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Abstract—This paper presents a decentralized auction-based approach
to pricing of edge-allocated bandwidth in a differentiated services Internet.
The players in our network economy model are one raw-capacity seller per
network, one broker per service per network, and users, to play the roles
of whole-sellers, retailers and end-buyers respectively in a two-tier whole-
seller/retailer market, which is best interpreted as a “sender-pay” model.
With the Progressive Second Price auction mechanism as the basic building
block, we conduct a game theoretic analysis, deriving optimal strategies
for buyers and brokers, and show the existence of network-wide market
equilibria.

In addition to pricing, another key consideration in building differenti-
ated network services is the feasibility of maintaining stable and consistent
service level agreements across multiple networks where demand-driven
dynamic allocations are made only at the edges. Based on the proposed
game-theoretic model, we are able to construct an explicit necessary and
sufficient condition for the stability of the game, which determines the sus-
tainability of any set of service level agreement configurations between In-
ternet Service Providers.

These analytical results are validated with simulations of user and bro-
ker dynamics, using the distributed Progressive Second Price auction as the
spot market mechanism in a scenario with three inter-connected networks,
and two services based on the proposed standard expedited forwarding and
assured forwarding per-hop-behaviors.

Keywords— differentiated service, capacity provisioning, second price
auction, network inter-connection, peering stability

I. I NTRODUCTION

The recent development of the differentiated service (Diff-
Serv) Internet model is aimed at supporting service differenti-
ation for aggregated traffic in a scalable manner [1], [2]. The
tenet of DiffServ is to relax the traditional hard-QOS model
(e.g., end-to-end per-flow guarantee of IntServ [3], and ATM)
in two dimensions: slower time-scale network mechanisms and
coarser-grained traffic provisioning.

The focus of the proposed differentiated services framework
has been mainly on packet level behavior, with the purpose
of defining building blocks for scalable differentiated services.
Substantial progress has been made in the development and stan-
dardization of packet forwarding behaviors [4], [5]. However,
two issues have been lacking systematic study in the develop-
ment of differentiated services:
� dynamic market-pricing of edge-allocated bandwidth, and
� the feasibility of maintaining consistent service level agree-

ments (SLAs) – or DiffServ profiles – across inter-
connected networks where demand-driven dynamic alloca-
tions are made only on the edges.

While the role of prices as an essential resource allocation
“control signal” has been established from the outset of Diff-
Serv [6], [7], the precise development of pricing mechanisms
is still at its early stages. In the Simple Integrated Media Ac-
cess model [8], the service charge for a user is proportional to
the nominal subscribed bit rate and the price differentiation be-
tween different service classes remains fixed. Similarly, in the
User-Share Differentiation proposal [9], pricing is based on the
user share that is allocated over long time scales. These schemes
fall within the category of capacity-based pricing. Just as Diff-
Serv aims to provide a range of “better than best-effort” ser-
vices without the complexity and per-flow state of hard-QOS,
capacity-based pricing schemes can be thought of as “better than
flat-rates” (more rational and sustainable from the economic
point of view), without the continuous measurement and ac-
counting required by usage-based pricing. Flat-rate pricing is
the extreme of capacity pricing where the capacity equals the
access line speed, while usage pricing can be thought of as the
extreme where capacities are continuously adapted to fit the ac-
tual transmission rate of each flow at each moment in time. A
pricing scheme which explicitly covers the range between these
two, as well as the service-type dimension is discussed in [10].

One consequence of resource allocation at network edges
is a natural proclivity toward a “sender-pay” model. Indeed,
a “receiver-pay” model would require explicit price signaling
back to the source in order to allocate the corresponding re-
sources, since prices have to relate to the resources consumed
(i.e. service quality). Such signaling, if done in real-time within
the network, would re-introduce the same type of complexity
and scalability problems as those that afflict end-to-end per-flow
QoS, and that the edge-allocation model is meant to avoid.1

A sender-pay model is a departure from the Internet tradition
of receiver-paid flat rates. However, while the pricing mecha-
nisms presented in this paper can equally apply to a receiver-
pay model, there is a strong case to be made that the Internet
has reached a stage in its evolution where the change is due. In-
deed, consider the history of postal service: in ancient times, it
was generally run on a receiver-pay model. In a system with

1Of course, the receiver may pay the sender through some off-line means, e.g.
through subscription, “pay-per-view”, or indirectly in the case of advertising
supported content.



unreliable delivery, it is more natural to require payment on the
receiving side. Just like the best-effort Internet, the unreliabil-
ity was compensated for by the fact that the system was lightly
loaded, and messages were such that retransmissions were ac-
ceptable. As the number of users grew, the postal system went
through a phase of complex bi-lateral agreements between coun-
tries (this occurred in Europe from about 1600 to 1900), much
like inter-ISP peering today. In the later stage. where differ-
entiated services are offered (e.g. air-mail, overnight express,
bulk-mail), the default is for the sender to pay2, since the qual-
ity must be selected on the sending side. Thus, by analogy, the
move from best-effort to differentiated services should lead to a
sender-pay model.

The space of network resource pricing schemes has many di-
mensions (for a complete taxonomy of network pricing see [11],
Chapter 1). One is “where” the capacity abstraction takes place:
at each hop inside the network or at the edges [12] (as discussed
above). Another is how mucha priori information on demand
is required. At one extreme, the seller assumes perfect a priori
knowledge of demand and does an offline calculation of opti-
mal prices (e.g., time-of-day pricing based on historical traffic
patterns). In more sophisticated approaches, the seller assumes
the functional form of demand and adjusts prices by on-line op-
timizations [13], [14], [15], [16], [17]. These pricing schemes
are “model-based”, in that the relationship between demand and
price (and possibly time) is assumed in an a-priori formula.
Knowledge of this model and its parameters is precisely the a
priori information requirement described above.

Auctioning is the pricing approach with minimal information
requirement. The more difficult it is for the seller to obtain de-
mand information (or valuations), the stronger the case is for
using auctions. In today’s Internet, because of the diverse and
rapidly evolving nature of the applications, services, and popula-
tion, the case is particularly compelling. With suitably designed
rules, auctions can achieve efficient (i.e. value maximizing) al-
locations with minimal a priori information.

An important aspect of the problem that has not been sys-
tematically addressed is the feasibility of maintaining consistent
SLAs across inter-connected networks with dynamic, market-
driven, edge capacity allocation. Inconsistent SLAs would result
in frequent reconfiguration of traffic conditioners at the edges,
and/or significant violations of the service quality in the core of
the networks.

In this paper, we investigate two closely coupled problems.
First, on the “demand side”, we study the feasibility of auc-
tioning capacity in real-time on a DiffServ internet. We then
consider the “supply side”, focusing on the feasibility of pro-
visioningstableandconsistentSLAs across multiple networks,
where allocations are dynamically driven by demand and made
only on the edges.

We begin in Section II by constructing the two-tier whole-
seller/retailer market model, giving the wide-area model for
pricing, provisioning and differentiation of the services, and in-
troduce the demand model.

