

Programming Network Architectures

Michael E. Kounavis

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Graduate School of Arts and Sciences

Columbia University

2004

ABSTRACT

Programming Network Architectures

Michael E. Kounavis

In the thesis we address the problem of programming network architectures. We broadly define a

network architecture as a distributed communication system having the following attributes: (i) network

services, which the network architecture realizes as a set of distributed network algorithms and offers to the

end systems, (ii) network algorithms, which include transport, signaling/control and management

mechanisms, (iii) multiple time scales, which impact and influence the design of the network algorithms;

and (iv) network state management, which includes the state that the network algorithms operate on (e.g.,

switching, routing, QOS state) to support consistent services. Programmability allows network designers to

add remove, or modify network service components on-demand. By adding, removing or modifying

network service components, designers can architect their networks so that they behave more optimally

according to some system-wide performance objective. Architecting networks can be accomplished in

many different ways such as by programming the service disciplines that are supported by the intermediate

nodes of networks or by programming the routing, signaling and flow control algorithms that affect the

services offered to the end-systems.

Programming network architectures is a challenging problem. The difficulty stems from the fact that it

is hard to define a unifying programmable networking model and a set of programming interfaces that

encompass services as diverse as routing, signaling, and access control/forwarding. Another challenging

issue is related to the computational efficiency and performance of programmable network architectures.

Programmable networks require more computational resources than existing networks in order to support

the introduction of new services in software. In addition, today’s router systems are generally configured

with only a small amount of memory with limited access bandwidth. Hence, a key challenge is to design

programming systems and network algorithms that can operate efficiently under stringent space-time

constraints.

This thesis makes a number of contributions. First, a programmable networking model that provides a

common framework for understanding the state-of-the-art in programmable networks is presented. A

number of projects are reviewed and discussed against a set of programmable network characteristics. We

present a simple qualitative comparison of the surveyed work and make a number of observations about the

direction of the field.

Next, we present the design, implementation and evaluation of a programming system that automates a

life cycle process for the creation, deployment, management, and architecting of network architectures. We

discuss our experiences in building a “spawning” network testbed that is capable of creating distinct

network architectures on-demand. Network architectures are created as programmable virtual networks.

Our programming system is based on a methodology that allows a “child” network to operate on top of a

subset of its “parent’s” network resources and in isolation from other spawned virtual networks. We show

through experimentation how a number of diverse network architectures can be spawned and

architecturally refined.

Third, we discuss how we can support end-system connectivity with programmable network

architectures. We focus on wireless network architectures, where the connectivity problem is more

challenging due to host mobility. We describe a ‘reflective handoff’ service that allows access networks to

dynamically inject signaling systems into mobile devices before handoff. Thus, mobile devices can

seamlessly roam between wireless access networks that support different mobility management systems.

We also show how a ‘multi-handoff’ access network service can be introduced that simultaneously

supports different styles of handoff control over the same wireless access network. This programmable

approach can benefit service providers who need to be able to satisfy the mobility management needs of a

range of mobile devices from cellular phones to PDAs and wireless laptop computers.

Next, we study the performance of network programming systems. In particular, we focus on the

problem of efficiently programming the data path. Programming the data path is challenging because data

path algorithms operate on the fastest time scale and are associated with small time budgets. We focus on

the implementation of a network programming system in network processor-based routers. Network

processors comprise multiple processing units for parallel packet processing and constitute suitable

building blocks for software-based routers. We propose the design of a binding tool called NetBind that

balances the flexibility of network programmability against the need to process and forward packets at line

speeds. To support dynamic binding of components with minimum addition of instructions in the critical

path, NetBind modifies the machine language code of components at run time. To support fast data path

composition, NetBind reduces the number of binding operations required for constructing data paths to a

minimum set so that binding latencies are comparable to packet forwarding times.

Finally, we study the realization of performance critical algorithms in programmable networks.

Performance critical algorithms include packet classification, packet forwarding and traffic management.

While packet forwarding and traffic management problems have been well studied in the literature there are

still a number of open issues associated with packet classification. We conjecture that the design of

classification algorithms will need to exploit the structure and characteristics of packet classification rules.

We study the properties of several classification data bases and, based on these findings, we suggest a

classification architecture that can be implemented efficiently in programmable networks.

 i

Table of Contents

Chapter 1: Introduction page 1

1.1 Overview page 1

1.2 Technical Barriers page 4

1.2.1 Defining Network Programming Interfaces page 4

1.2.2 Engineering a Network Programming system page 5

1.2.3 Supporting End-System Connectivity page 6

1.2.4 Designing Efficient Network Algorithms page 6

1.3 Thesis Outline page 7

1.3.1 Programmable Networking Model page 7

1.3.2 A Programming System for Spawning Network Architectures page 9

1.3.3 End-System Connectivity page 10

1.3.4 Programming the Data Path page 11

1.3.5 Packet Classification in Network Processor-based Routers page 12

1.4 Thesis Contributions page 13

Chapter 2: Programmable Networking Model page 14

2.1 Introduction page 14

2.2 Methodologies page 16

2.3 Programmable Networking Model page 18

2.3.1 Communications and Computation page 18

2.3.2 Node Kernel page 20

2.3.3 Network Programming Environment page 21

2.3.4 Programmable Network Architecture page 22

2.4 Programmable Networks page 23

2.4.1 Node Kernels page 23

2.4.2 Network Programming Environments page 25

2.4.3 Programmable Network Architectures page 27

 ii

2.5 Discussion page 29

2.6 Summary page 31

Chapter 3: A Programming System for Spawning Network Architectures page 32

3.1 Introduction page 32

3.2 The Genesis Kernel page 34

3.2.1 The Genesis Kernel Framework page 34

3.2.2 Design Principles page 36

3.2.3 The Transport Environment page 37

3.2.4 The Programming Environment page 42

3.2.5 The Life Cycle Environment page 44

3.3 Implementing Spawning Networks page 48

3.3.1 The Transport Environment page 48

3.3.2 The Programming Environment page 51

3.3.3 The Life Cycle Environment page 54

3.4 Programming Network Services page 59

3.4.1 Binding Model page 59

3.4.2 An SDK for Routing Protocols page 61

3.4.3 Routing Protocol Composition page 64

3.5 Experiences page 67

3.5.1 Spawning Networks Testbed page 67

3.5.2 An IPv4 Root (Parent) Network page 69

3.5.3 Wireless Child Networks page 71

3.5.4 Architectural Refinement page 74

3.6 Related Work page 77

3.7 Summary page 78

Chapter 4: End-System Connectivity page 80

4.1 Introduction page 80

4.2 Programmable Handoff Architecture page 82

 iii

4.2.1 Handoff Control Model page 83

4.2.2 Mobility Management Model page 84

4.2.3 Software Radio Model page 85

4.2.4 Handoff Execution Interface page 85

4.2.5 Handoff Adapters page 86

4.3 Design and Implementation page 87

4.3.1 Multi-handoff Access Network page 88

4.3.2 Reflective Handoff Service page 96

4.4 Evaluation page 98

4.4.1 Experimental Platform page 99

4.4.2 Multi-handoff Access Service Analysis page 101

4.4.3 Reflective Handoff Analysis page 105

4.5 Related Work page 107

4.6 Summary page 108

Chapter 5: Programming the Data Path page 109

5.1 Introduction page 109

5.2 Dynamic Binding in Network Processors page 112

5.2.1 Network Processors page 112

5.2.2 Dynamic Binding Issues page 114

5.3 NetBind Design page 121

5.3.1 Design Principles page 121

5.3.2 Data Path Specification Hierarchy page 123

5.3.3 Register Allocations page 125

5.3.4 Binding Algorithm page 127

5.3.5 The Admission Control Algorithm page 129

5.4 NetBind Implementation page 131

5.5 Service Creation Using NetBind page 134

 iv

5.5.1 IPv4 Data Path page 135

5.5.2 Example of a Component page 140

5.5.3 Hardware Context and Register Allocations page 141

5.6 Evaluation page 143

5.6.1 Experimental Environment page 143

5.6.2 Dynamic Binding Analysis page 145

5.6.3 Binding Latency Analysis page 151

5.6.4 NetBind Limitations page 151

5.7 Related Work page 153

5.8 Summary page 153

Chapter 6: Packet Classification in Programmable Routers page 155

6.1 Introduction page 155

6.2 Problem Formulation page 157

6.2.1 State of the Art page 159

6.2.2 Experimental Methodology page 160

6.3 IP prefix pair Analysis page 161

6.3.1 Structural Analysis page 163

6.3.2 Overlap Analysis page 168

6.4 Transport-Level Field Analysis page 172

6.4.1 Analysis of Transport-Level Fields for Individual IP Filters page 172

6.4.2 Sharing Transport-Level Fields Across Multiple IP Filters page 174

6.5 Implications page 175

6.6 Summary page 176

Appendix A Tighter Upper Bound on the Number of Partial Filter Overlaps page 177

Chapter 7: Conclusion page 181

Chapter 8: My Publications an a Ph.D Candidate page 185

References page 190

 v

List of Figures

Figure 1: Communication and Computation models page 19

Figure 2: Generalized Model for Programmable Networks page 20

Figure 3: The Genesis Kernel Framework page 35

Figure 4: Routelet Architecture page 38

Figure 5: Nested Routelets page 40

Figure 6: Programming Environment page 42

Figure 7: Profiling page 45

Figure 8: IPv4 Routelet Implementation page 49

Figure 9: Metabus Architecture page 52

Figure 10: Profiling Process page 54

Figure 11: Profiling Script page 56

Figure 12: The Spawning Phase page 58

Figure 13: Binding Model for Routing Protocols page 60

Figure 14: Routerware page 62

Figure 15: Programmable RIP page 65

Figure 16: Programmable BGP page 66

Figure 17: Spawning Networks Testbed page 68

Figure 18: Routelet Performance page 70

Figure 19: Mobiware and Cellular IP Data Paths page 72

Figure 20: Performance of Spawned Network Architectures page 74

Figure 21: Architecting Cellular IP page 76

Figure 22: Programmable Handoff Architecture page 82

Figure 23: Implementation of the Handoff Control Model page 89

Figure 24: Network Controlled Handoff page 92

Figure 25: Mobile Assisted Handoff page 93

Figure 26: Mobile Controlled Handoff page 95

 vi

Figure 27: Reflective Handoff Service page 97

Figure 28: Experimental Environment page 99

Figure 29: Mobility Emulator page 101

Figure 30: Handoff Latency under Load Conditions page 104

Figure 31: Internal Architecture of the IXP1200 page 112

Figure 32: Microengine Registers page 114

Figure 33: Data Path Specification Hierarchy page 121

Figure 34: Register Allocation in NetBind page 126

Figure 35: Dynamic Binding in NetBind page 128

Figure 36: Bin Packing Example page 130

Figure 37: NetBind Binding System page 133

Figure 38: Microassembler Extensions page 134

Figure 39: A IPv4 Data Path page 135

Figure 40: Network Processor Specification of the IPv4 Data Path page 136

Figure 41: Checksum Verifier Module page 139

Figure 42: Register Allocations in the IPv4 Data Path page 141

Figure 43: Dynamic Binding Overhead page 148

Figure 44: Per-Packet Execution Time page 149

Figure 45: Packet Processing Throughput page 150

Figure 46: Distribution of Prefix Lengths for Partially-Specified Filters page 164

