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ABSTRACT

Most top end smart phones come with a handful of sen-
sors today. We see this growth continuing over the next
decade with an explosion of new distributed sensor applica-
tions supporting both personal sensing with local use (e.g.,
healthcare) to distributed sensing with large scale commu-
nity (e.g., air quality, stress levels and well being), popu-
lation and global use. One fundamental building block for
distributed sensing systems on mobile phones is the auto-
matic detection of accurate, robust and low-cost phone sens-
ing context ; that is, the position of the phone carried by a
person (e.g., in the pocket, in the hand, inside a backpack,
on the hip, arm mounted, etc.) in relation to the event
being sensed. Mobile phones carried by people may have
many different sensing contexts that limit the use of a sen-
sor, for example: an air-quality sensor offers poor sensing
quality buried in a person’s backpack. We present the pre-
liminary design, implementation, and evaluation of Discov-
ery, a framework to automatically detect the phone sensing
context in a robust, accurate and low-cost manner, as peo-
ple move about in their everyday lives. The initial system
implements a set of sophisticated inference models that in-
clude Gaussian Mixture Model and Support Vector Machine
on the Nokia N95 and Apple iPhone with focus on a limited
set of sensors and contexts. Initial results indicate this is
a promising approach to provide phone sensing context on
mobile phones.

1. INTRODUCTION

The recent explosion of smartphones (e.g., Nokia, Apple
iPhone, and Android phones) with embedded sensors is en-
abling a new generation of personal and environmental sens-
ing applications [1, 2, 3, 4]. These applications are built on
multi-faceted real-time sensing operations that require in-
creasing computation either on the phone [2] or backend
servers [3], or a combination of both [1]. As the demands
of these new distributed sensing applications built on com-
mercial phones is better understood in terms of their needs
for on-phone sensors, computation and communication re-
sources, a number of important challenges are emerging. Be-
cause these continuous sensing applications are extremely
resource hungry in terms of sensing, computation and com-
munications (with backend servers) there is need to drive
the operation of the phone in a more intelligent manner.
We believe efficiently computing the low level context of the
phone, that is, the position of the phone carried by a per-
son (e.g., in the pocket, in the hand, inside a backpack, on
the hip, arm mounted, etc.) in relation to the event be-

ing sensed - which we call the phone sensing context - is a
fundamental building block for new distributed sensing ap-
plications built on mobile phones. These observations have
grown out of our implementation of CenceMe [1] and Sound-
Sense [2], two continuous sensing applications implemented
on Nokia and Apple phones. While there has been signifi-
cant research in the area of context aware applications and
systems, there has been little work on developing reliable,
robust, and low cost (i.e., in terms of energy efficient and
computational costs) algorithms that automatically detect
the phone sensing context on mobile phones. We envision
a future where there are not only personal sensing applica-
tions but we see the mobile phone as enabling global sensing
applications where the context of the phone in relation to
the sensing event is crucially important.

The different context impacts the fidelity of a sensing ap-
plication running on mobile phones. For example, the cam-
era is of little use in the pocket but the microphone might
still be good [2]. Researchers are developing new sensors for
the phones that we imagine will be available over the next
decade, these include CO2 and pollution sensors [5]. If the
phone is carried inside the pocket or a backpack, an applica-
tion relying on CO2 or pollutants measurements would per-
form very poorly given that the phone is not exposed to open
air. A better position for such sensing would be out of the
pocket when the phone is exposed to a more suitable context
for sensing. Similarly, if the accelerometer readings of the
phone are used to infer the person’s activity, the accelerom-
eter would report different data if the phone is mounted
on the arm or clipped to the belt. This is because, given
the same activity, such as walking for example, arm swings
would activate the accelerometer much more strongly for an
arm-mounted phone than on the belt, where the phone os-
cillates more gently. In both cases a mechanism to infer the
context of the mobile phone is needed in order to make the
applications using the CO2 or pollution sensor and the ac-
celerometer, respectively, react appropriately. We envision a
learning framework on the phone that is more sophisticated
than what is implemented today. For example, when sensors
report different sensor readings according to the position on
the body, such as the accelerometer, the application’s learn-
ing engine should switch to different classification algorithms
or sensor data treatment policy in order to meet the appli-
cation requirements.

