prepends the existing
domain name with “l1.” and “l2.” and then performs two type
A queries on the revised names. If both the queries are successful,
then a new peer id is allocated to the 4+4 address. This peer id is
then placed in the original DNS reply packet, which is then passed
back to the kernel and from there on to the querying application.
As a result, if a host has a 4+4 address then a querying application
will receive a host address that is a peer identifier corresponding to
the 4+4 address of the host.

Reverse DNS queries are also captured and trans-
lated in this manner. For example, a query to
12.0.0.1.in-addr.arpa is translated into a query to
2.0.168.192.131.67.59.128.in-addr.arpa. Simi-
larly, replies are translated back. As a result, applications have
total DNS transparency, (e.g., ping and tcpdump are able to show
the DNS names for 4+4 hosts of which they only know the peer
identifiers).

6.3 ICMP Translation
Certain ICMP messages may carry IP packets in their payload.
Upon receiving such ICMP packets, the kernel module checks if
the packet in the payload is a 4+4 packet. If this is the case, then the
4+4 header is removed and the source and destination addresses are
translated to peer identifiers. This allows the kernel to match ICMP
error messages to the sockets associated with peer identifiers. If
the host is sending an ICMP message in reply to another packet,
the kernel module checks whether the included packet’s source or
destination address are peer identifiers. If so, then a 4+4 header
is added to the included packet with the appropriate 4+4 addresses.
This also ensures that peer identifiers are never exposed on the wire
at least for ICMP.

One problem with ICMP messages generated by routers is that
the ICMP protocol [2] mandates the inclusion of the original IPv4
header including options plus 8 bytes of the payload only. In case
of a legacy IPv4 router generating an ICMP reply in response to a
4+4 packet, this excludes the transport protocol and port informa-
tion. As a consequence, the source host cannot identify the trans-
port connection for which it received an ICMP message. Some
router implementations (e.g., Linux) return more than 8 bytes, how-
ever. To upgrade most routers to do this would of course solve this
problem. This problem, however, is not as serious as it first seems
because most ICMP messages generated by routers correspond to
all transport sessions at the destination host. With this in mind, our
current implementation delivers the signal to all relevant transport
identities, that is, to all sockets with the same source and destina-
tion addresses. In other cases, such as when the TTL is exceeded
or when a parameter problem message is generated this action is
not meaningful, however, sockets usually ignore these messages.
The fragmentation needed ICMP message needs special handling
because they are part of the Path MTU discovery process [3]. In
response to this the kernel module decreases the reported MTU
size in fragmentation needed ICMP packets sent in response to 4+4



packets. This forces the transport to generate smaller packets that
fit the path requirements even for 4+4 packets. The kernel in a
more integrated 4+4 implementation could directly take the size of
the 4+4 header into account when calculating TCP segment sizes.

6.4 Realm Gateway Operation
If the kernel module determines that a host has interfaces with both
private and public addresses then it will start operating as a realm
gateway, assuming that this mode is not disabled. The Linux ker-
nel routing features and NAT implementation are used to provide
the actual packet routing and NAT functionality, respectively. 4+4
packets are allowed through the NAT unmodified. If the private
realm is not a “stub” realm, then additional rules are needed to
protect packets with public source and destination addresses from
being translated by the NAT. In the realm gateway mode, the kernel
module detects 4+4 packets crossing the realm boundary and per-
forms address switching. ICMP packets are handled as discussed
in Section 4.3.

6.5 Configuration Tasks
The configuration of an end-host is essentially the same as an IPv4
host. There are only two additional tasks that need to be consid-
ered. First, the host must know if it is in a private or public realm.
Second, if it is in a private realm, then it needs to be configured
with the level 1 part(s) of its address. The first piece of informa-
tion can reliably be estimated from the IP address of the host. The
second part can be read from the DNS because the host is able to
communicate using IPv4 even without its full 4+4 address. Con-
figuring the DNS is straightforward to do with only the two type A
records needing to be added to represent the 4+4 address.