Figure 47: Distribution of Prefix Lengths for Fully-Specified Filters page 166

Figure 48: Worst-case Filter Structure page 168

Figure 49: Distribution of the Number of Filters that May Match a Packet page 169

Figure 50: A Realistic Structure of Filters in ACLs page 171

Figure 51: Distribution of Sizes of Transport-Level Field Sets page 173

Figure 52: Two Stage Classification Architecture page 175

 vii

List of Tables

Table 1: Comparison of Programmable Networks page 30

Table 2: Handoff Latency Measurement page 102

Table 3: Signaling Modules page 105

Table 4: Binding Instructions in the Data Path page 147

Table 5: Component Sizes and Symbols for the IPv4 Data Path page 147

Table 6: Examples of Classification Rules page 158

Table 7: Summary of ACLs page 161

Table 8: Partially- and Fully-Specified Filters page 162

Table 9: Breakdown of Partially-Specified Filters page 162

Table 10: Breakdown of Fully-Specified Filters page 165

Table 11: Trie-Block Analysis page 167

Table 12: Number of Filters that May Match a Packet page 169

Table 13: Observed Filter Overlaps page 170

Table 14: Breakdown of Overlaps page 172

Table 15: Distribution of Source and Destination Port Numbers in Transport-Level Fields page 174

Table 16: Sharing Transport-Level Fields Among IP Filters page 174

Table 17: Upper Bounds on the Number of Partial Filter Overlaps page 180

 viii

ACKNOWLEDGEMENTS

I would like to thank my Ph.D thesis supervisor Prof. Andrew Campbell who influenced me most

during my years at Columbia. Andrew taught me how to look for new areas of research, how to understand

the state of the art quickly, how to write good technical papers and how to present my ideas effectively.

Andrew gave me the necessary amount of freedom to pursue my own directions and was always there to

listen even if my ideas were not all the time substantiated. I consider myself fortunate to have had the

opportunity to work with Andrew.

I would also like to thank the members of my defense committee, Professor Aurel Lazar, Professor

Dan Rubenstein, Professor Angelos Keromytis and John Vicente for devoting their time to read and

comment on my thesis.

During the course of this dissertation I had two rewarding experiences as a summer Intern at the

Network Processor Division, Intel Corporation where I had the opportunity to meet and interact with

extraordinary researchers and engineers. I am especially indebted to my supervisors Dr. Raj Yavatkar and

Prof. Harrick Vin for giving me the opportunity to understand new problems in the area of network

processors and for sharing their time and expertise with me.

Special thanks to all the members of the COMET lab who made my graduate studies a very pleasant

experience and contributed in one way or another to the outcome of this thesis. I would like to thank my

colleagues Professor Giuseppe Bianchi, Stephen Chou, Gen Ito, Professor Herman De Meer, Kazuho Miki,

Fabien Modoux, Daniel Villela and Hao Zhuang, for the fruitful discussions I had with them or for helping

me with building the prototype systems described in this thesis.

Pursuing a Ph.D requires not only technical skill but also tremendous amount of stamina and courage. I

would like to thank my parents Evangelos and Eleni and my family for sharing their unconditional love

with me and giving me the necessary amount of courage required for pursuing my goals at Columbia.

 ix

to my parents and my family

 1

Chapter 1

Introduction

1.1 Overview

Network architectures are complex systems that offer communication services implemented as

distributed network algorithms and deployed over infrastructures of switches, routers, and base stations.

We broadly define a network architecture as a distributed communication system having the following

attributes: (i) network services, which the network architecture realizes as a set of distributed network

algorithms and offers to the end systems, (ii) network algorithms, which include transport, signaling/control

and management mechanisms, (iii) multiple time scales, which impact and influence the design of the

network algorithms; and (iv) network state management, which includes the state that the network

algorithms operate on (e.g., switching, routing, QOS state) to support consistent services. Two network

architectures have been successfully deployed on a worldwide scale. These architectures are the Public

Switched Telephone Network (PSTN) and the Internet. PSTN and the Internet have gradually grown out of

smaller networks and their services and algorithms have in most cases been designed following an

empirical ‘try and error’ approach. Today, the Internet connects more than a hundred and seventy million

hosts (January 2003 account) while its backbone traffic doubles every year. Despite Internet's large size and

 2

growth rate, we still lack a systematic methodology for analyzing and modifying the Internet architecture.

The same can be said about designing and deploying new network architectures that potentially support

disruptive applications and technologies, such as, architectures for distributed games, file sharing,

augmented reality, wearable computers, and so on.

The need for a methodology for designing, deploying, analyzing and modifying network architectures

is apparent. First, simulation tools [112] cannot always capture the diversity of link properties, traffic

patterns or protocol and service implementation constraints. Mathematical models underpinning simulation

tools capture some of the analytical properties of network services (e.g., Poisson arrivals of TCP

connections [111], heavy-tailed distributions of file sizes [19] or self similarity of network traffic [92, 143])

but in most cases fail to offer a complete view of the interactions that occur between the various algorithms

that run in the network. This happens because network algorithms operate over multiple time scales, which

impact the performance, cost and efficiency of network architectures, and because network algorithms run

over complex and large topologies [52, 89]. Quantifying the behavior of network architectures, let alone

understanding the interaction between the distributed algorithms characterizing architectures is not an easy

task.

Second, Internet Service Providers (ISPs) cannot always deploy new network architectures at low cost.

Until recently, there has been a limited need for new network architectures because the Internet

infrastructure has proven sufficient to meet the demands of conventional data applications such as the web,

electronic mail and ftp. However, as new applications emerge it is likely that new network architectures or

even new physical networks will be needed. Third, there are no means for network managers to calculate or

estimate the cost of a network architecture. By cost we mean the amount of resources that remain idle (e.g.,

unused bandwidth in lightly utilized networks) or used for control and management (e.g., CPU and memory

for storing, accessing and modifying network state). Knowing the cost of an architecture before its final

deployment is important since cost can capture an architecture's scalability, performance and commercial

success. Monitoring the cost of an architecture while the architecture is operating is also is an important

challenge because observations on cost can be used for real-time refinement of the architecture.

Because of the reasons discussed above, we believe that there is a need to investigate the development

of experimental systems for solving problems related to the design, analysis, and performance of network

 3

architectures. Problems related to the design, analysis and performance of network architectures include

the analysis and synthesis of network architecture. The analysis problem can be stated as follows. Given a

network architecture, network topology and set of resources such as link and processing capacity, what is

the cost and performance of a given architecture when deployed over a given topology and set of

resources? The synthesis problem can be stated as follows. Given the cost and performance requirements

of a network architecture, a network topology, and a set of network resources what is the minimum cost

network architecture that can meet the specified cost and performance requirements when operating over

the given topology and resources. To investigate solutions to these problems we need to have a good

understanding of how network algorithms affect the performance and cost of network architectures. We

lack such understanding today.

In this thesis, we contribute toward solving the problems of analyzing and synthesizing network

architectures by investigating how to enable network designers to add, remove or modify network service

components on demand. By adding, removing or modifying network service components, designers can

architect their networks so that they behave more optimally according to some system-wide performance

objective. Architecting networks can be accomplished in many different ways such as by programming the

service disciplines that are supported by the intermediate nodes of networks or by programming the

routing, signaling traffic engineering or flow control algorithms that affect the services offered to the end-

systems. We propose a programmable networking model and describe the design, implementation and

evaluation of the Genesis Kernel, a programming system that automates the creation, deployment,

management and refinement of network architectures, based on our programmable networking model. The

Genesis Kernel automates a virtual network life cycle process, which comprises profiling, spawning,

management and architecting phases. The profiling phase captures the blueprint of a network architecture

in terms of a comprehensive profiling script. The spawning phase systematically sets up the topology and

address space, allocates resources and binds transport, control and management objects to the physical

network infrastructure. The management phase supports virtual network resource management [28, 49]

while the architecting phase allows network designers to add, remove or replace distributed network

algorithms on-demand, analyzing the pros and cons of the network design space.

 4

This thesis addresses specific challenges on how to program network architectures. These challenges

are related to (i) the need for specifying a comprehensive yet simple set of programming interfaces that

allow network designers to easily create architectures from primitives; (ii) the engineering of a distributed

programming system that allows the introduction of new services into the network with the least possible

computational overhead; (iii) the need to support end-system connectivity with programmable

internetworking environments, and (iv) the design of network algorithms and services that can be

efficiently implemented in software routers.

1.2 Technical Barriers

1.2.1 Defining Network Programming Interfaces

The definition of network programming interfaces concerns the specification of a set of programming

primitives that allow a network designer to construct a network architecture from a set of algorithmic

components and services. Ideally, we would like a network programmer to construct network architectures

as easily as an end-system programmer constructs applications from libraries of classes or functions.

Defining the “right” set of programming interfaces for network architectures is not an easy task. On the one

hand, programming interfaces should be at sufficiently low level so as to offer the flexibility for

programming a wide range of network services and algorithms. On the other hand, programming interfaces

should be at a sufficiently high enough level so as to hide the complexity of network algorithm and service

implementations in the same way that class interfaces hide the complexity of object implementations. In

this thesis, we attempt to answer the question what is a suitable set of programming interfaces for network

architectures. To answer that question, we study the design and implementation of existing network

architectures. We find a set of attributes that are common to network architectures and identify the role of

each attribute in the process of delivering communication services to the end-systems. Understanding the

common attributes of network architectures helps us introduce a binding model that decomposes network

architectures into their fundamental building bocks. We use these building blocks to define programmable

objects for network architectures and use these objects to construct well known, as well as, new

architectures.

 5

1.2.2 Engineering Network Programming Systems

Network architecture modularity and extensibility requires the dynamic binding between

independently developed components. The main challenge in engineering a network programming system

is to allow the introduction of new services with the least possible amount of computational overhead. By

computational overhead we mean the amount of resources (i.e., link and processing capacity resources) and

state used for allowing algorithmic and service components to create associations with each other. We call

the process of creating associations between algorithmic and service components binding. Creating a

network architecture requires the realization of bindings between control plane (i.e., routing or signaling)

objects and between data path (i.e., classifiers, forwarders, shapers or schedulers) objects. While code

modularity and extensibility is supported by programming environments running in host processors (e.g.,

high level programming language compilers and linkers), such capability cannot be easily offered in the

network. For example, traditional techniques for realizing code binding, (e.g., insertion of code stubs or

indirection through function tables), cannot be applied to programmable routers because these techniques

introduce considerable overhead in terms of additional instructions in the critical path.