Following this, in Section III, we show through game theo-
retic analysis and simulation that the Progressive Second Price

2At least for the part that relates to service quality differentiation. In general,
all parties pay for basic connectivity to the system.

(PSP) auction of [18] can provide stable pricing and efficient
in a DiffServ bandwidth market. The results of this section ex-
tend those of the single sharable resource auction of [18] to the
case of multiple networked resources, in an edge-capacity allo-
cation framework. The PSP mechanism achieves the economic
objectives of incentive compatibility and efficiency, while being
realistic in the engineering sense (small signaling load and com-
putationally simple allocation rule). As such, it provides a use-
ful baseline for understanding the conditions for the economic
feasibility of wide-area differentiated services.

In Section IV, we derive a necessary and sufficient condition
for the stability of dynamic SLA provisioning. Then in Sec-
tion V, all the analytical results are validated by simulations,
which illustrate not only conditions for stable and unstable mar-
kets, but also stable conditions which lead to certain classes of
service not being offered on an inter-network basis. Finally,
in Section VI, we present some concluding remarks and future
work.

II. T HE MODEL

A. Distributed Market Framework

Our network model assumes that each network can be ab-
stracted into a single bottleneck capacity (e.g., as a “Norton-
equivalent” [19]). The capacity may be represented by an
absolute amount of bandwidth, or some relative metrics like
user share in the User-Share Differentiation proposal [9] or
resource token in Location Independent Resource Account-
ing [20]. Large networks can be modeled by subdivision into a
set of interconnected networks, each of which can be abstracted
into a bottleneck capacity. The degree of subdivision that is nec-
essary depends on traffic, topology and size constraints as well
as the desired level of accuracy. Within each network, the rout-
ing of aggregated traffic to each peer3 is stable over the resource
allocation time scale (e.g., in the order of hours).

Figure 1 presents the model of our proposed auction pric-
ing framework for a set of interconnected networks as described
above. A two-tier whole-seller/retailer market model is used to
accommodate a network of goods (i.e., bandwidth) with mul-
tiple differentiated service classes. We define three kinds of
players: users, service bandwidth brokers (SBBs) and raw band-
width sellers (RBSs), to play the roles of end-users, retailers and
whole-sellers, respectively. Each network has a single RBS and
a separate SBB for each class of service being offered. The
RBS can be thought of as the bearer, and the SBBs as service
providers [21]. If the RBS and multiple SBBs on the same
network are not owned by the same entity, a non-cooperative
game formulation is the best way to model the problem. Even
if they are owned by the same entity, a competitive framework
is valuable, the idea being that competition among SBBs results
in a dynamic and efficient partition of the physical network re-
sources among the services being offered, based on the demands
from users. The users, or retail buyers, are subscribers to a par-
ticular service offered by a particular provider. In the DiffServ
context, these will likely be large subscribers (e.g., web sites,

3In this paper, we use the term “peer” in the most general sense, i.e., any net-
work which inter-connects with a given network, and not just those that choose
to exchange all traffic free of charge.
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Fig. 1. 2-tier auction pricing framework for DiffServ internet

various content or application server farms, intra/extranets, vir-
tual private networks), rather than individual end-users.

B. Game Theoretic Model: Message Process and Notation

Let the set of all players, including buyers, sellers and bro-
kers (brokers are both buyers and sellers), be denoted byI =
f1; : : : ; Ig. A player’s identityi 2 I as a subscript indicates that
the player is a buyer, and as a superscript indicates the seller.

Suppose playeri is buying from playerj. Then he places
a bid sji = (qji ; p

j
i ), meaning he would like to buy fromj a

quantityqji and is willing to pay aunit pricepji . Without loss
of generality, we assume that all players bid in all auctions, with
the understanding that if a playeri does not need to buy fromj,
we simply setsji = (0; 0).

A sellerj places anasksjj = (qjj ; p
j
j), meaning he is offering

a quantityqjj , with a reserve (or floor) price ofpjj per unit. In
other words, when the subscript and superscript are the same,
the bid is understood as an ask.

Unless otherwise indicated, when sub/superscripts are omit-
ted, the notation refers to the vector obtained by letting it
range over all values. For example,qi is the 1 � I vector
(q1i ; : : : ; q

I
i ), and q is the I � I matrix. A subscript with

a minus sign indicates a vector with that component deleted
s�i � (s1; : : : ; si�1; si+1; : : : ; sI), and(xi; s�i) denotes the
profile obtained by replacingsi with xi.

Based on the profile of bidssj = (sj1; : : : ; s
j

I), sellerj com-
putes an allocation(aj ; cj) = Aj(sj), whereaji is the quantity
given to playeri andcji is thetotal costcharged to the playeri.
Aj is theallocation rule of sellerj. It is feasible ifaji � qji ,
andcji � pji q

j
i . One possible allocation rule is the Progressive

Second Price auction as discussed in Section III.

C. Sellers’ provisioning and peering constraints

Suppose playerk 2 I is an RBS. Then its strategy consists
of alwaysasking skk = (qkk ; p

k
k), with qkk equal to the physical

bottleneck capacity of its network, andpkk equal to the unit cost
of operation. Since it is a passive seller of physical bandwidth,
k does not buy from anyone, i.esjk = 0;8j 6= k.

Supposej 2 I is an SBB. It offers a capacityqjj for sale to
its users. In order to honor its contracts, the quantity offered
must be constrained by the capacities thatj can actually obtain.
First, it must get enough bandwidth fromk, the RBS in its own
network, to carry the total capacity it allocates to its customers,
i.e. X

i

aji � akj : (1)

Second, since it is selling interconnection service,j must get
enough capacity from the SBBs offering the same service in
each peer network. Letl denote one such peer SBB, andrlj be
the “fraction of traffic” generated byj’s customers that is routed
to the network where playerl is the peer SBB (see Remark in
Section II-D for interpretations ofrj ). Then,j must satisfy

rlj
X
i6=l

aji � alj ; (2)

for all peersl.4 For notational convenience, fixrkj = 1, when

k is j’s RBS. Sinceajk = 0, (2) includes (1) as the special case
l = k. If l is neither a peer ofj, nor its RBS, then we setrlj = 0.

Define, for any allocationa,

elj(a)
4
=

alj

rlj
+ ajl :

We call
ej

4
= min

l6=j
elj(a) (3)

theexpected bottleneckcapacity for the service offered byj.
Proposition 1: (Broker’s sell-side constraints) Letj 2 I be a

SBB, and fix its buy-side allocation(aj ; cj). Then, on the sell-
side, the quantity offered must satisfy

qjj � min
l 6=j

elj(a)

For a broker who does not sell at a loss, the reserve price must
satisfy

pjj �
1

qjj

X
l

clj :

Proof: Suppose9l 6= j such thatqjj > elj . Then when all

the offered quantity is bought, we have
P

i a
j
i = qjj > elj =

alj

rl
j

+ ajl ,
P

i6=l a
j
i >

alj

rl
j

, and condition (2) is violated. This

proves the first assertion.
Since

P
l c

l
j is the total cost of the capacity thatj is buying,

the second assertion follows immediately from the our assump-
tion that the broker will not sell at a loss. 2

4We assume that service providers block “loop-back” traffic, i.e. traffic going
from l throughj and back tol. If that is not the case, then the summation in (2)
would be over alli.