Configuring realm gateways requires somewhat more effort. First,
a fully functional NAT must be maintained during the transition
period. Second, it needs to specified which interfaces of the realm
gateway belong to public or private realms, and what are the level 1
address parts of that realm. Third, routing and route filtering must
be set up such that routing information on public IPv4 addresses
are propagated both in and out of the gateway, while routes toward
private addresses are filtered out. This can be achieved using the
current routing tools, either by using a different routing protocol in
the two realms (e.g., BGP/OSPF or OSPF/RIP) or using OSPF with
different areas.

7. EXPERIMENTAL RESULTS
In this section, we discuss our results from the evaluation of our 4+4
implementation using local and wide area Internet experiments. We
first discuss some experiences with the resilience of our approach.
In particular, we demonstrate 4+4’s resilience to realm gateway
failure. Following this, we present some performance results of
our implementation. Finally, we discuss a set of experiments and
results that test application compatibility with using 4+4.

7.1 Resilience
To test the robustness of 4+4 to realm gateway failure, we con-
structed the topology shown in Figure 3. The topology contains
a public and private realm, two routers (R1 and R2), two realm
gateways (RGW1 and RGW2) and two end-systems (taygeta and
galaxy). The routers are legacy, unmodified IPv4 routers. We
used the gated-3.6 routing software in the routers and gateways.
Two OSPF routing areas are configured, the backbone consisted of
R1, RGW1 and RGW2, whereas an additional OSPF stub area con-
sisted of RGW1, RGW2 and R2. Networks in the stub area are private

addresses and are filtered by the realm gateways. Realm gateways
also advertised an extra address 128.59.67.213 that is exclu-
sively used as the level 1 part of all 4+4 addresses in the private
realm.

R1 taygeta

eth0

eth0

10.0.1.1
eth1

eth0

10.0.1.2

128.59.67.205

192.168.0.1

192.168.0.1

eth2

eth0
10.0.2.2
eth1

128.59.67.210

eth0
128.59.67.142

eth1

R2

128.59.67.209

galaxy

eth2

eth0
128.59.67.141

RGW2

eth1
10.0.2.1

128.59.67.213

public realm

private realm
RGW1

128.59.67.206

Figure 3: Test network 1 topology (multihoming private realm)

We started a long TCP data transfer from taygeta to galaxy us-
ing the ttcp utility. The initial routing preferred RGW1 in both di-
rections, a traceroute listing of the path from tagyeta to galaxy
is shown in Table 2. The listing is generated using a modified ver-
sion of the traceroute utility, as discussed in more in detail in Sec-
tion 7.3.

At around two seconds after the start of the TCP connection we
disconnected both cables of RGW1. The routing software did not
receive a link-layer disconnection signal, so the failure can only be
detected by missing Hello packets. Using the defaults of gated,
the connecting routers declared RGW1 down after 40 seconds. At
this point the routers establish new routes and the TCP connec-
tion was resumed soon after. Since realm gateways hold no flow
specific state, nothing prevented the session from continuing once
routing stabilized. Apart from the temporary loss of connectivity,
end systems were not affected.

7.2 Performance
Realm gateways have two 4+4 specific packet processing tasks.
First, they swap the source and destination addresses in 4+4 pack-
ets forwarded between different realms. Second, they add a 4+4
header to certain ICMP packets.

To illustrate the costs associated with packet processing tasks, we
performed a series of measurements in the Linux kernel. Figure 4
shows the results. The measurements are performed using an un-
loaded machine with one 1GHz Pentium III processor and 256
megabytes of memory.