To support dynamic binding between control plane objects, we study the use of conventional

distributed computing platforms for network programming. We investigate the necessary modifications that

need to be made using off-the-shelf distributed object technologies (e.g., CORBA, DCOM, Java RMI) so

that they can be used for binding control plane objects (e.g., routing daemons or bandwidth brokers) into

the network. To support dynamic binding between data path objects, we develop a binding tool called

NetBind that modifies the machine language code of data path components at run time. In this way,

NetBind can construct data paths without introducing significant overhead in terms of additional

instructions in the critical path. To support fast data path composition, NetBind reduces the number of

binding operations required for constructing data paths to a minimum set so that binding latencies are

comparable to packet forwarding times.

1.2.3 Supporting End-System Connectivity

The problem of supporting end-system connectivity with programmable network architectures

concerns the design of appropriate end-system and network software support so that hosts can be

 6

dynamically connected to programmable networks with diverse sets of protocols for transport control and

management. While the problem has a straightforward solution for static hosts (i.e., static hosts can install

the software support needed for connecting to programmable network architectures off-line), the problem is

more demanding in wireless, mobile networks. This is because incompatibility of signaling systems

prevents mobile devices from roaming between access networks with different mobility management

architectures.

In this thesis, we propose a solution to the connectivity problem, where the implementation details of

mobility management algorithms are hidden from handoff control systems, allowing the handoff detection

state (e.g., the best candidate access point for a mobile device) to be managed separately from handoff

execution state (e.g., mobile registration information). This software approach can be used to enable inter-

system handoffs between different types of access networks. The basic idea behind realizing inter-system

handoffs is that the same detection algorithms operating in mobile devices, or access networks can interface

with multiple types of mobility management architectures, operating in heterogeneous access networks.

Handoff control systems issue a number of generic service requests, which mobility management systems

execute according to their own programmable implementation. In one case where the location of the

handoff control system is at the mobile device, different mobility management protocols can be

dynamically loaded into mobile devices allowing them to roam between heterogeneous access networks in

a seamless manner.

1.2.4 Designing Efficient Network Algorithms

Network programmability requires that network algorithms are implemented in software. Software-

based network algorithms usually need to maintain and to navigate through search data structures.

Unfortunately, the overhead of navigating through search data structures can often exceed the time and

space budget enforced by router system constraints. Thus, a key challenge is to design network algorithms

that impose low memory space and time overhead. In this thesis, we focus on the design of data path

algorithms because these algorithms operate on the fastest time scale and, as a result, they are associated

with smaller time budgets than control and management plane algorithms. Typically, a packet data path

comprises algorithms for classification, forwarding, and traffic management. While forwarding and traffic

 7

management have been investigated in the literature [14, 47, 60, 66, 119, 132, 153], we still lack a good

solution for packet classification. The classification problem is challenging, particularly in IP networks

because forwarding decisions are made based on the values of several different header fields (i.e., source

and destination IP addresses, port number of protocol fields) and because classification rules are associated

with arbitrary priority levels.

In this thesis, we conjecture that the design of efficient classification algorithms will need to exploit

the structure and characteristics of packet classification rules. We study the properties of several

classification data bases and, based on these findings, we suggest a classification architecture that can be

implemented efficiently in programmable networks. We justify our findings based on several standard

practices employed by network administrators, and thereby argue that although our findings are for specific

databases, the properties are likely to hold for most databases.

1.3 Thesis outline

This thesis makes a number of contributions towards programming network architectures. First, a

programmable networking model that provides a common framework for understanding the state-of-the-art

in programmable networks is presented. Next, we present the design, implementation and evaluation of a

programming system that automates a life cycle process for the creation, deployment, management, and

architecting of network architectures based on a methodology of spawning network architectures. Third, we

discuss how end-system connectivity can be supported in diverse programmable internetworking

environments. Next, we study the performance of programmable network architectures. In particular, we

focus on problem of efficiently programming the data path. Finally, we investigate the realization of

performance critical algorithms such as packet classification in programmable networks. The outline of our

study is as follows:

1.3.1 Programmable Networking Model

In Chapter 2, we present a generalized model for programmable networks. The introduction of new

services is a challenging task and calls for advances in methodologies and toolkits for service creation and

enabling network technologies. Before we can meet this challenge, we need to understand the fundamentals

 8

for making networks programmable. There is growing consensus that these network fundamentals are

strongly associated with the deployment of new network programming environments, possibly based on

“network-wide operating system support”, that explicitly recognize service creation, deployment and

management in the network infrastructure.

We examine the state of the art in programmable networks and present two schools of thought on

programmable networks advocated by the Active Networks (AN) [43] and Open Signalling (Opensig)

[108] communities. By reviewing each contribution in turn, we arrive at a common set of features that

govern the construction of programmable networks. We present a generalized model for programmable

networks and a common set of characteristics that govern their construction and show how our generalized

model can help with defining programming interfaces for networks.

 The main results of our analysis are: (i) a programmable network is distinguished from any other

networking environment by the fact that it can be programmed from a minimal set of APIs from which one

can ideally compose an infinite spectrum of higher level services; (ii) we view the generalized model for

programmable networks as comprising conventional communication, encompassing the transport, control

and management planes, and computation. Collectively computation and communication models make up a

programmable network; and (iii) a programmable network consists of a collection of “node kernels”, a

“network programming environment” and a “programmable network architecture”.

The node kernel represents the lowest level of network programmability, providing a small set of node

interfaces. These interfaces support the manipulation of the node state (e.g., accessing and controlling the

node resources) and the invocation of communication services (e.g. communication abstractions and

security). The network programming environment supports the construction of networks, enabling the

dynamic deployment of distributed network services and protocols. The network programming

environment does not offer core network algorithms (e.g., routing, signaling) that define and differentiate

network architectures in the same way that an operating system does not embed application specific

algorithms in the kernel. The programmable network architecture is a set of network algorithms (i.e.,

routing signaling, or flow control) that take into account network state and reflect the time scales over

which these algorithms operate. Network algorithms are potentially as diverse as the application base that

exists in the end-systems today.

 9

1.3.2 A Programming System for Spawning Network Architectures

In Chapter 3, we address the problems of defining programming interfaces for network architectures

and engineering a network programming system for PC-based routers. In particular, we present the design

implementation and evaluation of the Genesis Kernel, a programming system for dynamically creating,

deploying and managing network architectures. The Genesis Kernel is a programming system that offers

programming primitives for constructing network architectures as spawned virtual networks. The design of

the Genesis Kernel is based on the generalized programmable networking model discussed in Chapter 2.

Three distinct levels of the Genesis Kernel support the creation of network services and algorithms:

• At the lowest level, a “transport environment” delivers packets from source to destination end-systems

through a set of open programmable virtual router nodes called routelets (i.e., node kernels). A virtual

network is characterized by a set of routelets interconnected by a set of virtual links, where a set of

routelets and virtual links collectively form a virtual network topology. Routelets process packets

along a programmable data path at the internetworking layer, while control algorithms (e.g., routing

and resource reservation) are made programmable using a “programming environment”.

• Each instance of the Genesis Kernel can create a distinct programming environment that enables the

interaction between distributed objects that characterize a spawned network architecture (e.g., routing

daemons, bandwidth brokers, etc). The programming environment comprises a “metabus”, which is a

per-virtual network software bus for object interaction (akin to CORBA, DCOM and Java RMI

software buses) and a “binding interface base” which supports a set of open programmable interfaces

on top of the metabus, providing open access to the routelets and virtual links associated with a

spawned virtual network.

• A key capability of the Genesis Kernel is its ability to support a virtual network life cycle process that

supports the dynamic creation, deployment and management of network architectures. The life cycle

process comprises four phases: (i) a profiling phase, which captures the blueprint of a network

architecture in terms of a comprehensive profiling script. Profiling captures addressing, routing,

signaling, security, control and management requirements in an executable profiling script that is used

to automate the deployment of networks architectures; (ii) a spawning phase, which systematically sets

up the topology and address space, allocates resources and binds transport, control and network

 10

management objects to the physical network infrastructure; (iii) a management phase, which supports

virtual network resource management; and (iv) an architecting phase, which allows network designers

to analyze the pros and cons of the architectural design space and to dynamically modify a spawned

architecture by changing transport, signaling, control and management mechanisms.

1.3.3 End-System Connectivity

In Chapter 4, we address the problem of supporting end-system connectivity focusing on

programmable mobile networks. Programmable mobile networks can be spawned using programming

systems such as the Genesis Kernel discussed in Chapter 3. Supporting end-system connectivity in

programmable mobile networks is not an easy task because mobile devices may roam across access

networks with heterogeneous mobility management architectures. While a variety of handoff algorithms

have been proposed and investigated in the past [123, 138, 145] these algorithms are mostly tailored toward

the needs of some specific type of mobile device or access network. The diversity in signaling systems that

characterize wireless access network architectures poses a challenge in realizing inter-system handoff.

In this chapter, we propose a solution to the intersystem handoff problem where the implementation

details of mobility management algorithms are hidden from handoff control systems, allowing the handoff

detection state (e.g., the best candidate access point for a mobile device) to be managed separately from

handoff execution state (e.g., mobile registration information). The same detection algorithms operating in

mobile devices, or access networks can interface with multiple types of mobility management architectures,

operating in heterogeneous access networks.

The main results of our work are: (i) we present the design, implementation and evaluation of a

‘reflective handoff’ service that allows access networks to dynamically inject signaling systems into mobile

devices before handoff. Thus, mobile devices can seamlessly roam between wireless access networks that

support radically different mobility management systems; and (ii) we show how a ‘multi-handoff’ access

network service can simultaneously support different styles of handoff control over the same wireless

access network. This programmable approach can benefit service providers who need to be able to satisfy

the mobility management needs of a wide range of mobile devices from cellular phones to more

sophisticated palmtop and laptop computers. To allow a range of mobile devices to connect to

 11

programmable mobile networks we further decompose the handoff control process into programmable

objects, separating the transmission of beacons, from the collection of wireless channel quality

measurements and from the handoff detection algorithm.

1.3.4 Programming the Data Path

In Chapter 5, we study the performance of network programming systems such as the Genesis Kernel

discussed in Chapter 3. In particular, we focus on the problem of efficiently programming the data path.

We focus our study on a network processor-based implementation of the Genesis Kernel because network

processors are suitable building blocks for software-base routers, comprising multiple processing units for

parallel packet processing. Data path modularity and extensibility requires the dynamic binding between

independently developed packet processing components. While code modularity and extensibility is

supported by programming environments running in host processors (e.g., high level programming

language compilers and linkers), such capability cannot be easily offered in the network. Traditional

techniques for realizing code binding, (e.g., insertion of code stubs or indirection through function tables),

cannot be applied to network processors because these techniques introduce considerable overhead in terms

of additional instructions in the critical path.

One solution to this problem is to optimize the code produced by a binding tool, once data path

composition has taken place. Code optimization algorithms can be complex and time-consuming, however.

For example, code optimization algorithms may require to process each instruction in the data path code

several times resulting in O(n) or higher complexity as a function of the number of instructions in the

critical path. Such algorithms may not be suitable for fast data path composition (i.e., when a rapid change

in the structure and protocols of the network architecture is required once the traffic demand or topology

changes). We believe that a binding tool for network processor-based routers needs to balance the

flexibility of network programmability against the need to process and forward packets at line rates. This

poses significant challenges.