Remark: The obvious way for a broker to satisfy Proposition 1
is simply settingqjj = mini6=j e

i
j(a). Alternately, the seller can

leaveqjj equal to the maximum physical capacity, and place in its

own market an artificial “buy-back” bid equal tosj0 = (qj0; p
j
0),

whereqj0 = (qjj � ej)
+ andpj0 is larger than any user is willing

to bid. Note that this artificial player0 62 I. This buy-back bid
effectively limits j’s users to precisely the capacity thatj can
honor in forward to its peers. In other words, the buy-back bid
ensures that the quantity constraint of Proposition 1 is automat-
ically satisfied. If there is demand (bids) at prices greater than
the marginal cost toj of expanding capacity, then naturally bro-
ker j will want to satisfy it, sopj0 should be set at the marginal
cost of increasing the offered quantityej . As we will become
apparent through Proposition 4 below,pj0 should be set to equal
�0j(e), which is the price at whichj could obtain more capacity
at its bottleneck to a peer network.

D. Differentiating Services

We do not explicitly consider the per-hop behaviors (PHBs)
per se, which of course are essential in assuring the service qual-
ity on the packet time-scale. On our level of abstraction, only the
vector of provisioning coefficientsri differentiates brokeri and
the service it offers. A broker is characterized by the type of
SLA that it offers, e.g.:
� expected capacity SLA; on average, users will get the ca-

pacity they pay for, even when the traffic enters peer net-
works. This could include for example services built on the
DiffServ assured forwarding (AF) per-hop behaviors [5].
In this case,rji is the expected fraction of the total traf-
fic enteringi that is routed toj. rii is the fraction of
traffic that terminates with one ofi’s own customers, andP

j 6=l r
j
i = 1, wherel is the RBS ini’s network.5

� worst-case capacity SLA; another type of SBB may offer
service agreements for worst-case bandwidth, i.e., each
user always gets the amount of bandwidth they pay for,
even if all of the traffic is routed to the same peer. This
could include for example services built on the DiffServ
expedited forwarding (EF) per-hop behavior [4]. In this
caserji = 1 for all peersj.

� local SLA; for an SBB which offers SLAs valid only within
its own network,rii = 1 andrji = 0;8j 6= i.

Figure 2 illustrates several service scenaria for an SBBi with
two peersj andk. In all the cases, the steady-state aggregate
traffic pattern is such that 2/3 ofi’s traffic flows toj’s network,
and 1/3 flows tok’s network (to visualize in only two dimen-
sions, we assumerii = 0, i.e. i provides only “transit” service,
so no traffic terminates withini’s own network). Thus, ifi is of-
fering an expected capacity service,ri will lie along the line with
slope 1/2. Here we show how the SBB would have to provision
the three classes in the “Olympic service” based on AF [5], and
the “Virtual Leased Line” (VLL) service based on EF [4]. De-
grees of over-provisioning must be used to differentiate among
AF classes. A Bronze service class SBB would provision just

5Note that for expected capacity, a userm whose traffic is entirely within the
allocated profileaim when it enters its brokeri’s network could temporarily be
out of profile in the peer networkj, if i miscalculatedrji , or if there is a sudden
surge of traffic from many ofi’s customers toj.
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Fig. 2. Inter-network provisioning coefficients for Olympic Gold, Silver and
Bronze services, and the Virtual Leased Line service

enough capacity to carry the traffic on average (circle marked
“B” in the figure). If the SBB is providing Silver class service,
then it must provision more generously to ensure that they are
less loaded, and thus experience better service, and even more
generously if the service is Gold class (circles marked “S” and
“G” in the figure). For the VLL service, more conservative pro-
visioning can be achieved by providing for worst case flows, i.e.,
all the traffic can flow to any one peer and still be satisfied, as
illustrated by “V” in Figure 2.

Depending on the scheduling and buffer management al-
gorithms used to provide the PHBs, some amount of over-
provisioning may be required [4]. These engineering needs
can be represented in this model by simply factoring over-
provisioning into each coefficient ofr, e.g., if i is offering
a virtual leased line with 5% over-provisioning thenri =
(1:05; 1:05; : : :).

Note that for our purposes, the provisioning coefficientsri are
known by brokeri in advance, since they represents aggregate
flow patterns. In practice, this meansr would be measured over
a time-scale slow enough to make quasi-static estimates which
average out micro-flows.

E. Buyers

We model buyers asbottleneck buyers, i.e. each buyeri 2 I
seeks to maximize its utility

ui = �i � ei(a)�
X
j

cji ; (4)

whereei is as in (3),�i is the buyer’svaluation function, and�
denotes composition of functions (i.e.�i � ei(a) = �i(ei(a))).
As the name indicates, the valuation function describes how
much each possible allocated quantity is worth to the buyer, i.e.
the willingness to pay, and is private information. Other players
(including the seller) only see the buyer’s bid and not the valu-
ation that lead the buyer to make that bid. Here, the valuation
depends only on a scalar bottleneckei(a) which is a function of
the allocated quantities at all the resources.
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If the buyer is a useri buying from SBBj, thenrji = 1 and
rli = 0;8l 6= j. Thusei(a) = aji , and (4) has the simpler form
ui = �i(a

j
i )�cji : The valuation is a function of the player’s own

allocation only, and expresses the amount the user is willing to
pay for each possible quantity of resource. It can be based on
economic and/or information theoretic considerations (see the
appendix in [18]).

If the buyer is a broker, the natural utility is the potential profit
so �j , the broker’s buy-side valuation, is the potential revenue
from the sale (on the sell-side) of the capacities obtained on the
buy-side. The potential revenue is derived from the demand on
the sell-side: let8y � 0,

dj(y)
4
=
X
p
j

k
�y

qjk;

the demand at unit pricey. Its “inverse” function is defined by,

f j(z)
4
= sup

�
y � 0 : dj(y) � z

	
:

See Figure 3. Note that we chosef j to be continuous from
the left. For a given demand functiondj(:), 8z � 0, f j(z)
represents the highest unit price at whichj could sell thez-th
unit of capacity. The actual prices charged to users depend on
the specific allocation mechanismAj used.