Today the application sensing duty-cycle is costly because
it is not driven by the phone sensing context, therefore, it is
costly in terms of energy usage for sensing, computation and
potentially communications if the inference is done on the



backend, as in the case with split-level classification [1]. By
offering system developers accurate phone sensing context
prior to running classification algorithms, very low duty-
cycle continuous sensing application systems are possible.
In this case, the phone sensing context mechanism would re-
frain the application from activating a power hungry sensor
if the context is unsuitable (e.g., don’t activate the pollution
sensor if the phone is not out of the pocket) or it may weight
real-time sensor readings or inferences based on knowledge
of where the phone is on the body (e.g., if the microphone is
needed to measure human activity [2] and it is in the bag).

In this paper, we discuss Discovery, a framework that ad-
dresses the context problem supporting mobile phone-based
sensing with improved accuracy and lower duty-cycle sys-
tems. Discovery is designed to automatically detect the
phone sensing context as people move about in their ev-
eryday lives. Automatic context detection is a primary issue
for mobile phone sensing applications because prompting the
user to provide information about the position of the mo-
bile phone on the body is not a viable and scalable solution.
Phone sensing context is an important building block toward
the successful implementation of personal, social, and public
sensing applications on mobile phones and the work in this
paper, while preliminary, provides important steps towards
the goal of providing reliable phone sensing context. This
paper is organized as follows. Section 2.1 contains the mo-
tivation of this work, while details of the approach taken in
Discovery are discussed in Section 2.2. Preliminary evalua-
tion results are discussed in Section 3. Future directions are
reported in Section 4 and the related literature in Section 5,
before concluding in Section 6.

2. DISCOVERY FRAMEWORK

In what follows, we discuss some challenges phone sensing
context presents, its preliminary design and implementation
as part of the Discovery framework, as shown in Figure 1.

2.1 Phone Sensing Context

Accurate, robust and low duty-cycle detection of phone
sensing context is an important enabler of distributed sens-
ing applications on phones, in particular, continuous sensing
applications that sample sensors, make inferences, and com-
municate with the backend services in real-time.
Assume mobile phones are equipped with pollution, CO2,
or more specialized environmental sensors as we imagine [5].
Measurements from any of these sensors would most likely
be impeded by the presence of clothing or fabric (e.g., phone
inside the pocket or backpack) or by a short time interval
the sensors are exposed to an ideal sensing context (i.e.,
phone in hand or exposed to open air). Therefore, phone
sensing context detection would improve the sensing system
performance. We could stop the system from activating the
sensors when the quality of the sensor data is likely to be
poor (e.g., phone inside the pocket). This would help re-
duce the sensing duty-cycle improving the battery lifetime
of the phone, which continuos sensing application signifi-
cantly limit today (e.g., phones running CenceMe [1] were
initially limited to only 6 hours of operation). We could in-
form the system when a suitable sensing context is triggered
or detected (e.g., phone taken out of the pocket) to maxi-
mize the accuracy and robustness of the sensing application
which would then take advantage of the new context for col-
lecting as many sensor readings as possible. It is evident

the importance of the phone sensing context role in driving
mobile phones sensors duty-cycle lower.

Another reason to provide phone sensing context as a low
level service on phones is to improve the inference fidelity
of distributed sensing applications. Although previous work
[6] shows that it is possible to obtain reasonably good ac-
tivity classification accuracy when using training data from
sensors mounted on different parts of the body, it is not
clear how an activity classifier would perform when the de-
vice is a phone, not specifically mounted (but moving as a
dynamic system), and operates in noisy, everyday environ-
ments that people find themselves in, rather, than under
laboratory test conditions. Many questions remain. Would
training data from many activities and different parts of the
body make a single classification model accurate enough?
To avoid excessively diluting the training data set, would
it not be preferable building a classification model for each
single activity and position of the mobile phone on the body
and then switch models according to the detected phone
sensing context? For example, a system could have a “walk-
ing” activity classification model for when the mobile phone
is in the pocket, in the person’s hand, and in the back-
pack and use one of the models according to the detected
phone sensing context. Results obtained from experimen-
tation in [1] show, for example, that activity classification
accuracy varies when the phone is carried in the pocket or
in the hand. A system that used phone sensing context to
drive the classification model by switching in the right tech-
nique would alleviate this problem. We believe this is of
importance now that smart phones are growing in sensing
and computational capability and new demands are emerg-
ing from different sectors such as healthcare. It is important
to note that in the case of health care sensing applications
it is fundamental to limit the classification error. Sensing
context detection could drive inference model switching in
order to achieve better classification accuracy.
We argue that phone sensing context detection could also be
exploited by existing phone applications and services. For
example, by inferring that the phone is in the pocket or bag,
a caller might be informed about the reason the callee is not
answering the phone call while the callee’s phone ring tone
volume could be increased so the callee might pick up. One
could imagine people enabling this type of additional pres-
ence provided to legacy phone service through Discovery.
By using the gyroscope (which measures the angular rate
change of the phone) to detect the user taking the phone
out of the pocket and moving it upwards, the screen saver
could be disabled and the phone’s keypad made automati-
cally available. One could imagine many such adaptations
of the UI with phone sensing context enabled. Similarly, the
action of moving the phone towards the lower part of the
body could trigger power saving mode. The camera appli-
cation on the phone could be automatically started as the
phone is detected in the user’s hand and moved in a vertical
position, which is the condition that normally precedes the
action of taking a photo. One could imagine phone sensing
context provided by the Discovery framework discussed in
the next section being applicable to many emerging appli-
cations finding their way on to smartphones. For example,
reality mining using mobile phone sensor data is starting to
be explored as an enhanced form of communication and for
social purposes [7].








