In this thesis we present the design, implementation and evaluation of NetBind, a binding tool that

balances the flexibility of network programmability against the need to process and forward packets at line

speeds. The main results of our work are the following: (i) NetBind can produce data paths that forward

 12

minimum size packets at line rates without introducing significant overhead in the critical path. NetBind

modifies the machine language code of components at run time, directing the program flow from one

component to another. In this manner, NetBind avoids the addition of code stubs in the critical path; (ii)

NetBind allows data paths to be composed at a fine granularity from components supporting simple

operations on packet headers and payloads. NetBind can create packet-processing pipelines through the

dynamic binding of small pieces of machine language code. A binder modifies the machine language code

of executable components at run-time. As a result, components can be seamlessly merged into a single code

piece, and (iii) NetBind supports fast data path composition reducing the number of binding operations

required for constructing data paths to a minimum set so that binding latencies are comparable to packet

forwarding times. In NetBind, data path components export symbols, which are used during the binding

process. The NetBind binding algorithm does not inspect every instruction in the data path code but only

the symbols exported by data path components. In this manner, the NetBind binding algorithm can

compose packet processing pipelines very fast, in the order of microseconds.

1.3.5 Packet Classification in Programmable Routers

 Chapters 2-5 address the problems of defining network programming interfaces and engineering

network programming systems. In Chapter 6, we focus on the design of efficient network algorithms for

programmable network architectures. We focus on packet classification in IP networks. Packet

classification is a performance critical network algorithm that typically executes under stringent space-time

constraints. Packet classification is often the first packet processing step in routers. It requires routers to

maintain and to navigate through search data structures. Since flows can be identified only after the

classification step, to prevent performance interference across flows, network systems must ensure that

classification operates at line speeds. Unfortunately, the overhead of navigating through search data

structures can often exceed the time budget enforced by the line-speed processing requirement. Thus, a key

challenge is to design packet classification algorithms that impose low memory space and access overhead

and hence can scale to high bandwidth networks and large databases of classification rules.

Our analysis leads us to the following main results: (i) the fields contained in each rule in classification

data bases can be partitioned into two logical entities: (1) source and destination network address pairs that

 13

characterize distinct network paths, and (2) a set of transport level fields (e.g., port numbers, protocol

identifier, etc.) that characterize network applications. In most cases, the number of distinct network paths

far exceeds the number of network applications; (ii) the network address filters (i.e., prefix pairs) create

only a few partial overlaps with each other. Thus, the total number of overlaps is significantly smaller than

the theoretical bound; and (iii) many source-destination network address pairs share the same set of

transport-level fields. Hence, only a small number of transport-level fields are sufficient to characterize

databases of different sizes.

Based on these findings, we provide the following guidelines for designing efficient classification

algorithms. First, the multi-dimensional classification problem should be split into two sub-problems (or

two stages): (1) finding a 2-dimensional match based on source and destination network addresses

contained in the packet, and (2) finding a (n-2) dimensional match based on transport-level fields. Whereas

the first stage only involves prefix matching, the second stage involves the more general range matching.

Second, because of the overlap between network address filters maintained in each classification data base,

each packet may match multiple filters. Identifying all the matching filters is complex. Since the total

number of overlaps is significantly smaller than the theoretical upper-bound, a design that maintains all of

the intersection filters and returns exactly a single match is both feasible an desirable. Since each network

address filter is associated with multiple transport-level fields, identifying the highest priority rule that

matches a packet requires searching through all the transport-level fields associated with the matching

network address filter. Since the number of transport-level fields associated with most classification data

bases is rather small, it is possible to perform the (n-2) dimensional search quickly and in parallel.

1.4 Thesis Contributions

The major contributions of this thesis can be summarized as follows:

• We propose a generalized programmable networking model and a set of network programming

interfaces for constructing programmable network architectures.

• We present the design, implementation, and evaluation of programming system for dynamically

creating network architectures as spawned virtual networks and investigate the performance of such a

system when running on PC-based and network processor-based routers.

 14

• We investigate end-system connectivity issues, especially in dynamic systems such as programmable

mobile networks, and provide a solution to the inter-system handoff problem.

• We investigate the design of efficient network algorithms in programmable networks focusing on

packet classification, and provide a solution that can meet the stringent space-time constraints

associated with modern router systems.

• We have built a number of experimental testbeds for programmable mobile networks and spawning

networks, as well as developed a number of software tools such as NetBind.

• We have released the open source code for these experimental systems on the Web. The source code

release includes, Mobiware [101] ; the Genesis Kernel [57], and the NetBind [105] tool.

 15

Chapter 2

Programmable Networking Model

2.1 Introduction

The ability to rapidly create, deploy and manage novel services in response to user demands is a key

factor driving the networking industry and research community. Results from this field of research are

likely to have a broad impact on customers, service providers and equipment vendors across a range of

telecommunication sectors, including broadband, mobile and IP networking. Competition between existing

and future Internet Service Providers (ISPs) could solely hinge on the speed at which one service provider

can respond to new market demands over another. The introduction of new services is a challenging task

and calls for major advances in methodologies and toolkits for service creation and enabling network

technologies. A vast amount of service-specific computation, processing and switching must be handled

and new network programming environments have to be engineered to enable future networking

infrastructures to be open, extensible and programmable.

Before we can meet this challenge, we need to better understand the limitations of existing networks

and the fundamentals for making networks more programmable. There is growing consensus that these

network fundamentals are strongly associated with the deployment of new network programming

 16

environments, possibly based on “network-wide operating system support”, that explicitly recognize

service creation, deployment and management in the network infrastructure.

This chapter examines the state of the art in programmable networks and presents a generalized

programmable networking model. In Section 2.2, we present and discuss two schools of thought on

programmable networks advocated by the Active Networks (AN) [43] and Open Signalling (Opensig)

[108] communities. A number of programmable network toolkits have been implemented in the past. By

reviewing each contribution in turn, we arrive at a common set of features that govern the construction of

these programmable networks. In Section 2.3, we present a generalized model and common set of

characteristics to better understand the contributions found in the literature. Following this, in Section 2.4,

we discuss a number of specific projects and characterize them in terms of a simple set of characteristics. In

Section 2.5, we present a simple qualitative comparison of the surveyed work and make a number of

observations about the direction of the field. We believe that a number of important innovations are

creating a paradigm shift in networking leading to higher levels of network programmability. This leads us

to the conclusion that an important challenge facing the programmable networking community is the

development of programming environments for creating network architectures.

2.2 Methodologies

There has been an increasing demand to add new services to networks or to customize existing

network services to match new application needs. Recent examples of this include the introduction of peer-

to peer overlay networks supporting distributed file sharing applications. The introduction of new services

into existing networks is usually a manual, time consuming and costly process. The goal of programmable

networking is to simplify the deployment of new network services, leading to networks that explicitly

support the process of service creation and deployment. There is general consensus that programmable

network architectures can be customized, utilizing clearly defined open programmable interfaces (i.e.,

network APIs) and a range of service composition methodologies and toolkits.

Two schools of thought have emerged in the past on how to make networks programmable. The first

school is spearheaded by the Opensig community, which was established through a series of international

workshops. The other school, established by DARPA, constituted a large number of diverse AN projects.

 17

The Opensig community argued that by modeling communication hardware using a set of open

programmable network interfaces, open access to switches and routers could be provided, thereby enabling

third party software providers to enter the market for telecommunications software. The Opensig

community argued that by “opening up” the switches in this manner, the development of new and distinct

architectures and services (e.g., virtual networking [96, 141, 142]) could be realized. Open signaling as the

name suggests takes a telecommunications approach to the problem of making the network programmable.

Here, there is a clear distinction between transport, control and management that underpin programmable

networks and an emphasis on service creation. Physical network devices are abstracted as distributed

computing objects (e.g. virtual switches [2], switchlets [141], and virtual base stations [32]) with well-

defined open programmable interfaces. These open interfaces allow service providers to manipulate the

states of the network using middleware toolkits (e.g., CORBA) in order to construct and manage new

network services.

The AN community advocated the dynamic deployment of new services at runtime mainly within the

confines of existing IP networks. The level of dynamic runtime support for new services goes far beyond

that proposed by the Opensig community, especially when one considers the dispatch, execution and

forwarding of packets based on the notion of “active packets”. In one extreme case of active networking,

“capsules” [147] comprise executable programs, consisting of code (for example Java code) and data. In

active networks, code mobility represents the main vehicle for program delivery, control and service

construction. The granularity of control can range from the packet and flow levels through the installation

of completely new switchware [4]. The term ‘granularity of control’ [27] refers to the scope of

switch/router behavior that can be modified by a received packet. At one extreme, a single packet could

boot a complete software environment seen by all packets arriving at the node. At the other extreme, a

single packet (e.g., a capsule) can modify the behavior seen only by that packet. Active networks allow the

customization of network services at packet transport granularity, rather than through a programmable

control plane. Active networks offer maximum flexibility in support of service creation but with the cost of

adding more complexity to the programming model. The AN approach is, however, an order of magnitude

more dynamic than Opensig’s quasi-static network programming interfaces.

 18

Both communities shared the common goal to go beyond existing approaches and technologies for the

construction, deployment and management of new services in telecommunication networks. Both

movements included a broad spectrum of projects with diverse architectural approaches. Few AN projects

considered every packet to be an active capsule and similarly few Opensig projects considered

programmable network interfaces to be static.

2.3 Programmable Networking Model

2.3.1 Communications and Computation

A programmable network is distinguished from any other networking environment by the fact that it

can be programmed from a minimal set of APIs from which one can ideally compose an infinite spectrum

of higher level services. We present a generalized model for programmable networks as a three-

dimensional model illustrated in Figure 1. This model shows the Internet reference model (viz. application,

transport, network, link layers) augmented with transport , control and management planes. The division

between transport, control and management allows our model to be generally applicable to

telecommunications and Internet technologies. The notion of the separation between transport, control and

management is evident in architectures. In the case of Internet there is a single data path but clearly one can

visualize transport (e.g., video packets), control (e.g., OSPF) and management (e.g., SMNP) mechanisms.

In the case of telecommunication networks there is typically support in the architecture for transport,

control and management functions. This division is motivated by the different ways these networking

functions utilize the underlying hardware and by the distinct time scales over which they operate. In both

cases, the planes of our generalized model remain neutral supporting the design space of different

networking technologies.

The programmability of network services is achieved by introducing computation inside the network,

beyond the extent of the computation performed in existing routers and switches. To distinguish the notion

of a “programmable network architecture” from a “network architecture”, we have extended the

communication model and augmented it with a computation model, explicitly acknowledging the

programmability of network architectures. We can view the generalized model for programmable networks

as comprising conventional communication, encompassing the transport, control and management planes,

 19

and computation as well, as illustrated in Figure 1. Collectively, the computation and communication

models make up a programmable network. The computation model provides programmable support across

the transport, control and management planes, allowing a network architect to program individual layers

(viz. application, transport, network and link layers) in these planes. Another view is that programmable

support is delivered to the transport, control and management planes through the computation model.