Proposition 2: (Broker’s buy-side valuation) Letj 2 I be a
broker with inverse demandf j(z). Its buy-side valuation is

�j(x) =

Z x

0

f j(z) dz:

Thus�j � ej(a) =
R ej (a)
0

f j(z) dz:
Proof: Since the broker seeks to maximize profit, for a given
allocationa, it will sell as much as possible; thus by Proposi-
tion 1, qjj = ej . If ej decreases by�, thenqjj must be reduced
by �. The value toj of the lost quantity is the revenuej could
have gotten from it. By definition, this lost potential revenue is
f j(emj )�. Thus, by abuse notation, writing�j as a function of
elj ,

�j(ej)� �j(ej � �) = f j(ej)�

and the result follows as� ! 0. 2

It is useful to conceptually decouple the game into two. On
one hand is a “demand game” wherein users and brokers com-
pete for the available bottleneck capacities. On the other hand,

we have what may be called the “supply game” among brokers
which results in the setting of the bottleneck capacities. Since
the brokers are driven by the users’ demands, and the users are
competing for the offerings of the brokers, the two games are
inter-dependent, and may be played on the same or vastly dif-
ferent time scales.

The notation used in this paper is summarized in Table I.

TABLE I

SUMMARY OF NOTATIONS

qji playeri’s bid quantity for bandwidth
offered by sellerj when(i 6= j)

qii quantity ofi’s offered bandwidth
pji playeri’s bid unit-price for bandwidth

offered by sellerj when(i 6= j)
pii reserve price ofi’s offered bandwidth
sji = (qji ; p

j
i ) playeri’s bid for bandwidth offered

by sellerj when(i 6= j)
sii = (qii ; p

i
i) playeri’s ask

sj profile of all bidders at sellerj,
sj = (sj1; : : : ; s

j
I)

(xji ; s
j
�i) replacing theith player’s bidsji with xji ,

(xji ; s
j
�i) = (sj1; : : : ; s

j
i�1; x

j
i ; s

j
i+1; : : : ; s

j
I)

aji allocation given to playeri by sellerj
cji total cost charged to playeri by sellerj
�i playeri’s valuation function
ui playeri’s utility function,ui = �i �

P
j c

j
i

ej expected bottleneck capacity at sellerj

rlj fraction of incoming traffic atj
(excluding loop-back) that is routed tol

III. D EMAND-SIDE

In this section we consider the demand side, and derive the
optimal (utility-maximizing) bidding strategies for users and
brokers, and establish the existence of an efficient (value maxi-
mizing) equilibrium point among buyers, when sellers are static
(i.e. do not change the offered quantity). We assume that each
RBS imposes a non-zero asking (or “reserve”) price – which
can be arbitrarily small. Thus prices will always have a strictly
positive floor.

The design of our Progressive Second Price auction (PSP) ap-
pears in [18]6. The mechanism is defined by:8i; j 2 I,

aji (s) � aji (s
j) = qji ^

2
64qjj �

X
p
j

k
�p

j

i
;k 6=i

qjk

3
75
+

; (5)

cji (s) � cji (s
j) =

X
k 6=i

pjk

h
ajk(0; s

j
�i)� ajk(s

j
i ; s

j
�i)
i
;(6)

where^means taking the minimum. Note that each seller com-
putes allocations from local information only (the bids for that

6PSP was first presented at theDIMACS Workshop on Economics, Game The-
ory, and the Internet, Rutgers, NJ, April 1997, and a generalized analysis at
the8th International Symposium on Dynamic Games and Applications., Maas-
tricht, The Netherlands, July 1998



resource). Define,

P j
i (z)

4
= inf

8><
>:y � 0 : qjj �

X
p
j

k
>y;k 6=i

qjk � z

9>=
>; :

Note that we defineP j
i to be continuous from the left. Under

PSP,P j
i is the market price function from the point of view of

useri. Indeed, it can be shown that,

cji =

Z a
j

i

0

P j
i (z) dz: (7)

Remark: Except at points of discontinuity, we haveP j
i (z) =

f j(qjj � z). This mechanism generalizes Vickrey (“second-
price”) auctions [22] which are for non-divisible objects. PSP
bears some similarity to Clarke-Groves mechanisms [23], [24].
The fundamental difference with the latter is that PSP is de-
signed with a message (bid) space of two dimensions (price and
quantity) in which each message is a single point, rather than
an infinite dimensional space of valuation functions where each
message is a revelation of the whole valuation curve (see [25],
[18] for an explanation of the “revelation principle”). This re-
duction of the message space is crucial in the context of com-
munication networks, where limiting the size and complexity of
the exchanged messages (signaling) is very important.

We defineelastic demandas follows: 8i, �i is continuous,
concave, and smooth (�0i is continuous); and for some (possibly
infinite) maximum capacity�ai � 1, �0i is strictly decreasing
(i.e.,�00i < 0 if �00i is well-defined) on[0; �ai], and non-increasing
(�00i � 0) on [�ai;1).

Under elastic demand analyzed as a complete information
game, the PSP auction for a single arbitrarily divisible resource
(e.g., bandwidth on one link in a network) has the following
properties which are proven in [18]:
� incentive compatible: truth-telling (setting the bid price

equal to the marginal valuation) is a dominant strategy;
� stable: it has a “truthful”�-Nash equilibrium [26], for any

positive seller reserve price;
� efficient: at equilibrium, allocations maximize total user

value (social welfare) to withinO(
p
�); and

� enables a direct trade-off between engineering and eco-
nomic efficiency (measured respectively by convergence
time and total user value), by the parameter�, which has
a natural interpretation as a bid fee.

In the rest of this paper, we assume all the sellers in the net-
work are using PSP as the allocation mechanism.

For users, the best strategy consists simply of bidding for the
largest quantity such that the marginal valuation is higher than
the market price, and setting the bid price equal to the marginal
valuation (i.e. “truth-telling” is optimal).

Proposition 3: (User’s strategy) Leti 2 I be a user such that
�i that is differentiable and�0i continuous from the left. Letl 2 I
be that user’s broker. For a fixed profilesl�i, an�-best reply for
playeri is tli = (vli; w

l
i), such that

vli = sup

�
z � 0 : �0i(z) > P l

i (z) and
Z z

0

P l
i (�) d� � bi

�

��=�0i(0);
and

wl
i = �0i(v

l
i):

That is,8sli, ui(tli; sl�i) � ui(s
l
i; s

l
�i)� �.

Proof: This is a special case of Proposition 4, with8l; ail = 0,
rii = 1, and8l 6= i, rli = 0. This was derived separately in [18].
2

Consider now a broker, participating in many auctions simul-
taneously. By the nature of its valuation (Proposition 2), ca-
pacity allocations are valuable to the broker only insofar as they
increase its expected bottleneck capacityminl6=i e

l
i. Thus, a bro-

ker must coordinate its buy-side bids (one submitted to each of
its peers and its RBS) to maximize its overall utility.

Note that for Proposition 3, we do no require that�i be
smooth. Concavity and non-increasingness suffice, along with
the purely technical condition of continuity from the left. These
are satisfied by the broker’s valuation (Proposition 2). Thus, we
can expect that the same principle (optimality of truth-telling)
should hold.