Each group of bars in Figure 4 corresponds to a packet type. The
height of the bar shows the processing time of the packet in the net-
work layer. This is the time between passing the PRE ROUTING
and POST ROUTING Netfilter hooks. For IP packets the time in-
cludes routing table lookup (usually a cached value), TTL decre-
ment, IP option processing and fragmentation; none of the last two
functions were exercised in our experiments. The first bar shows



traceroute4+4 from taygeta.ipv44.comet.columbia.edu (128.59.67.141.0.0.0.0)
1: r1-eth0.comet.columbia.edu (128.59.67.142): 0.308ms 0.262ms 0.159ms
2: rgw1-eth0.comet.columbia.edu (128.59.67.206): 0.274ms 0.264ms 0.196ms
3: r2-eth0.ipv44.comet.columbia.edu (128.59.67.213.10.0.1.2): 0.365ms 0.611ms 0.343ms
4: galaxy.ipv44.comet.columbia.edu (128.59.67.213.192.168.0.2): 0.445ms 0.630ms 0.370ms
traceroute4+4 from taygeta.ipv44.comet.columbia.edu (128.59.67.141.0.0.0.0)
1: r1-eth0.comet.columbia.edu (128.59.67.142): 0.284ms 2.582ms 0.214ms
2: rgw2-eth0.comet.columbia.edu (128.59.67.210): 0.414ms 0.292ms 0.241ms
3: r2-eth1.ipv44.comet.columbia.edu (128.59.67.213.10.0.2.2): 0.437ms 0.669ms 0.321ms
4: galaxy.ipv44.comet.columbia.edu (128.59.67.213.192.168.0.2): 0.444ms 0.676ms 0.385ms

Table 2: Traceroutes before and after the topology change

IP fw 4+4 sw NAT 4+4 ICMP
0

2

4

6

8

10

pa
ck

et
 p

ro
ce

ss
ing

 tim
e 

[u
s]

in

out

small
large

Figure 4: Network layer processing time during forwarding

the time for regular IP packet forwarding averaged over 1000 mea-
surements. The second bar shows the forwarding time of a 4+4
packet, including the address swap operation. The third group
shows the time of an address translation operation for packets en-
tering and leaving the private realm, respectively. The time differ-
ence may be due to connection state management where packets
leaving the private realm may establish entries. ICMP echo re-
quests/replies are used to take the measurements. The last four bars
show the processing time of router-generated ICMP messages that
carry a 4+4 packet inside. In this case the realm gateway needs to
insert a 4+4 header into the packet. In the Linux kernel, this usually
involves a memory copy of the packet due to linear packet buffers.
This explains the time difference between small (84-byte) and large
(1428-byte) packets. We note that ICMP packets generated by end-
systems do not fall into this category.

Although the above figures may certainly be different for differ-
ent router platforms, we argue that 4+4 packet forwarding (i.e., the
swap operation) is a simple operation that requires a small and con-
stant number of steps. We believe it is amenable to hardware im-
plementation in the fast path of routers. ICMP masquerading, on
the other hand, is an operation that requires more changes to the
packets and may be too expensive to implement in hardware. How-
ever, this poses no problem as ICMP processing can and should be
rate limited. Realm gateways are free to drop excess ICMP traffic.

7.3 Applications
We experimented with a number of applications to test interoper-
ability with 4+4. In general, applications and protocols that do not
carry IP addresses in the packet payload work well with 4+4. The

testbed used to experiment with Internet applications is a simplified
version of the one shown in Figure 3 with parts of the network in
New York in Budapest (see Figure 5) and separated by 17 hops.

taygeta

eth0

pleione

eth1

128.59.67.131

192.168.0.1 eth0
192.168.0.2

aphrodite

eth0
128.59.67.141

192.168.0.2
eth0

eth1
192.168.0.1

eth0

Internet

New York Budapest

195.228.209.132

pc11

ipv44

Figure 5: Test network 2 topology (wide area)

Hypertext Transfer Protocol (HTTP). The HTTP was tested by
setting up a 4+4 compatible webserver both in a private and the
public realm. In both cases we used the apache webserver. 4+4
aware clients were able to reach both webservers from anywhere
using popular browsers including Netscape, Mozilla, Opera, Lynx.
Webservers are reachable by specifying DNS names that point to
4+4 addresses.