Figure 1: Communication and Computation Models

In Figure 2, an alternative view of the generalized model is shown. The key components of the

computation model are represented as a distributed network programming environment and a set of “node

kernels”. Node kernels are node operating systems realizing resource management. Node kernels have local

significance only, that is, they manage single node resources, potentially shared by multiple programmable

network architectures. The network programming environment provides middleware support to distributed

network programming services. Figure 2 illustrates the separation of switching hardware from

programming and communication software. Two sets of interfaces are exposed. The first set of interfaces

represents the network programming interfaces between network programming environments and

programmable network architectures. The lower set of interfaces represents the node interfaces between

node kernels and network programming environments. Research on programmable networks is focused on

all facets of this model. Different programming methodologies, levels of programmability, and

communication technologies have been investigated. Some projects, especially from the Opensig

m
anagem

ent plane
control plane

transport plane

link layer

network layer

transport layer

application layer

com
pu

tat
ion

mod
el

com
mun

ica
tio

n

mod
el

 20

community have placed more emphasis on API definitions. Others focus on issues related to code mobility

or contribute to the application domain. Dynamic “plug-ins” have been investigated for the construction or

potential extension of new protocols or applications. In what follows, we provide a more detailed overview

of the components of our generalized model.

Figure 2: Generalized Model for Programmable Networks

2.3.2 Node Kernel

Many node vendors incorporate operating system support into their switches and routers to handle

communication functions of network nodes. Typically, these node operating systems support a variety of

communications activities, e.g., signaling, control and management processes, inter-process

communication, forwarding functions, and downloading of new boot images. Currently, these node

operating systems are closed to third party providers because of their proprietary nature, and they are

limited in their support for evolving network programming environments. While the idea of introducing

computation power into nodes is not new, there is a greater need for computation elements to abstract node

functionality and allow it to be open and programmable. The computation model, introduced in the

previous section, enables the programmability of the communication model and requires low-level

programmable support for communication abstractions (e.g., packets, flows, tunnels, virtual paths),

dynamic resource partitioning and security considerations.

We describe this low-level programming environment that runs on switch/routers as the node kernel.

The node kernel represents the lowest level of programmability, providing a small set of node interfaces.

programmable network architecture

network programming environment

node kernel node kernel

node HW node HW

node
interfaces

network
programming
interfaces

communication
model

computation
model

 21

These interfaces support the manipulation of the node state (e.g., accessing and controlling the node

resources) and the invocation of communication services (e.g. communication abstractions and security).

The node kernel is responsible for sharing node computational (e.g., sharing the CPU) and communication

resources, (e.g., partitioning the capacity of a multiplexer), as well supporting core security services. A

node kernel may operate on any type of network node, end-system or device, for example, IP router,

switch, or base station. It may also provide access to dedicated hardware offering fast packet processing

services to network programming environments. A node kernel has local significance only, providing the

network programming environment with a set of low-level programming interfaces that are used by

network architects to program network architectures in a systematic manner.

2.3.3 Network Programming Environment

Network programming environments support the construction of networks, enabling the dynamic

deployment of network services and protocols. Network programming environments support different

levels of programmability, programming methodologies, networking technologies and application domains.

Network programming environments operate over a set of well-defined node kernel interfaces offering

distributed toolkits for the realization of programmable network architectures through the deployment of

distributed service components. In this sense, one can view network-programming environments as the

“middleware glue” between executing network architectures and the node kernels themselves, as illustrated

in Figure 2. Network programming environments provide network architect/designers with the necessary

environment and tools for building distinct network architectures that run in a distributed fashion on

multiple node kernels. In this sense network programming environments support the programmability of

network architectures in the same way that software development kits (SDKs) allow developers to build

new applications that run on native operating systems.

This “middleware glue” can be constructed from scratch or be built on top of well-defined distributed

object computing environments. For example, the xbind [87, 90] and mobiware [32] toolkits address

programmability of broadband and mobile networks, respectively, and are built using COBRA middleware

technology. Other approaches use mobile code technology and virtual machines to dynamically program

the network. For example, the Active Network Transport System (ANTS) incorporates capsule technology

 22

[147], leveraging the Java Virtual Machine for new protocol deployment. Both approaches result in toolkits

that execute on node kernels offering a high level of programmability for service creation and deployment

of distinct network architectures.

Network programming environments offer a set of open interfaces and services to network

designers/architects to program distinct network architectures. Network programming environments

support the construction of network architectures through service composition, service control, and

resource and state management. Services offered by network programming environments can range from

simple Remote Procedure Calling (RPC) between distributed network objects to sophisticated dynamic

loading of mobile code and fast compilation of intermediate machine-independent representations.

Different types of network programming environments offer different levels of programmability to network

architectures. For example, mobile code technologies offer the most radical solution to the development of

services in programmable networks when compared to RPC-based object middleware. We identify the

‘level of programmability’ as an important characteristic of programmable networks.

2.3.4 Programmable Network Architecture

The goal of network programming environments is to provide the necessary support to dynamically

program new network architectures. Network programming environments do not offer core network

algorithms (e.g., routing, signaling) that define and differentiate network architecture in the same way that

operating systems do not embed application specific algorithms in the kernel. Rather, a network

programming environment offers a set of network programming interfaces for constructing network

architectures. Philosophically this is similar to constructing new applications using software development

kits. However in this case the application is the network architecture.

We broadly define network architecture as having the following attributes:

• network services, which the network architecture realizes as a set of distributed network algorithms

and offers to the end systems;

• network algorithms, which includes transport, signaling/control and management mechanisms;

• multiple time scales, which impact and influence the design of the network algorithms; and

 23

• network state management, which includes the state that the network algorithms operate on (e.g.,

switching, routing, QOS state) to support consistent services.

Network programming environments offer creation and deployment tools and mechanisms that allow

network architects to program and build new network architectures. Programmable network architectures

are realized through the deployment of a set of network algorithms that take into account network state and

reflect the time scales over which these algorithms operate. Network algorithms are potentially as diverse

as the application base that exists in the end-systems today. Programmable network architectures may range

from simple best-effort forwarding architectures to complex mobile protocols that respond dynamically to

changes in connectivity. Given this diversity, it is necessary that both network programming environments

and node kernels are extensible and programmable to support a large variety of programmable network

architectures.

2.4 Programmable Networks

Following on from the discussion of the generalized model for programmable networks, we now

survey a number of programmable networking projects that have emerged in the literature. We attempt to

identify essential contributions of the various projects to the field in terms of the characteristics of the

generalized programmable networking model. The survey is not intended to represent an exhaustive review

of the field. Rather, we discuss a set of projects that are representative of each programmable network

characteristic, focusing on the pertinent and novel features of each project and then, in Section 2.5, we

compare them to the generalized model introduced in the preceding section.

2.4.1 Node Kernels

Active Node Abstractions: NodeOS

Members of the DARPA active network program [43, 134, 135] have developed an architectural

framework for active networking [27]. A node operating system called NodeOS [114] represents the lowest

level of the framework. NodeOS provides node kernel interfaces at routers utilized by multiple execution

environments, which support communication abstractions such as threads, channels and flows.

Encapsulation techniques based on an active network encapsulation protocol (ANEP) [3] support the

 24

deployment of multiple execution environments within a single active node. ANEP defines an

encapsulation format allowing packets to be routed through multiple execution environments coexisting on

the same physical nodes. Portability of execution environments across different types of physical nodes is

accomplished by the NodeOS, by exposing a common, standard interface. This interface defines

programmable node abstractions such as threads, memory, channels and flows. Threads, memory and

channels abstract computation, storage, and communication capacity used by execution environments,

whereas flows abstract user data-paths with security, authentication and admission control facilities. An

execution environment uses the NodeOS interface to create threads and associate channels with flows. The

NodeOS supports QOS using scheduling mechanisms that regulate the access to node computation and

communication resources.

Smart Packets Active Node Architecture

The University of Kansas has developed smart packets, a code-based specialized packet concept

implemented in a programmable IP environment [84]. Smart packets represent elements of in-band or out-

of-band mobile code based on Java classes. Smart packets propagate state information in the form of

serialized objects and carry identifiers for authentication purposes. An active node architecture supports

smart packets by exposing a set of resource abstractions and primitives made accessible to smart packets.

Active nodes incorporate:

• resource controllers, which provide interfaces to node resources;

• node managers, which impose static limits on resource usage; and

• state managers, which control the amount of information smart packets may leave behind at an active

node.

The active node supports a feedback-scheduling algorithm to allow partitioning of CPU cycles among

competing tasks and a credit-based flow-control mechanism to regulate bandwidth usage. Each smart

packet is allocated a single thread of CPU and some amount of node resources. Active nodes also include

router managers that support both default routing schemes and alternative routing methods carried by smart

packets. The smart packets testbed has been used to program enhanced HTTP and SMTP services that

show some performance benefits over conventional HTTP and SMTP by reducing excessive ACK/NAK

 25

responses in the protocols. A beacon routing scheme supports the use of multiple routing algorithms within

a common physical IP network based on smart packets.

Open Programmable Switches

The xbind project [87, 90] investigated network programmability by opening-up the interfaces to

communication nodes. The xbind broadband kernel [90] is based on a binding architecture and a collection

of node interfaces referred to as Binding Interface Base (BIB) [2]. The BIB provides abstractions to the

node state and network resources. Binding algorithms run on top of the BIB and bind QOS requirements to

network resources via abstractions. The BIB is designed to support service creation through high-level

programming languages. The interfaces are static while supporting universal programmability. The quasi-

static nature of the BIB interfaces, allow for complete testing and verification of the correctness of new

functions, on emulation platforms, before any service is deployed. The concept of active packets or

capsules containing both programs and user data is not considered in the xbind approach to

programmability. Rather, communication is performed using RPCs between distributed objects and

controllers based on OMG’s CORBA. The approach taken by xbind promotes interoperability between

multi-vendor switch market supporting resource sharing and partitioning in a controlled manner.

2.4.2 Network Programming Environments

The ANTS Toolkit

ANTS [147], developed at MIT, enables the uncoordinated deployment of multiple communication

protocols in active networks providing a set of core services including support for the transportation of

mobile code, loading of code on demand and caching techniques. These core services allow network

architects to introduce or extend existing network protocols. ANTS provides a network programming

environment for building new capsule-based programmable network architectures. Examples of such

programmed network services include enhanced multicast services, mobile IP routing and application-level

filtering. The ANTS capsule-driven execution model provides a foundation for maximum network

programmability in comparison to other API approaches. Capsules serve as atomic units of network

programmability supporting processing and forwarding interfaces. Incorporated features include node

 26

access, capsule manipulation, control operations and soft-state storage services on IP routers. Active nodes

execute capsules and forwarding routines, maintain local state and support code distribution services for

automating the deployment of new services. The ANTS toolkit also supports capsule processing quanta as a

metric for node resource management.