Indeed, as we will now show, it turns out that the optimal
strategy is very similar to that of a single user. But instead of
searching directly for the optimal capacity, the broker finds the
optimal expected bottlenecke, which is the largest one such that
the marginal value is just greater than the market price. The
role of the market price is played by the average of the market
prices at the different auctions, weighted by the route provision-
ing factors. The actual bids are obtained by transforming the
desired optimal expected bottlenecke back into the correspond-
ing quantitiesvli to bid at each buy-side market. As with a user,
truth-telling is optimal for the broker, so at each buy-side mar-
ket, the broker sets the bid price to the marginal value.

Proposition 4: (Broker’s buy-side strategy) Leti 2 I be a
broker, and fix all the other players’ bidss�i, as well as the
broker’s sell-sidesii (thusai is fixed). Let

e = sup

8<
:h � 0 : f i(h) >

X
l6=i

P l
i

�
(h� ail)r

l
i

�
rli

9=
;��=f i(0);

(8)
and for eachl 6= i,

vli = (e� ail)r
l
i;

and

wl
i =

1

rli
f i(e):

Then a (coordinated)�-best reply for the broker isti = (vi; wi),
i.e.,8si, ui(ti; s�i) � ui(si; s�i)� �.
Proof: Sincef i is non-increasing and8l; P l

i is non-decreasing,
(8) impliesf i(e) >

P
l6=i P

l
i (v

l
i)r

l
i, and therefore8l 6= i,

wl
i > P l

i (v
l
i) = f l(qll � vli)

) vli � qll � dl(wl
i);

) ali(ti; s�i) = vli;
) eli � a(ti; s�i) = e:



Therefore

ui(ti; s�i) =

Z e

0

f i(�) d� �
X
l6=i

Z vli

0

P l
i (z) dz

=

Z e

0

f i(�) d� �
X
l6=i

Z e

ai
l

rliP
l
i

�
(� � ail)r

l
i

�
d�:

Now suppose9si = (qi; pi) such thatui(si; s�i) >
ui(ti; s�i) + �: Let � = mink 6=i e

k
i � a(s), and 8l 6= i,

�li =
�
� � ail

�
rli and�i = (�i; pi). From (17) in Lemma 1,

aji (�i; s�i) = �ji , therefore

ui(�i; s�i) =

Z �

0

f i(�) d� �
X
l6=i

Z �

ai
l

rliP
l
i

�
(� � ail)r

l
i

�
d�:

By Lemma 1 (given in the Appendix),ui(�i; s�i) �
ui(si; s�i): Therefore,ui(�i; s�i) > ui(ti; s�i) + �, which by
Proposition 2, is equivalent to

Z �

e

f i(�) d� �
X
j 6=i

Z �

e

rliP
j
i

�
(� � ail)r

l
i

�
d� > �: (9)

Let e = e + �=f i(0). Sincef i is non-increasing
R e
e
f i(�) �

f i(0)(e � e) = �. That, along with the fact thatP j
i is non-

negative, and (9), implies

Z �

e

f i(�) d� �
X
j 6=i

Z �

e

rliP
j
i

�
(� � ail)r

l
i

�
d� > 0:

If � > e, then for some� > 0, f i(e + �) >P
j 6=i r

l
iP

j
i

�
(e+ � � ail)r

l
i

�
; which contradicts (8).

If � � e, then f i(e) <
P

j 6=i r
l
iP

j
i

�
(e� ail)r

l
i

�
d�: But,

since bothf i andP j
i are continuous from the left, (8) implies

thatf i(e) �Pj 6=i r
l
iP

j
i

�
(e� ail)r

l
i

�
d�, which is a contradic-

tion. 2

As stated above, for stability of PSP, we assume that demand
is elastic for all players. However, the broker does not satisfy
the smoothness (continuous derivative) condition. From Propo-
sition 2, the broker’s valuation, as a function of the (scalar)
expected bottleneck capacityminl 6=i e

l
i, is piecewise linear and

concave (the derivative is the “staircase” function shown in Fig-
ure 3). Thus, we need to assume that brokers apply some
smoothing in deriving the buy-side valuation from the sell-side
demand, e.g., by fitting a smooth concave curve to the piecewise
linear one.

Unlike the proof of the the broker strategy, the proofs of the
following results are not essential to intuitive understanding of
the game and are omitted due to space constraints.

Proposition 5: (Equilibrium) In a game consisting of arbi-
trarily networked PSP auctions, where all buyers have utilities
of the form (4), and sellers are static (i.e. with fixedsii and re-
serve pricespii > 0, for all sellersi 2 I), under elastic demand,
for any � > 0, there exists a (truthful) network-wide�-Nash
equilibrium.

Proof: See [11], Chapter 3. 2

At such equilibria, the allocations are efficient (i.e. arbitrarily
close to the value-maximizing allocations).

Proposition 6: (Efficiency) Leta� be the equilibrium alloca-
tions. Under elastic demand, if in addition8i 2 I, if �00i exists
and for some� > 0, �00i � ��,

max
A

X
i

�i � ei(a)�
X
i

�i � ei(a�) = O(�=� + ��);

whereA = fa 2 Q
j [0; q

j
j ]
I :

P
i a

j
i � qjjg, for any � �

minifei(a�) : ei(a�) > 0g:
Proof: See [11], Chapter 3. 2

The bound�=� + �� is minimized when� =
p
�=�. Thus,

the strongest statement that can be made here is that as long as
minifei(a�) : ei(a

�) > 0g >
p
�=� we get an inefficiency

which isO(
p
�=�).

In a dynamic auction game,� > 0 can be interpreted as a
bid feepaid by a bidder each time they submit a bid. Indeed, in
Propositions 3 and 4, the user will send a best reply bid as long
as it improves her current utility by�, and the game can only end
at an�-Nash equilibrium.

IV. SUPPLY-SIDE

The interaction between brokers has a much richer dynamic
than discussed in the previous section. For example, not all con-
figurations of provisioning coefficients in the wide area network
lead to convergence and stable allocations. Depending on the
topology and degree of over-provisioning, the interaction be-
tween brokers can lead to oscillating allocations. On the other
hand, stable operating points may lead to zero allocations for
some brokers resulting in certain classes of service not being of-
fered at all. These are not mere artifacts of PSP or any particular
pricing mechanism but are fundamental issues of peering and
provisioning under edge-capacity allocation. The former case is
analytically related to classical problems such as route-flapping
using decentralized routing algorithms. The latter case relates
to empirical evidence in the best-effort Internet where market
forces abandon traditional “free-for-all” peering between net-
works of unequal size.

We now consider the supply game among brokers by itself.
For that purpose, the specifics of the auction mechanism and the
resulting prices are not needed. Indeed, the analytical results
presented here on the stability and sustainability of peering are
independent of the actual pricing mechanism used. It suffices
to know that a brokeri’s strategy results in buying capacities
aji from each of its peersj and offering a quantityei for sale
according to Equation (3), whereaji ’s are chosen to maximize
it’s profit; for details see [27]. We will then use simulations
using PSP auctions to verify that our insights are valid when the
two games are coupled.