 


  

Figure 1: Discovery inference steps.

2.2 Design

The idea behind Discovery is to use the entire suite of sens-
ing modalities available on a mobile phone to provide enough
data and features for context discovery at low cost and for
increased accuracy and robustness. Many research questions
arise in response to the challenges discussed above: how do
we combine the input from multiple sensors, such as, ac-
celerometer, microphone, gyroscope, camera, compass, etc.,
to infer the phone sensing context? What are the best learn-
ing approaches and feature selection policies in order to pro-
vide a reliable and scalable context inference system? How
do we design low duty-cycling policies with acceptable ac-
curacy when employing phone sensing context? What is the
inference accuracy and energy cost tradeoff between using
all the possible sensors and only a subset of them according
to their availability on the mobile phone? Which sensor set
is more responsive to the type of noise in the system (i.e.,
classification outside controlled laboratory environments)?
We believe that Discovery in its totality needs to ultimately
address these demanding challenges. However, our prelimi-
nary work focuses on a simple phone sensing context: is the
phone in the pocket or out. This sounds like a trivial context
that could be solved by a number of different sensors. We
focus on the microphone - a powerful and ubiquitous sensor
on every phone on the market - making Discovery suitable
to potentially all phones not just the smart ones. In what
follows, we outline out initial framework design.

Discovery consists of a hierarchical inferences pipeline, as
illustrated in Figure 1:
First Level Inference - Uni-sensor inference: In this
phase, the sensor data from individual sensors is used to op-
erate a first level of inference. Features extraction is tailored
to each sensor. This first inference step provides hints about
the nature of the current phone sensing context, which, how-
ever, might not be conclusive. For example, the use of the
camera or light sensor to infer if the phone is in or out
the pocket could be misleading because a phone out of the
pocket could be in a dark environment, the camera could be
covered by the person’s hand or by the surface where the
phone is positioned. For this reason, a second level of infer-
ence built on top of the first is needed.
Second Level Inference - Multi-sensor inference: In
this phase, the inference process is based on the output of
the first phase. Hence, the first level of inference provides
the features to the second level. At this stage, the combi-
nation of the camera/light sensor and microphone output
would provide better confidence about the actual sensing
context. The accelerometer as well could be used as a hint
to determine if the phone is inside or outside the pocket
given the different accelerometer data signatures when the

phone is in a person’s hand versus when it’s in the pocket.
Similarly, by measuring the angular rate change, the gyro
could provide indications that the phone has been taken out
of the pocket considering that the arm rotation would be
picked up by the gyroscope.
Third Level Inference - Temporal smoothing: In this
phase, temporal smoothing and Hidden Markov Model (HMM)
techniques are used on the output of the second level infer-
ence. This step exploits the correlation in time of sensed
events when a phone experiences a certain context.

2.3 System Implementation

For our initial implementation of Discovery context clas-
sifiers are implemented on the Nokia 95 and Apple iPhone.
The preliminary system implements a set of sophisticated in-
ference models that include Gaussian Mixture Model (GMM)
and Support Vector Machine (SVM) on the Nokia N95 and
Apple iPhone with focus on a limited set of sensors and in-
ferences; that is, we uses the microphone sensing modality
to infer the phone sensing context of in the pocket and out
of the pocket. We discuss our initial results in the next
section. Further modalities, such as accelerometer, com-
pass, and light sensor, are going to be used in combination
with the microphone to infer a larger set of sensing context
as part of our future work. The initial idea is to evalu-
ate which learning technique (between GMM and SVM) is
better suited to the problem and, at the same time, to in-
vestigate the adoption of more than one learning strategy
in concert to perform the final classification. More learning
strategies will be evaluated in the following phase of this
work. The challenge with GMM and SVM is that the phone
has not been developed to run these computationally de-
manding models. Part of our efforts is to implement light
weight versions of these models as a way forward to do more
sophisticated multi-inference classification, as called for by
Discovery. In particular a 20-component GMM is adopted,
where the number of components is chosen by evaluating the
model over the test data set varying the number of compo-
nents and picking the number of components returning the
best classification accuracy.