Email Protocols. The SMTP, IMAP and POP3 protocols were
tested by setting up e-mail forwarders in both realms using
the exim utility. The popular pine e-mail program and the
Netscape’s mailer were used as user agents. The e-mail servers
were specified using domain names. Again, 4+4 clients were able
to download and send e-mail even if the 4+4 aware server was at a
different realm.

Secure Tools. The ssh and scp tools were used on a regular
basis to communicate between the machines. The host database of
these tools can get mixed up if peer identifiers are used directly to
identify targets hence the use of domain names is preferred.

File Transfer Protocol (FTP). FTP did not work as expected be-
cause it places the peer identifier in the protocol payload.

We also tested a number of network tools. The ping utility works
unmodified. The only issue is that it displays peer identifiers in-



stead of full 4+4 addresses when pinging a 4+4 machine (e.g.,
“PING pleione (1.0.0.2) from ...”).

The traceroute utility does not work, as it uses raw sockets
and manipulatess UDP ports directly. The port information is usu-
ally not returned in the ICMP messages with 4+4. See Section 6.3
for a detailed explanation of the reasons for this problem. There-
fore, we created a simple version of traceroute that only uses
UDP sockets and does not code sequence number information into
the port numbers. The only drawback is that two traceroutes per-
formed on the same host at the same time toward the same desti-
nation by two different processes may get mixed up. The benefit
is that since no raw sockets are used no root privileges are needed.
In addition, as the 4+4 module passes incoming ICMP messages
to all relevant sockets, the utility works well with 4+4 as well. We
added a small piece of code to display the 4+4 numeric address,
if the IP address seen is a peer identifier. Reverse DNS, however,
was used unmodified. The new version of traceroute can be
downloaded from [32] and was used to generate the listings shown
in Table 2.

The tcpdump utility works well, but cannot decode 4+4 packets.
To this end, we have written a small plugin to the ethereal util-
ity to dissect 4+4 packets. The plugin is part of the 4+4 source code
package that can be downloaded from [32].

8. CONCLUSION
In this paper, we have presented and evaluated 4+4, a new address
extension architecture for Internet. 4+4 leverages existing private
address realms and NATs, and represents an evolutionary approach
toward Internet address extension. 4+4 offers a lightweight, well
defined, incentive-driven transition process that can be incremen-
tally deployed in the network today. Upgraded hosts immediately
gain access to upgraded hosts in all other realms, while existing
communication is not disrupted in any way. 4+4 is simple and re-
tains the existing semantics of Internet names and addresses. En-
capsulation is used as the main tool to maintain backward compati-
bility with existing routers that need not be modified. 4+4 does not
employ address translation and provides end-to-end address trans-
parency. Existing NATs are only used as a transition tool, with their
use diminishing as 4+4 deployment progresses. In fact, removing
NATs is one of the motivations for such a transition. However, the
address isolation feature of NATs is retained by the 4+4 architec-
ture.

We have evaluated the properties and performance of 4+4 based on
local and wide area testbed experimentation, and discussed our ex-
periences using a number of applications with 4+4. A number of
configurations and possible pitfalls were explored and discussed.
We found that 4+4 is easy to implement, scalable, introduces no
single points of failure, and its performance look very promis-
ing. We believe that 4+4 provides one alternative should IPv6 be
deemed too expensive or complicated for transitioning.

9. REFERENCES
[1] J. Postel, “Extensible Field Addressing,” Internet RFC 730,

May 1977.

[2] J. Postel, “Internet Control Message Protocol,” Internet RFC
792, September 1981.

[3] J. Mogul, S. Deering, “Path MTU discovery,” Internet RFC
1191, November 1990.

[4] Z. Wang, J. Crowcroft, “A Two-Tier Address Structure for
the Internet: A Solution to the Problem of Address Space
Exhaustion,” Internet RFC 1335, May 1992.

[5] Minutes of the Address Extension by IP Option Usage BOF,
proceedings of 29th IETF meeting, Seattle, April 1994.