Define the vectore = (e1; : : : ; ei; : : : ; eN ) for any profile of
allocationsa, whereei is the bottleneck capacity of selleri as
given by (3), andf1; : : : ; Ng is the subset ofI consisting of all
the sellers (RBS’ and SBBs). Pure buyers (users) are assumed
to be players numberedm = N + 1; N + 2; : : :. From (2) and



(3), at the equilibrium point, the following conditions will hold
for 1 � i � N :

ei =
X

j2I;j 6=i

aij (10)

aji = (ei � aij)r
j
i : (11)

Together, these equations merely state that at equilibrium, seller
i will not sell more than it’s bottleneck capacity, and that it will
not buy more than necessary from any of it’s peers.

The left hand side of (10),ei, is quantity that selleri is of-
fering to its users given what it has obtained on the buy-side,
while the right hand side is the quantity that is actually being
bought fromi on its sell-side. Thus the right hand side can
never be greater. If the left hand side is greater, theni is buying
more capacity than it can sell, which means it is wasting money
(since prices are always strictly positive), and therefore will re-
duce some of its bids on the buy-side. Thus an equilibrium can
occur only when equality holds.

The left-hand side of (11),aji , is the capacityi is buying from
j, while the right-hand side is the capacity it needs to buy from
j to maintain a bottleneck of at leastei. By definition – see (3)
– the right-hand side can not be greater than the left-hand side.
If the left-hand side is greater, the extra capacity bought from
j does not increase the bottleneck capacity thati can actually
offer on the sell-side, and thereforei will buy less fromj. Thus
an equilibrium can occur only when equality holds.

These conditions can be re-written in matrix form as

e = �e+ u; (12)

where for1 � i; j � N , j 6= i,

ui =
X
m>N

aim

0
@1 +

NX
k=1;k 6=i

rikr
k
i

1� rikr
k
i

1
A
�1

;

�i;i = 0;

�i;j =
rij

(1� rijr
j
i )

0
@1 +

NX
k=1;k 6=i

rikr
k
i

1� rikr
k
i

1
A
�1

:

The matrix� = (�i;j)1�i;j�N is the key to determining the
stability of the game. The spectral radius of a matrix�, denoted
�(�), is the largest of the moduli of the eigenvalues. Letj�j =
(j�i;j j)1�i;j�N .

Consider now the brokers dynamically playing against each
other. Specifically, on the buy side, each broker uses a best-reply
strategy [27], and on the sell side, limits the offered capacity
to the bottleneck capacity that it can obtain. Mathematically,
the brokers’ game is equivalent to a distributed computation to
solve (12).

Proposition 7: The provisioning game, where brokers play
asynchronously (i.e., each broker can act at any time, with no
assumed order of turns, and variable but finite delays between
turns), will converge to an equilibrium if an only if�(j�j) < 1.
Proof: This follows from the above argument and the chaotic
relaxation method [28], [29]. 2

Remark: (Dynamical system interpretation) The users –
through the demand vectoru – can be viewed as external inputs
driving a dynamic system, where the dynamics are governed by
the brokers: the system equation is then

e(t+ 1) = �e(t) + u(t): (13)

In this simplified view, all the brokers simultaneously adjust
their offered quantities fromei(t) to ei(t + 1), based on the
demand vectoru(t). The convergence of the game is exactly the
notion of stability of the dynamic system (13).
Remark: Brokers of different service classes do not buy from
each other. But different service brokers in the same network do
compete with each other to buy capacity from the RBS, and the
RBS does not buy from any other player (see Figure 1). Thus,
we have the following matrix structures in, for example, a two
class network:

� =

0
@ �class1 0 0

0 �class2 0
Id Id 0

1
A ; (14)

whereId is the identity matrix, which is in the rows correspond-
ing to the RBSs. Since the eigenvalues of� comprise all the
eigenvalues of the diagonal blocks (i.e.,�class1, �class2 and0),
the different service classes are independent with regard to sta-

bility. Therefore, for any class, we need only take
�
rji

�
i;j2I

the

matrix of the brokers’ inter-network provisioning coefficients,
derive the correspondingj�j, and compute its eigenvalues to test
whether or not the game among brokers is stable.
Remark: When all therji are equal, i.e.,rji = r;8i; j; i 6= j, we
have:

�i;j = � =
r

1 + (N � 2)r2
:

In this casej�j has a single eigenvalue equal to(N � 1)� and
N � 1 eigenvalues equal to�, and

�(j�j) = (N � 1)� =
(N � 1)r

1 + (N � 2)r2
:

Specifically, whenN = 2; �(j�j) = r, so the convergence con-
dition becomesr < 1.
WhenN � 3, the convergence condition�(j�j) < 1 is equiva-
lent to:

(1� N � 1

2
r)2 > (

N � 3

2
r)2 , r <

1

N � 2
or r > 1:

Therefore,the equal provisioning game over more than two fully
connected networks does not converge ifr 2 [ 1

N�2 ; 1].

V. SIMULATIONS

The strategic game analysis in Section III establishes the op-
timal strategies and the existence of a stable and efficient oper-
ating point in the PSP games between dynamic buyers and static
sellers. But these analyses do not give any indication as to which
particular equilibria will be reached. The provisioning matrix
formulation in Section IV further reveals the stability condition
of the provisioning game among dynamic sellers.

In what follows, we will use simulation to further study the
DiffServ PSP framework and confirm the above analytical re-
sults under a realistic service provisioning scenario.



A. Simulation Configuration

We consider two classes of services, and hence, two SBBs in
each sub-network:
� class 2 is for reliable and high quality service (e.g., the vir-

tual leased line service considered by the EF PHB), and;
� class 1 is for adaptive multimedia applications with less

stringent quality requirements (like the Olympic Bronze
service in Figure 2).

In this scenario, best-effort service does not need any explicit
capacity allocation. It is charged on flat rate and does not par-
ticipate in the bandwidth auction market.

The simulation network has a mesh topology of three net-
works as shown in Figure 1. Two access networks, A and B, con-
nect to each other and to a backbone network M. Inter-network
links are assumed to have a capacity equal to the capacity of the
destination network.

The different degrees of provisioning for the two service
classes are reflected in the routing factorsrij that are set ac-
cording to Table II. One can observe the structural similarity
betweenrij in Table II and�i;j in Equation 14.