Feature Selection. The selection of an appropriate set
of features is a key step to good classification performance.
At the moment, a supervised learning approach is adopted
and Discovery relies on a 23-dimensional feature vector ex-
tracted from an audio clip. A richer selection of features
will be evaluated as part of our future work. The current
features are:
1st-19th : Mel-Frequency Cepstral Coefficients (MFCC), which
have been proven to be reliable features in audio signal clas-
sification problems. For the MFCCs extraction we rely on
a well-known Matlab libray [8] which is largely used by the
research community. We also developed a C version of the
MFFC extractor library that can run on the phone;
20th : power of the audio signal calculated over the raw au-
dio data;
21st, 22nd : mean and standard deviation of the 2048-point
FFT power in the 0-600 Hz portion of the spectrum. The
reason for focusing on this portion of the spectrum can be
seen from Figures 2(a) and 2(b), where the presence of a
pattern between the two FFT distributions - for in pocket
and out-of-pocket recording - is clear. It can be seen that
such a pattern is more evident in the 0-600 Hz portion of
the spectrum rather than in the whole 0-1024 Hz range;
23rd : this feature is the count of the number of times the
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Figure 2: (a) FFT power of an audio clip when the phone is inside the pocket; (b) FFT power of an audio clip

when the phone is outside the pocket; (c) Count of the number of times the FFT power exceeds a threshold

T for both the in-pocket and out-of-pocket cases.

Table 1: Sensing context classification results using only the microphone. Explanation: when a result is

reported in X/Y form, X refers to the in pocket case, and Y refers to the out of pocket case. If the column

reports only one value, it refers to the average result for both in and out of pocket. Legend: A = GMM; B

= SVM; C = GMM training indoor and evaluating indoor only; D = GMM training outdoor and evaluating

outdoor only; E = SVM training indoor and evaluating indoor only; F = SVM training outdoor and evaluating

indoor only; G = GMM training using only MFCC; H = SVM training using only MFCC.

Classification results A B C D E F G H

Accuracy 84% / 78% 80% 75% / 84% 84% / 83% 68% 81% 77% / 79% 71%

Error 16% / 22% 20% 25% / 16% 16% / 17% 32% 19% 23% / 21% 29%

FFT power exceeds a certain threshold T. This threshold is
determined by measuring the Euclidean difference between
the count of the in-pocket and out-of-pocket cases and pick-
ing the threshold that maximizes such a distance. An ex-
ample of the count for both the in-pocket and out-of-pocket
cases is shown in Figure 2(c) where it can be seen how these
features can be used to discriminate between the in pocket
and out of pocket cases. The x-axis of Figure 2(c) reports
the number of bins the clip has been split in to.

Consequently, for the mixture model, a 20-component, 23-
dimensional GMM is used. The SVM classifiers adopts the
23 dimensional feature vector.

Training. The training phase is performed using audio
data collected with a Nokia N95 and Apple iPhone in dif-
ferent settings and conditions from a person going through
different environments for several hours. Namely, the audio
is recorded in a quiet indoor office environment and an out-
door noisy setting (along a road with cars passing by). In
both scenarios the phone is carried both in the pants pocket
and outside the pocket in the hand. The choice of these
scenarios, i.e., indoor and along a road, is motivated by the
fact that they are representative of classes of locations where
most likely people spend a lot of their time while carrying
their phone both inside and outside the pocket. For each
configuration 14 minutes of audio are recorded at different
times. Half of each clip (i.e., about 7 minutes of audio)
is used to train the classifiers. The training data is finally
labeled accordingly.

Prediction. For prediction, the remaining half of each
audio clip not part of the training set (i.e., duration of about
7 minutes) is used. Each sample consists of a 96 msec chunk
from which the 23 features are extracted. For each configu-

ration there are about 58000 samples available for training
and 58000 for evaluation.