The Switchware Toolkit

Switchware [4] has been developed at University of Pennsylvania and attempts to balance the

flexibility of a programmable network against the safety and security requirements needed in a shared

infrastructure such as the Internet. The Switchware toolkit allows the network architects to trade-off

flexibility, safety, security, performance and usability when programming secure network architectures. At

the operating system level, an active IP-router component is responsible for providing a secure foundation

that guarantees system integrity. Active extensions can be dynamically loaded into secure active routers

through a set of security mechanisms that include encryption, authentication and program verification. The

correct behavior of active extensions can be verified off-line by applying ‘heavyweight’ methods, since the

deployment of such extensions is done over slow time scales.

Active extensions provide interfaces for more dynamic network programming using active packets.

Active packets can roam and customize the network in a similar way as capsules do. Active packets are

written in functional languages (e.g., Caml and PLAN [65]) and carry lightweight programs that invoke

node-resident service routines supported by active extensions. There is much less requirement for testing

and verification in the case of active packets than for active extensions, given the confidence that lower

level security checks have already been applied to active extensions. Active packets cannot explicitly leave

state behind at nodes and they can access state only through clearly defined interfaces furnished by active

extension software. As mentioned earlier, Switchware applies heavyweight security checks on active

extensions, which may represent major releases of switch code, and more lightweight security checks on

active packets. This approach allows the network architect to balance security concerns against

performance requirements. The security model of Switchware considers public, authenticated and verified

facilities.

 27

The NetScript Toolkit

The Netscript project [44] at Columbia University takes a functional language-based approach to

capture network programmability using universal language abstractions. Netscript is a strongly typed

language that creates universal abstractions for programming network node functions. Unlike other active

network projects that take a language-based approach Netscript is being developed to support Virtual

Active Networks as a programmable abstraction. Virtual Active Network abstractions can be systematically

composed, provisioned and managed. In addition, Netscript automates management through language

extensions that generate MIBs. Netscript leverages earlier work on decentralized management and agent

technologies that automatically correlate and analyze the behavior monitored by active MIB elements. A

distinguishing feature of Netscript is that it seeks to provide a universal language for active networks in a

manner that is analogous to postscript. Just as postscript captures the programmability of printer engines,

Netscript captures the programmability of network node functions. Netscript communication abstractions

include collections of nodes and virtual links that constitute virtual active networks.

2.4.3 Programmable Network Architectures

The Darwin Architecture

The Darwin Project [40] at Carnegie Mellon University has developed an architecture for the next

generation IP networks with the goal of offering Internet users a platform for value-added and customizable

services. The Darwin project is focused toward customizable resource management that supports QOS.

Architecturally, the Darwin framework includes Xena, a service broker that maps user requirements to a set

of local resources, resource managers that communicate with Xena using the Beagle signaling protocol, and

hierarchical scheduling disciplines based on service profiles. The Xena architecture takes the view that the

IP forwarding and routing functions should be left in tact and only allows restricted use of active packet

technology in the system.

Alongside the IP stack, Darwin introduces a control plane that builds on similar concepts such as those

leveraged by broadband kernels [90] and active services [5]. The Xena architecture is made programmable

and incorporates active technologies in a restricted fashion. A set of service delegates provides support for

active packets. Delegates can be dynamically injected into IP routers or servers to support application

 28

specific processing (e.g., sophisticated semantic dropping) and value-added services (e.g., transcoders). A

distinguishing feature of the Darwin architectural approach is that mechanisms can be customized

according to user specific service needs defined by space, organization and time constraints. While these

architectural mechanisms are most effective when they work in unison each mechanism can also be

combined with traditional QOS architecture components. For example, the Beagle signaling system could

be programmed to support RSVP signaling for resource reservation, while the Xena resource brokers and

hierarchical schedulers could support traffic control.

The Tempest Architecture

The Tempest project at the University of Cambridge [141, 142] has investigated the deployment of

multiple coexisting control architectures in broadband ATM environments. Novel technological approaches

include the usage of software mobile agents to customize network control and the consideration of control

architectures dedicated to a single service. Tempest supports two levels of programmability and abstraction.

First, switchlets, which are logical network elements that result from the partition of ATM switch

resources, allow the introduction of alternative control architectures into an operational network. Second,

services can be refined by dynamically loading programs that customize existing control architectures.

Resources in an ATM network can be divided by using two software components: a switch control

interface called ariel and a resource divider called prospero. Prospero communicates with an ariel server on

an ATM switch, partitions the resources and exports a separate control interface for each switchlet created.

A network builder creates, modifies and maintains control architectures.

The Active Services Architecture

In contrast to the main body of research in active networking, Amir et al. [5] call for the preservation

of all routing and forwarding semantics of the Internet architecture by restricting the computation model to

the application layer. The Active Services version 1 (AS1) programmable service architecture enables

clients to download and run service agents at strategic locations inside the network. Service agents called

“servents” are restricted from manipulating routing tables and forwarding functions that would contravene

the IP-layer integrity. The AS1 architecture contains a number of architectural components:

 29

• a service environment, which defines a programming model and a set of interfaces available to

servents;

• a service-location facility, which allows clients to ‘rendezvous’ with the AS1 environment by

obtaining bootstrapping and configuration mechanisms to instantiate servents ;

• a service management system, which allocates clusters of resources to servents using admission control

and load balancing of servents under high-load conditions;

• a service control system, which provides dynamic client control of servents once instantiated within an

AS1 architecture;

• a service attachment facility, which provides mechanisms for clients that can not interact directly with

the AS1 environment through soft-state gateways; and

• a service composition mechanism, which allows clients to contact multiple service clusters and

interconnect servents running within and across clusters.

The AS1 architecture is programmable at the application layer supporting a range of application domains.

In [5], the MeGa architecture is programmed using AS1 to support an active media gateway service. In this

case, servents provide support for application-level rate control and transcoding techniques.

2.5 Discussion

We have introduced a set of characteristics and a generalized model for programmable networks to

help understand and differentiate the diverse set of programmable network projects discussed in this

chapter. In what follows we provide a brief comparison of these projects and other work in the field. The

use of open programmable network interfaces is evident in many programmable network projects discussed

in this survey. Open interfaces provide a foundation for service programming and the introduction of new

network architectures. Many network programming environments shown in Table 1 take fundamentally

different approaches to providing open interfaces for service composition.

 30

co
m

po
si

tio
n

la
ng

ua
ge

s

di
st

rib
ut

ed
 o

bj
ec

t
te

ch
no

lo
gy

m
ob

ile
 c

od
e

te
ch

no
lo

gy

en
ca

ps
ul

at
io

n

Active Services [5] composing
application level
services Internet

application
services dynamic Tcl/oTcl X X X X X X

Smart Packets, BBN
[122]

network management Internet
managed

nodes
dynamic,
discrete

Sprocket &
Spanner X X X X X X X

NetScript [44] composing network
services and VANs Internet VANS

dynamic,
discrete NetScript X X X X X X X

ANTS [147] composing network
services Internet

Internet
protocols

dynamic,
integrated JAVA X X X X X X X X

CANEs [35]
composing services Internet

composable
services dynamic LIANE X X X X

SwitchWare [4] composing network
services Internet

Internet
protocols dynamic PLAN & Caml X X X X X X X X

SmartPackets, U,
Kansas [84] composing network

services Internet
Internet

protocols dynamic JAVA X X X X X X X X X X

Liquid Software [64] investigating mobile
code technology Internet dynamic JAVA X X

ANN [45] composing network
services Internet network node

dynamic,
discrete object code X X X X X X X

NodeOS [114]
enabling network
programmability Internet network node X X X X X

xbind [2] enabling
telecommunications
service creation ATM

multimedia
networks Static CORBA/IDL X X X X X X X

DARWIN [40] integrated resource
management and
value added services Internet flows quasi-static X X X X X X X X X

Mobiware [32]
wireless QoS and
mobile QoS control Mobile

universal
mobile

channels quasi-static
CORBA/IDL &

JAVA X X X X X X X X X

Tempest [142]
enabling alternative
control architectures ATM

network
control

architectures quasi-static CORBA/IDL X X X X X X X X X

X-Bone [137] automating the
deployment of IP
overlays Internet IP overlays X X X X X

Supranet [48] Virtual Network
Services Internet

Virtual
Networks X X X X X

Genesis [80] Spawning Virtual
Network Architectures

Internet
Spawning
Networks dynamic Metabus/IDL X X X X X X X X X

Network
Programming
Environments

ne
tw

or
k

co
nt

ro
l

in
fo

rm
at

io
n

tra
ns

po
rt

ro
ut

in
g

ap
pl

ic
at

io
n-

le
ve

l s
er

vi
ce

s

ne
tw

or
k

m
an

ag
em

en
t

se
rv

ic
e

co
m

po
si

tio
n

se
rv

ic
e

co
nt

ro
l

su
pp

or
t f

or
 m

ul
tip

le

pr
og

ra
m

m
in

g
en

vi
ro

nm
en

ts

re
so

ur
ce

 m
an

ag
em

en
t

ca
pa

bi
lit

y

se
cu

rit
y

ca
pa

bi
lit

y

no
de

 in
te

rfa
ce

s
an

d
bi

nd
in

g
m

ec
ha

ni
sm

s
re

so
ur

ce
 m

an
ag

em
en

t
su

pp
or

t

su
pp

or
t f

or
 m

ul
tip

le
 n

et
w

or
k

ar
ch

ite
ct

ur
es

se
cu

rit
y

su
pp

or
t

Generalized Model for Programmable Networks

Characteristics

Projects

Programmable
Network

Architectures
Node Kernels

pr
og

ra
m

m
ab

le

co
m

m
un

ic
at

io
ns

ab

st
ra

ct
io

ns

le
ve

l o
f p

ro
gr

am
m

ab
ilit

y programming methodology

ar
ch

ite
ct

ur
al

 d
om

ai
l

ne
tw

or
ki

ng
 te

ch
no

lo
gy

Table 1: Comparison of Programmable Networks

The programming methodology adopted (e.g., distributed object technology based on RPC, mobile

code or hybrid approaches) has a significant impact on an architecture’s level of programmability; that is,

the granularity, time scales and complexity incurred when introducing new APIs and algorithms into the

 31

network. Many projects use virtualization techniques to support the programmability of different types of

communication abstractions. The Tempest framework [142] presents a good example of the use of

virtualization of the network infrastructure. Low-level physical switch interfaces are abstracted creating

sets of interfaces to switch partitions called switchlets. Switchlets allow multiple control architectures to

coexist and share the same physical switch resources (e.g., capacity, switching tables, name space, etc.).

Typically, abstractions found in programmable networks are paired with safe resource partitioning

strategies that enable multiple services, protocols and different programmable networking architectures to

coexist. The dynamic composition and deployment of new services can be extended to include the

composition of complete network architectures as virtual networks. The Netscript project [44] supports the

notion of Virtual Active Networks over IP networks. Virtual network engines interconnect sets of virtual

nodes and virtual links to form virtual active networks. These design principles, have been taken into

account in the design and implementation of the Genesis Kernel, our network programming system for

creating network architectures. The Genesis Kernel is discussed in Chapter 3.