TABLE II

INTER-NETWORK PROVISIONING COEFFICIENTS: rij (EMPTY ENTRIES ARE

ZERO)

buyer
seller class 1 SBBs class 2 SBBs RBS’

A B M A B M A B M

class 1 A 0.3 0.2 0.1
SBBs B 0.2 0.3 0.1

M 0.5 0.5 0.8
class 2 A 1.0 0.4 0.1
SBBs B 0.4 1.0 0.2

M 1.0 1.0 1.0
A 1.0 1.0

RBS’ B 1.0 1.0
M 1.0 1.0

TABLE III

SIMULATION PARAMETERS

available bandwidth (Mbps)
net A net B net M
40 40 150

user distribution:
uniform across classes and networks

20 “T1” users per class
max capacity: unif.[0:75; 2:25] Mbps

10 “T3” users per class
max capacity: unif.[20; 60] Mbps

mean ON interval mean OFF interval
10 time units 1 time unit

The simulation parameters are given in Table III. To simulate
the dynamics of subscribers switching among service providers,
each user is modulated by an ON-OFF Markov process. At the
beginning of an ON period, the user is connected randomly to
one of the three networks (a uniform load distribution). During
the ON period, a user continuously bids for bandwidth based
on its valuation curve and presumably sends out traffic at a rate
within the allocated bandwidth. During OFF periods, the user

unsubscribes from the service. ON and OFF intervals are ex-
ponentially distributed with mean of 10 and 1 time units, e.g.,
one second or one week. In the remainder of this paper, we use
one minute in simulation time as the time unit. The users are
given randomly generated valuation curves, which model them
as having elastic demand. Thus, a class 1 useriwith a maximum
capacity�ai = 1:5 Mbps will request a quantity ranging from 0
to 1.5 Mbps of class 1 service capacity. Both the quantity and
price of a bid depend not only on the player’s valuation, but also
on the market conditions (the requested quantities and bid prices
of the other players).

B. Valuation Function

In Section III, we assumed a very general form (i.e. elastic
demand) for a user’s valuation. Further specification of users’
valuations requires a market study on actual Internet users (see
for example [30]).7 A realistic valuation model for wholesale
Internet bandwidth over the last several years can be gleaned
from the following observation [31]:

... cutting coming communication costs in half every
twelve months, the market responded by doubling the
traffic every six months.

This can be written as

�0i(ai) = �i=
p
ai: (15)

Thus, in the simulations, we give our users valuations of the
form

�i(ai) = 2�i
p
ai ^ ai: (16)

In our simulation, for each class, we generate 20 users withai
drawn from a uniform distribution on[0:75; 2:25] (we label these
“T1” users which also include users of multiple or fractional
T1), and 10 “T3” users withai drawn from[20; 60] (Mbps). The
parameter�i is also chosen randomly such that�i(ai) is uniform
on [0:6; 1:8] (c/min) for the T1 users, and on[18:0; 54:0] (c/min)
for the T3 users.8

As mentioned in Section III, the broker’s buy-side valuation
must be smoothed. We select the same form as in (16). To
fit the curve to the demand, the broker dynamically setsai =P

j q
i
j and chooses�i such that�i(ai) =

P
j q

i
jp

i
j . In (15), note

that asa approaches zero, the marginal valuation approaches
infinity. In some circumstances, this last feature can be useful.
A finite maximum marginal valuation would make it possible for
the broker to be completely shut-out (i.e.alj = 0 at some peer
l where enough users have very higher valuations), and when
one broker is shut-out, so are all its peers, and the service is no
longer offered on an inter-network basis.

C. Stability of Market Pricing Mechanisms

In this section, we focus on the demand-side, and illustrate
the results of Section III.

7Recall that the difficulty in developing realistic models is one of the reasons
why auctions are advantageous in the first place, since the (run-time) mechanism
itself (5)-(6) does not need to know the valuations.
8These numbers roughly correspond to capacities and prices in today’s In-

ternet access market. We randomize both to reflect the wider variety of access-
speeds and willingness to pay that are likely with future (differentiated) services.
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Fig. 4. Trace at net M – horizontal axis is time in minutes

The simulations are run with the full dynamics of both the
demand and supply sides, i.e. users behave according to Propo-
sition 3 and brokers according to Proposition 4 on the buy-side.
On the sell-side, as required by Proposition 1, the brokers do not
sell more than the expected bottleneck capacity (3), and they do
so by setting a buy-back bid as explained in the remark follow-
ing Proposition 1. However, we intentionally omit the floor price
pjj that ensures the broker profitability, in order to see where
profits are likely to be realized.

Simulation traces of the state of the six SBBs (two in each
of the three networks) are presented in Figures 4 to 6. Each
figure contains four plots showing the total demand at that SBB
(sum of bid quantities), the offered quantity, which is the ex-
pected bottleneckei (see Proposition 1), the market-price and
the SBB’s profit. Each quantity is shown for class 1 (solid line)
as well as class 2 (dotted line).

We observe that:
� despite the dynamics of arrivals and departures, the two

classes remain stable and the SBBs are able to maintain
consistent offered capacitiesei in all three networks; price
changes reflect the supply and demand, and the dynamic
market successfully allocates resources, which demon-
strates that the PSP distributed market mechanism can
quickly converge to the equilibrium given by Proposition 5;

� in each network, as expected, the higher quality class 2 is
more expensive. This is despite the fact that the demand
from the users is statistically identical; thus, the difference
in price arises through market dynamics, and is purely due
to the provisioning coefficients (i.e. corresponds to a dif-
ference in quality);

� relatedly, the bottleneck (or offered quantity) is smaller for
class 2 in all cases. These two effects (smaller bottleneck
and higher price) balance each other out, and allow the
SBBs to co-exist while having differentiated quality. For
example, if the market price of class 1 in network A drops
“too low”, then that SBB cannot compete with the SBB of
class 2 in the same network in buying from their common
RBS, which causes the first SBB to reduce the quantity of
class 1 service offered in network A, which then causes
more intense competition among the buyers of that service,
and hence a price rise;

� the high-quality class 2 has a slightly higher share in the
high-capacity network M (about 1/3 of the capacity) than it
does in the smaller networks (about 1/4 of the capacity);
this is because the demand is equally distributed across
the three, therefore M has less competition for resources,
and therefore an over-provisioned class is sustainable at a
higher share of the total;

� indeed, the large network M is consistently less expensive
(in terms of unit market price) than the smaller ones;

� all SBBs remain profitable over the long run, despite not
having reserve (minimum) prices, which validates the bro-
ker strategy of Proposition 4. Whenever one SBB’s profit is
momentarily negative, then its RBS or a peer SBB is mak-
ing a corresponding extra profit. However, for the same
reason outline above, competition for the underlying re-
sources (at the RBS level) prevents one class from being
substantially more profitable than the other.
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The simulation of the stable scenario provides a sanity-check
on the market mechanisms, and indeed results are completely
in line with intuition. In the next section, we consider unstable
scenaria, which as we shall see, do not always yield to intuition.

D. Stability of Inter-network Provisioning

Consider now three inter-connected networks, with just one
class, i.e., three brokersf1; 2; 3g. Let r21 = r12 = x, r31 = r32 =

y, andrji = 0:99 for all other pairsi; j. Figure 7 shows�(j�j) as
a function ofx andy. The figure shows that whenx > 1 andy <
1 or vice-versa, the provisioning of this class becomes unstable.
It is interesting to note that simply over-provisioningx > 1 and
y > 1 does not give rise to instability. Thus, instability can be
due more to asymmetry in the flows rather than to the actual
degree of over-provisioning.