3. PRELIMINARY SYSTEM EVALUATION

In what follows, preliminary results from using both the
GMM and SVM classification techniques are reported. The
results highlight that the audio modality is effective in de-
tecting the in/out of pocket context with reasonable accu-
racy. Higher accuracy can be achieved by combining further
modalities such as accelerometer and light sensor. Columns
A and B in Table 1 show, respectively, the classification re-
sults for GMM and SVM when the training data combines
both indoor and outdoor audio and the phone is carried in
and out the pocket. The results are quite encouraging, since
we obtain about 80% accuracy (see the accuracy values in
columns A and B) adopting a non sophisticated feature set
and using only one sensing modality, i.e., the microphone.
We are confident that by bringing into the classification pro-
cess more modalities, for example the accelerometer and
light sensor, a more accurate selection of the feature vec-
tor, and temporal smoothing it might be possible to achieve
a much higher classification accuracy. We then train and
evaluate the models for only one scenario, i.e., either indoor
or outdoor. The results using GMM are in Table 1 column
C and column D. The results for SVM are in column E and
column F. In the case of SVM trained and evaluated for the
indoor scenario only (see column E) the accuracy is lower
than the other cases because Libsvm (the well known SVM
library implementation we adopt) is running with the de-
fault settings with the kernel optimization being disabled.
From these results it is interesting to see that training the



models with both indoor and outdoor data does not dilute
the training data and the final classification accuracy does
not drop significantly compared to the case when the models
are trained for a single scenario only and evaluated for the
same scenario. In fact, the accuracy in columns C, D, and
F is on average close to 80% as in the case of indoor and
outdoor training data set (see columns A and B). Columns
G and H in Table 1 show, respectively, the classification re-
sults for GMM and SVM when the model is trained using
only MFCCs (hence a 19-dimensional feature vector). It is
evident that the addition of the 4 extra features (i.e., sig-
nal power, FFT mean, FFT stddev, and number of times a
threshold is exceeded by the FFT power) boosts the classifi-
cation accuracy. The improvement can be seen by compar-
ing the results in columns G and H with the ones in columns
A and B.

4. FUTURE WORK

After the initial promising results, the goal is to imple-
ment a working prototype for the Android platform as well.
More sensing modalities are going to be used in combination
with the audio modality. In particular, the accelerometer,
magnetometer, and light sensors. Research is going to be
needed in order to identify the most suitable feature vector
elements that combine the characteristics of all the sensing
modalities. Temporal correlation between events is also go-
ing to be taken into consideration to improve the overall
accuracy. Techniques such as HMM or voting strategies will
be taken into account. We will also pursue the idea of letting
people customize the Discovery classifiers to accommodate
their habits and needs.

5. RELATED WORK

In the literature, context awareness follows the definition
that Weiser [9][10] and others [11][12] provided when in-
troducing or evolving ideas and principles about ubiquitous
computing. In that case, context awareness is intended as
either the awareness of situations and conditions character-
izing sensor devices surroundings or the behavior, activity,
and status of the person carrying the sensors in order to
provide smart ways to facilitate and explore interaction be-
tween machines and humans. Thus, context is seen as the
collection of happenings around a monitored subject and the
response of the subject to such those happenings. The work
in [13, 14, 15, 16, 14] are examples of how sensing systems
are adopted to infer such a context and/or leverage context
awareness. In some cases external sensors, i.e., not part of
the mobile phone itself, are also needed [14][13] in order to
perform accurate context inference. The authors of [17] use
the word context to mean location awareness and propose
applications that efficiently build on top of it. A very large
body of work focuses instead on the use of various sensing
modalities such as accelerometer, magnetometer, gyroscope
to infer a person’s activities for different applications [18,
19, 6, 20, 1, 21, 22, 23]. The authors in [24] present an
approach to help discover the position of the phone on a
person’s body. The work highlights two limitations: it uses
simple heuristics derived from a small training data set to de-
termine the classification rules, and it uses a single modality
approach, i.e., the accelerometer. We instead rely on a sys-
tematic design using machine learning algorithms that are
more scalable and robust than simple heuristics and con-
sider a larger training data set from multiple positions on
the body and different scenarios while using a multi-sensing

modality approach.

6. CONCLUSION

In this paper, we argued that phone sensing context is a
key system component for future distributed sensing appli-
cations on mobile phones. It should be designed to be ac-
curate, robust, and low cost. We discussed our initial work
on the Discovery framework that grew out of our work on
the deployment of two continuous sensing applications im-
plemented and deployed on Nokia and Apple phones. Our
initial implementation and evaluation only focuses on a lim-
ited set of sensors/contexts, but looks promising and, as an
idea, it has potential, when implemented in its full form, to
become a core component of future mobile sensing systems.
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