2.6 Summary

In Chapter 2 we present a generalized model for programmable networks. We examine the state of the

art in programmable networks and present two schools of thought on programmable networks advocated by

the Active Networks (AN) [43] and Open Signalling (Opensig) [108] communities. The main results of our

analysis are: (i) a programmable network is distinguished from any other networking environment by the

fact that it can be programmed from a minimal set of APIs from which one can ideally compose an infinite

spectrum of higher level services; (ii) we view the generalized model for programmable networks as

comprising conventional communication, encompassing the transport, control and management planes, and

computation. Collectively computation and communication models make up a programmable network; (iii)

a programmable network consists of a collection of “node kernels”, a “network programming environment”

and a “programmable network architecture”.

 32

Chapter 3

A Programming System for Spawning Network
Architectures

3.1 Introduction

In this chapter we describe the design, implementation and evaluation of the Genesis Kernel, a

programming system that automates the creation, deployment, management and refinement of network

architectures, based on the programmable networking model described in the previous chapter. The Genesis

Kernel supports the deployment of network architectures as programmable virtual networks. We call a

virtual network installed on top of a set of network resources a ‘parent virtual network’. We investigate the

realization of parent virtual networks with the capability of creating ‘child virtual networks’ operating on a

subset of network resources and topology. This is a departure from the operating system analogy. The two

architectures (i.e., parent and child) would be deployed in response to possibly different user needs and

requirements. For example, part of an access network to a wired network might be re-deployed as a pico-

cellular virtual network supporting fast handoff. Other examples include virtual networks that can be either

under the control of a service provider (such as an ISP) or under customer control. Child networks operate

on a subset of the topology of their parents and are restricted by the capabilities of their parent’s underlying

hardware and resource partitioning model. While parent and child networks share resources, they do not

 33

necessarily use the same software for controlling those resources. In this thesis we use the term ‘spawning

networks’ to refer to programmable virtual networks that use the Genesis Kernel to create new network

architectures as child virtual networks. The term ‘network spawning’ is first introduced in [88].

The Genesis Kernel automates a virtual network life cycle process, which comprises ‘profiling’,

‘spawning’, ‘management’ and ‘architecting’ phases. The profiling phase captures the blueprint of a

network architecture in terms of a comprehensive profiling script. The spawning phase systematically sets

up the topology and address space, allocates resources and binds transport, control and management objects

to the physical network infrastructure. The management phase supports virtual network resource

management [28, 49] while the architecting phase allows network designers to add, remove or replace

distributed network algorithms on-demand analyzing the pros and cons of the network design space.

In order to evaluate our approach we have built a spawning network testbed and designed a set of

experiments to help verify the Genesis Kernel’s capability to dynamically create, manage and architect

network architectures. We have spawned a parent network architecture that supports IP forwarding, and

interior and exterior routing. The spawning networks testbed comprises a number of heterogeneous link

layers including Ethernet, wireless LAN and ATM technologies. Two distinct child networks have been

spawned over the parent network based on the Cellular IP [140] and Mobiware [32] architectures offering

wireless data and multimedia services to mobile users, respectively. Both of these architectures were

previously developed by the COMET Group, and have been fully implemented and evaluated in standalone

testbeds; see [30] and [32] for details. We refer to the spawned IP, Cellular IP and Mobiware architectures

as the baseline architectures. We also show how the Mobiware and Cellular IP child networks can be

architecturally refined.

This chapter is structured as follows. In Section 3.2 we describe the Genesis Framework and discuss the

principles that underpin programmable network architectures. Following this, in Section 3.3 we describe

our prototype implementation. In Section 3.4 we discuss how network services can be programmed using

the Genesis kernel. In Section 3.5 we present our experiences with using the Genesis Kernel, focusing on

the dynamic creation, deployment and management of the baseline network architectures. In Section 3.6,

we present related work in the area of automating the process of creating network architectures. Finally, we

present some concluding remarks and summary in Section 3.7.

 34

3.2 The Genesis Kernel

3.2.1 The Genesis Kernel Framework

The Genesis Kernel has a layered structure that is derived from the programmable networking model

described in Chapter 2. Three distinct levels of the Genesis Kernel support spawning, as illustrated in

Figure 3. At the lowest level, a transport environment delivers packets from source to destination end-

systems through a set of open programmable virtual router nodes called routelets. Routelets are the

realization of the node kernels of our generalized model for programmable networks (see Chapter 2) in the

Genesis Kernel programming system. Routelets represent the lowest level operating system support

dedicated to a virtual network. A virtual network is characterized by a set of routelets interconnected by a

set of virtual links, where a set of routelets and virtual links collectively form a virtual network topology.

Routelets process packets along a programmable data path at the internetworking layer, while control

algorithms (e.g., routing and resource reservation) are made programmable using the virtual network

kernel, (i.e., the Genesis Kernel). A Genesis router is capable of supporting multiple routelets, which

represent components of distinct virtual networks that share computational and communication resources.

Child routelets are instantiated by the parent network during spawning, as illustrated in Figure 3. The

parent virtual network kernel acts as a resource allocator, arbitrating between requests made by spawned

routelets. In addition, routelets are controlled through separate programming environments. Each virtual

network kernel can create a distinct programming environment that enables the interaction between

distributed objects that characterize a spawned network architecture (e.g., routing daemons, bandwidth

brokers, etc.), as illustrated in Figure 2. The programming environment comprises a metabus, which is a

per-virtual network software bus for object interaction (akin to CORBA, DCOM and Java RMI software

buses). The metabus creates isolation between the distributed objects associated with different spawned

virtual networks. A binding interface base [2] supports a set of open programmable interfaces on top of the

metabus, which provide open access to a set of routelets and virtual links that constitute a virtual network.

A key capability of the Genesis Kernel is its ability to support a virtual network life cycle process that

supports the dynamic creation, deployment and management of network architectures. The life cycle

process comprises four phases:

 35

Figure 3: The Genesis Kernel Framework

• profiling, which captures the blueprint of the virtual network architecture in terms of a

comprehensive profiling script. Profiling captures addressing, routing, signaling, security, control and

management requirements in an executable profiling script that is used to automate the deployment of

programmable virtual networks;

• spawning, which systematically sets up the topology and address space, allocates resources and binds

transport, control and network management objects to the physical network infrastructure. Based on

the profiling script and available network resources, network objects are created and dispatched to

network nodes thereby dynamically creating a new virtual network architecture;

• management, which supports virtual network resource management based on per-virtual network

policy to exert control over multiple spawned network architectures; and

architecture #1

parent virtual
network kernel

architecture #2 architecture #3 architecture #4
network network network

root (parent) network

network kernel
child virtual

metabus #3metabus #2 metabus #4

child network child network child network

transport environment

binding interface base

network

environment
programming

metabus #1

spawning

life cycle environment

 36

• architecting, which allows network designers to analyze the pros and cons of the architectural design

space and to dynamically modify a spawned architecture by changing transport, signaling, control and

management mechanisms.

As illustrated in Figure 3, the metabus and binding interface base also support the life cycle environment,

which realizes the life cycle process. When a virtual network is spawned a separate virtual network kernel

is created by the parent network on behalf of the child. The transport environment of the child virtual

network kernel is dynamically created through the partitioning of network resources used by the parent

transport environment. In addition, a metabus is instantiated to support the binding interface base and life

cycle service objects associated with a child network. The profiling and spawning of a child network is

controlled by its parent virtual network kernel. In contrast, the child virtual network kernel is responsible

for the management of its own network. The terms virtual network kernel, child virtual network kernel and

parent virtual network kernel all refer to instantiations of the Genesis Kernel. The terms child virtual

network kernel and parent virtual network kernel refer to the instantiation of the Genesis Kernel at different

levels in a virtual network inheritance tree (see next section).

3.2.2 Design principles

The Genesis Kernel is governed by the following set of design principles.

• Separation Principle: Spawning results in the composition of a child network architecture in terms of

transport, control and management algorithms. Child networks operate in isolation with their traffic

being carried securely and independently from other virtual networks. The allocation of parent network

resources used to support a child network is coupled with the separation of responsibilities and the

transparency of operation between parent and child architectures. The reason why the separation

principle is important is because different network applications require different protocols for transport

control and management. As a result the profiling, spawning, management and refinement cycle for a

particular architecture may be different from the life cycle of another. In order for the network

architectures to operate safely over a guaranteed set of resources isolation is required.

• Nesting Principle: A child network inherits the capability to spawn other virtual networks creating the

notion of ‘nested virtual networks’ within a virtual network. This is consistent with the idea of creating

 37

infrastructure that supports relatively long-lived virtual networks (e.g., a corporate virtual network that

operates over a long time-scale) and short-lived virtual networks (e.g., collaborative child group

networks operating within the context of the corporate parent network but only active for a short

period). The parent-to-child relationship represents a ‘virtual network inheritance tree’ [28]. The

Genesis Kernel ideally supports iterative spawning resulting in hierarchy of nested virtual networks.

Earlier results on the performance of network architectures indicate nesting may be a feasible

technique for improving the cost and performance of a network from the service provider/network

designer point of view. For example, the performance of non-cooperative networks is studied in [78]. It

is shown in [78] that if among the users of a non-cooperative network one user plays the role of a

manager and if its bandwidth demands exceed a certain threshold, then the manager can enforce a

network optimum operating point. The same can be argued about the resources used by the manager.

The resources of the manager can be iteratively divided among users, where one user could play the

role of a manager (i.e., the manager of the manager of the network). Resource partitioning can take

place iteratively, resulting in more optimal use of network resources according to some performance

objective.

• Inheritance Principle: Child networks can inherit architectural components (e.g., resource management

capabilities and provisioning characteristics) from parent networks. The Genesis Kernel, which is

based on a distributed object design, uses inheritance of architectural components when composing

child networks. Child networks can inherit any aspect of their parent architecture, which is represented

by a set of distributed network objects for transport, control and management.

3.2.3 The Transport Environment

The transport environment consists of a set routelets, which represent open programmable virtual nodes.

A routelet operates like an autonomous virtual router that forwards packets at layer three, from its input

ports to its output ports, scheduling virtual link capacity and computational resources. Routelets support a

set of transport modules that are specific to a spawned virtual network architecture, as illustrated in Figure

4. A routelet comprises a forwarding engine, a control unit and a set of input and output ports, and may

optionally support higher level protocol stacks.

 38

Ports and Engines

Ports and engines, shown in Figure 4, manage incoming and outgoing packets as specified by a virtual

network profiling script. A profiling script captures the composition of routelet components. Ports and

engines are dynamically created during the spawning phase from a set of transport modules, which

represent a set of generic routelet plug-ins having well defined interfaces and globally unique identifiers.

Transport modules (e.g., encapsulators, forwarders, classifiers, schedulers) can be dynamically loaded into

routelets by the Genesis Kernel to form new and distinct programmable data paths.