Neither can instability be simply attributed to the existence
of “cycles” in the graph of the network. Figure 8 shows a sce-
nario where a single class network – with a simple topology of
two access networks connected to a backbone network – can
be unstable even if the graph of the network has no cycles. In
Figure 8(b), the right-hand side shows the allocations for traffic
going from A to M (dotted curve), and the bottleneck capacity in
A itself (solid curve). The instability is reflected in the volatility
of the allocated capacities.

In a stable scenario, one must still worry about what kind of
equilibrium is reached. Indeed, it can happen that the only equi-
librium for a stable class is one where all the bottlenecks are
zero. Figure 9 illustrates this possibility, which we refer to as
“dis-peering”. Here, we simulate the network shown in Fig-
ure 1, with a single class that is provisioned identically in all
directions, i.e.,8i; j; i 6= j; rji = x. As x approaches0:5, the
bottleneck becomes smaller, until finally, none of the brokers
has any capacity to sell. Here, there is only one class, and the
physical capacity as well as the average demand from the users
remains constant (even though users do come and go – see Ta-
ble III). Thus, the reduction in bottlenecks is purely a result of
the provisioning dynamics, and not of other traffic “squeezing
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Fig. 8. Simulation of one unstable class, in the right-hand side of plot (b), the
solid curve represents bottleneck bandwidth and the dotted curve represents
allocated bandwidth. The horizontal axis is the number of simulation time-
units. The scenario is unstable as allocations do not converge.

out” this class. Indeed, since capacity is edge-allocated, a bro-
ker must provision for all possible routes (here there are two,
one to each peer network), with a degree of assurancex. When
this required assurancex reaches a critical level (which depends
on the topology), it becomes impossible for the broker to sat-
isfy any demand. This is one of the “penalties” to be incurred
in exchange for the simplicity and scalability of edge-capacity
allocation with stateless service differentiation. Indeed, if the
broker could offer allocations tied to specific routes (e.g. with
techniques such as MPLS [?]), “dis-peering” would not occur.

This effect may also be the converse of what has been ob-
served in the current (best-effort only) Internet. In recent years,
some large ISPs have decided it is not in their interest to peer
free of charge with some smaller ones because they would
do better by selling the bandwidth directly to their own cus-
tomers [32]. Here, with differentiated services, a broker in a
large network may decide to setrji = 0 in the direction of the
smaller networks (i.e., not to buy any differentiated service from
the smaller network), when it is not worthwhile to get the al-
locations required for a high level of assurance in a congested
network. Other related phenomena have been studied in the lit-
erature [33], [34], [35].

VI. CONCLUSION

We have presented a decentralized auction-based pricing ap-
proach for differentiated internet services. Our game theoretic
analysis identifies the best strategies for end users and band-
width brokers. The analysis proves the existence of efficient
stable operating points and the simulations indicate that even
an aggregate 50% difference in the degree of provisioning be-
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Fig. 9. “Dis-peering” effect, the legend of x axis is the number of simulation
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tween two services does not lead to extreme differences in the
market price of services, and partitioning of bandwidth between
services, because of the competition among service brokers for
the underlying resources (e.g. bandwidth).

In investigating the stability of provisioning differentiated in-
ternet services using a distributed game theoretic model, our
results indicate that, in an internet with multiple differentiated
classes competing for the same resources, even though the de-
mand for one service affects the amount of capacity available for
another, thestability of each class is independent of the others’.
Thus, the good news is that dynamic market-driven partitioning
of network capacity among services appears sustainable. The
bad news is that very conservatively provisioned services can
be unstable on this macro level, even in the simplest network
topologies. Even in stable cases, the only sustainable outcome
may be to not peer for differentiated service traffic. These re-
sults are not merely artifacts of PSP or of any particular pricing
mechanism. They appear to be fundamental issues of market-
driven peering under edge capacity allocation.

The dynamic system formulation of (13) suggests an inter-
esting direction for future work. It may be possible to achieve
certain wide-area network objectives, (e.g., stability or avoiding
“dis-peering”) by exercising feedback control. If such controls
can be derived and are not too large in magnitude, they could be
applied by injecting some service requests at multiple strategic
edge points to drive the brokers of that specific class to a benefi-
cial equilibrium. Another direction for further work is the study
of the interaction between edge-allocation such (as in Diff-Serv)
and route-pinning approaches (such as MPLS [?]), which may
provide the most immediate means of addressing potentially un-
stable peering configurations.
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APPENDIX

I. BROKER’ S BUY-SIDE COORDINATION

Lemma 1: (Broker coordination) Letj 2 I be a broker. For
any profiles, sj = (qj ; pj), let a � a(s) be the allocations that
would result, andm = argmink e

k
j (a). Then, a better reply for

the broker isxj = (zj ; pj), where8l 6= j

zlj =
h
emj (a)� ajl

i
rlj :

That is,uj(xj ; s�j) � uj(s). Moreover,

alj(zj ; pj) = zlj : (17)
Proof: To avoid cluttered notation, sinces�j is fixed, we will
omit it, writing, e.g.,uj(:; :) � uj((:; :); s�j). Also, the argu-
ment of the function will be omitted when it is simplys, so that
uj � uj(sj) � uj(sj ; s�j). Note that, since we are holding all
the other players fixed, and varying only the buy-side of player
j, only the quantities with subscriptj will change. In particular,
ajl remains the same throughout.

We will show that

uj � uj(qj ; pj) � uj(zj ; pj) (18)

Now,8l 2 I,

zlj =
h
emj (a)� ajl

i
rlj

�
h
elj(a)� ajl

i
rlj = alj

�

2
64qll � X

pl
k
�pl

j
;k 6=j

qlk

3
75
+

; (19)

where the last line follows from (5). Now using (5) again, we
get

alj(zj ; pj) =

2
64qll � X

pl
k
�pl

j
;k 6=j

qlk

3
75
+

^zlj = zlj =
h
emj (a)� ajl

i
rlj ;

where the second equality follows from (19), and the last is by
definition. This proves (17). Thus, we haveelj(a(zj ; pj)) =

alj(zj ; pj)=r
l
j + ajl = emj (a), and this holds8l 6= j. Therefore,

by Proposition 2,�j(a(zj ; pj)) = �j(a), i.e., changing the bids
from (qj ; pj) to (zj ; pj) does not changej’s bottleneck value.
Therefore,

uj(zj ; pj)� uj =
X
l6=j

clj � clj(zj ; pj)

=
X
l6=j

Z alj

al
j
(zj ;pj)

f l(qll � z) dz:

Now 8l, emj (a) � elj(a) ) zlj=r
l
j + ajl � alj=r

l
j + ajl ) alj �

zlj � alj(zj ; pj); where the last inequality follows from (5). That
along with the fact thatf l � 0 impliesuj(zj ; pj)� uj � 0. 2