[6] Minutes of the Address Lifetime Expectations working
group, proceedings of 29th IETF meeting, Seattle, April
1994.

[7] P. Francis, “Pip Near-term Architecture,” Internet RFC 1621,
May 1994.

[8] K. Egevang, P. Francis, “The IP Network Address Translator
(NAT)”, Internet RFC 1631, May 1994.

[9] P. Francis “Addressing in Internetwork Protocols,” PhD
Thesis, University College London, available at
www.ingrid.org/francis/thesis.ps.gz,
September 1994.

[10] R. Hinden, “Simple Internet Protocol Plus White Paper,”
Internet RFC 1710, October 1994.

[11] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. de Groot, E.
Lear, “Address Allocation for Private Internets,” Internet
RFC 1918, February 1996.

[12] R. Hinden, “New Scheme for Internet Routing and
Addressing (ENCAPS) for IPNG,” Internet RFC 1955, June
1996.

[13] I. Castineyra, N. Chiappa, M. Steenstrup, “The Nimrod
Routing Architecture,” Internet RFC 1992, August 1996.

[14] C. Perkins, “Minimal Encapsulation within IP,” Internet RFC
2004, October 1996.

[15] M. O’Dell, “8+8 – An Alternate Addressing Architecture for
IPv6,” Internet Draft, named as draft-odell-8+8-00, Work in
progress, November 1996.

[16] S. Deering, R. Hinden, “Internet Protocol, Version 6 (IPv6)
Specification,” Internet RFC 2460, December 1998.

[17] Z. Turányi, A. Valkó, “4+4: Expanding the Internet Address
Space without IPv6,” Ericsson Internal Report, August 1999.

[18] M. Crawford, A. Mankin, T. Narten, J. Stewart, L. Zhang,
“Separating Identifiers and Locators in Addresses: An
Analysis of the GSE Proposal for IPv6,” Internet Draft,
named as draft-ietf-ipngwg-esd-analysis-05, Work in
progress, October 1999.

[19] K. Tsuchiya, H. Higuchi, Y. Atarashi, “Dual Stack Hosts
using the “Bump-In-the-Stack” Technique (BIS),” Internet
RFC 2767, February 2000.

[20] A. Gulbrandsen, P. Vixie, L. Esibov, “A DNS RR for
specifying the location of services (DNS SRV),” Internet
RFC 2782, February 2000.

[21] B. Carpenter, “Internet Transparency,” Internet RFC 2775,
February 2000.

[22] M. Crawford, “Router Renumbering for IPv6,” Internet RFC
2894, August 2000.



[23] T. Hain, “Architectural Implications of NAT,” Internet RFC
2993, November 2000.

[24] G. Huston, “To NAT or IPv6 – That is the question,” Satellite
BroadBand magazine, available at the author’s page
http://www.telstra.net/gih, December 2000.

[25] M. Holdrege, P. Srisuresh, “Protocol Complications with the
IP Network Address Translator,” Internet RFC 3027, January
2001.

[26] M. Gritter, D. R. Cheriton, “An Architecture for Content
Routing Support in the Internet,” Usenix Symposium on
Internet Technologies and Systems,
http://gregorio.stanford.edu/triad, March
2001.

[27] P. Francis, R. Gummadi, “IPNL: A NAT-Extended Internet
Architecture,” SIGCOMM’01, August 2001.

[28] M. Borella, J. Lo, D. Grabelsky, G. Montenegro, “Realm
Specific IP: Framework,” Internet RFC 3102, October 2001.

[29] The IETF Next Generation Transition (ngtrans) working
group, http://www.ietf.org

[30] Linux 2.4.x Netfilter homepage,
http://www.netfilter.org

[31] Z. Turányi, A. Valkó, “4+4,” 10th International Conference
on Networking Protocols (ICNP 2002), November 2002.

[32] The IP4+4 project webpage at
http://comet.columbia.edu/ipv44