Figure 4: Routelet Architecture

Child ports and engines can be constructed by directly inheriting their parent's transport modules or

through dynamic composition by selecting new modules on-demand. Forwarding engines bind to input and

output ports constructing a data path to meet the specific needs of an embryonic network architecture. Input

ports process packets as they enter the routelet based on the instantiated transport modules. In the case of a

differentiated services [124] routelet for example, the input ports would contain differentiated service

specific mechanisms (e.g., meters and markers used to maintain traffic conditioning agreements at

boundary routelets of a differentiated service virtual network). A virtual link is typically shared by

user/subscriber traffic generated by end-systems associated with the parent network and by aggregated

controller
spawning

controller controller controller
composition datapathallocation

packets packets

routelet state

C P U

output port
forwarding

engineinput port

control unit

binding interface base

metabus

 39

traffic associated with child networks. User and child network traffic contend for the parent's virtual link

capacity. The output port regulates access to the communication resources (which are associated with a

virtual link) among these competing elements.

Control Unit

A routelet is managed by a control unit that comprises a set of controllers:

• a spawning controller, which “bootstraps” child routelets through virtualization;

• a composition controller, which manages the composition of a routelet using a set of transport module

references and a composition script to construct ports and engines;

• an allocation controller, which manages the computation resources associated with a routelet, and

• a datapath controller, which manages the communication resources and the transportation of packets.

The spawning, composition and allocation controllers are common for all routelets associated with a

virtual network. In contrast, datapath controllers are dynamically composed during the spawning phase

based on a profiling script. Datapath controllers manage transport modules that represent architecture-

specific data paths supporting local routelet treatment (e.g., QOS control using transport modules such as

policers, regulators, buffering, queuing and scheduling mechanisms).

Routelets also maintain ‘state’ information that comprises a set of variables and data structures associated

with their architectural specification and operation. Architectural state information includes the

operational transport modules reflecting the composition of ports and forwarding engines. State information

includes a set of references to physical resource partitions that maintain packet queuing, scheduling,

memory and name space allocations for routelets. Routelet state also contains virtual network specific

information (e.g., routing tables, traffic conditioning agreement configurations).

Routelets generalize the concept of partitioning physical switch resources introduced in [141, 142].

Routelets are designed to operate over a wide variety of link layer technologies including Ethernet, wireless

LAN and ATM. The underlying link layer technology, however, may impact the level of programmability

and QOS provisioning that can be delivered at the internetworking layer.

 40

virtual network classifier
vi

rt
ua

l n
et

w
or

k
de

m
ul

tip
le

xo
r

child routelet

input port

local routing control

packet

packet

input port
engine

forwarding output port

local traffic control

engine
forwarding

local routing control
local traffic control virtual network traffic control

capacity arbitrator

Figure 5: Nested Routelets

Nested Routelets

Nested routelets operate on the same physical node and maintain their structure according to a virtual

network inheritance tree. Child routelets are dynamically created and composed during the spawning

process when the parent’s computational and communication resources are allocated to support the

execution of a child routelet. Each reference to a physical resource made by a child routelet is mapped into

a partition controlled and managed by its parent. In addition, user traffic associated with a child routelet is

handled in an aggregated manner by the parent routelet. Routelets are unaware that packets are processed

according to an inheritance tree. A routelet simply receives a packet on one of the input ports associated

with its virtual links, sends the packet to its forwarding engine for processing which then forwards the

packet to an output port where it is finally scheduled for virtual link transmission.

We use an example scenario to illustrate how nesting is supported in the router. As illustrated in Figure 4,

two packets arrive at a Genesis router. Every packet arrival must be demultiplexed to a given spawned

virtual network. A virtual network demultiplexor is programmed to identify each packet's targeted virtual

network (i.e., its routelet) based on a unique virtual network identifier assigned during the spawning phase.

Each packet that arrives at a Genesis router must eventually reach the input port of its targeted virtual

network routelet, as illustrated in Figure 5. The first packet in the example traverses the first level (child)

 41

routelet. The other packet traverses the parent network routelet directly. Mapping is always performed

between the child and parent transport environments. Mapping is done through the management of

transport module references by parent and child composition controllers, which are capable of realizing

specified ‘binding models’ between the ports and engines of parent and child networks. This mapping is

performed at each virtual network layer (i.e., routelet) down to the root of the inheritance tree.

A ‘capacity arbitrator’ [28] located at the parent’s output port controls access to the parent’s link

capacity. Every packet is treated according to a virtual network policy, which may be different at each

routelet or virtual network. In one extreme case each packet traverses the nested hierarchy tree until it is

scheduled and exits onto the physical output link. In another case, a common fast path can be used by all

virtual networks. The fast path is supported by the root network of the inheritance tree in this case. Child

networks can inherit the fast path from their parents. The fast path supports hierarchical resource

management and scheduling.

Virtual Network Demultiplexing

The Genesis Kernel supports explicit virtual network demultiplexing at the cost of an additional protocol

field inserted in the frame format. This is accomplished by inserting a virtual network identifier between

the internetworking and link layer headers. Although this appears to be a radical approach, it represents a

simple way to differentiate traffic between programmable virtual networks without introducing virtual

network semantics into the internetworking layer. In addition, classification of packets between virtual

network flows can be done with a single memory access (e.g., a single hash lookup), without burdening the

data path with significant overhead. Virtual networks are allowed to manage their own name space (e.g.,

addressing schemes) independent of each other, utilizing different forwarding mechanisms. The virtual

network identifier is dynamically allocated and passed into the routelets of a virtual network by the life

cycle environment of the parent kernel. The virtual network demultiplexor maintains a database of virtual

network identifiers to map incoming packets to specific routelets (e.g., child routelets, fast path routelets).

 42

3.2.4 The Programming Environment

Each network architecture comprises a set of distributed controllers that realize communication

algorithms (e.g., routing, control, management), as discussed in Section 3.2.1. These distributed controllers

use the programming environment for interaction. While the implementation of routelet transport modules

is platform-dependent, the programming environment offers platform-independent access to these

components allowing a variety of protocols to be dynamically programmed. The programming environment

is illustrated in Figure 6 and discussed below.

QOS control

life cycle
server

life cycle
services

routing

architecture
virtual network

VirtualRouteletState VirtualSpawningController

VirtualCompositionController

VirtualAllocationController

VirtualDatapathController
sp

aw
ni

ng

m
an

ag
em

en
t

re
so

ur
ce

architecting

profiling

binding interface base

metabus

management
spawning

profiling

architecting

resource
management

Figure 6: Programming Environment

Metabus

A metabus supports a hierarchy of distributed objects that realize a number of virtual network specific

communication algorithms including routing, signaling, QOS control and management. At the lowest level

of this hierarchy binding interface base objects provide a set of handlers to a routelet’s controllers and

 43

resources allowing for the programmability of a range of internetworking architectures using the

programming environment. The binding interface base separates the implementation of the finite state

machine, which characterizes communication algorithms (e.g., the RIP finite state machine, the RSVP

finite state machine, etc.), from the implementation of the mechanisms that transmit signaling messages

inside the network. Communication algorithms can be implemented as interactions of distributed objects,

independent of the network transport mechanisms. Distributed objects that comprise network architectures

(e.g., routing daemons, bandwidth brokers, etc.) are not aware of the existence of routelets. Distributed

objects give the ‘illusion’ of calling methods on local objects whereas in practice call arguments are

‘packaged’ and transmitted over the network via one or more routelets. This abstraction is provided by the

metabus.

We have chosen to realize the metabus abstraction as an orblet, a virtual Object Request Broker (ORB)

derived from the CORBA [108, 144] object-programming environment. Typically, CORBA is used in

enterprise networking solutions and runs on client and server nodes to support distributed applications. We

have developed network kernels [32] that use CORBA technology for service creation, signaling and

management in previous projects, that are not directly related to this thesis. The use of off-the-shelf

CORBA allows us to quickly develop simple programmable network architectures and spawn them using

the Genesis Kernel. See Section 3.3 for details on the orblet implementation.

The use of CORBA in the network presents a number of scalability issues that the metabus resolves.

Distributed objects that comprise distinct spawned network architectures need to be isolated for scalability

reasons. Existing ORB technology supports a number of ad-hoc solutions for realizing isolation between

distributed object computing environments. The metabus extends the capabilities offered by CORBA by

supporting the dynamic creation of multiple isolated software buses for spawned virtual network

architectures.

Binding Interface Base

The interfaces that constitute the binding interface base are illustrated in Figure 5. A

VirtualRouteletState interface allows access to the internal state of a routelet (e.g., architectural

specification, routing tables). The VirtualSpawningController, VirtualCompositionController and

 44

VirtualAllocationController interfaces are abstractions of a routelet’s spawning, composition and allocation

controllers, respectively. The VirtualDatapathController is a ‘container’ interface to a set of objects that

control a routelet’s transport modules. When the transport environment (e.g., output port) is modified the

binding interface base is dynamically updated to include new module interfaces in the

VirtualDatapathController.

Every routelet is controlled through a number of implementation-dependent system calls. Binding

interface base objects wrap these system calls with open programmable interfaces that facilitate the

interoperability between routelets that are possibly implemented with different technologies. Routing

services can be programmed on top of a VirtualRouteletState interface that allows access to the routing

tables of a virtual network. Similarly, resource reservation protocols can be deployed on top of a

VirtualDatapathController interface that controls the classifiers and packet schedulers of a routelet’s

programmable data path.

3.2.5 The Life Cycle Environment

The life cycle environment provides support for the profiling, spawning, management and architecting of

virtual networks. Profiling, spawning, management and architecting provide a set of services and

mechanisms, which are common to all virtual networks that inherit from the same parent. Life cycle

services can be considered as kernel ‘plugins’ because they can be replaced or modified on-demand. Life

cycle services can be programmed using the metabus and binding interface base of the Genesis Kernel. The

life cycle is realized through the interaction of the transport, programming and life cycle environments. In

what follows, we provide an overview of the life cycle services.

Profiling

Before a virtual network can be spawned the network architecture must be specified and profiled in terms

of a set of software and hardware building blocks annotating their interaction. These software building

blocks include the complete definition of the communication services and protocols that characterize a

network architecture as outlined in Section 3.2. The process of profiling captures addressing, routing,

signaling, control and management requirements in an executable profiling script that is used to automate

 45

the deployment of programmable network architectures. During this phase, a virtual network architecture is

specified in terms of a topology graph (e.g., routers, base stations, hosts and links), resource requirements

(e.g., link capacities and computational requirements), user membership (e.g., privileges, confidentiality

and connectivity graphs) and security specifications. Programmability enables the architect to include

addressing, routing, signaling, control and management mechanisms in the profiling script. The output from

this phase of the life cycle is a comprehensive profiling script.

Figure 7: Profiling

The first step in profiling a target virtual network is the selection of nodes and links from a parent

provider network and the composition of a customized topology graph. The details of the parent network

are stored, managed and presented in a profile database maintained by the parent virtual network kernel.

The topology may span wireline and wireless sub-networks and cover a wide area interconnecting a

number of Intranets or it may be restricted to a few local sub-networks. When profiling large-scale

networks the architect has the flexibility to provide an outline of the topology graph, specifying strategic

architecting

profiling
m

an
ag

em
en

t
re

so
ur

ce

life cycle
server

sp
aw

ni
ng

database
profiler component

storage

verifiers

policy
server

GUI

profile

 46

sub-networks or backbone routers that should be included in the topology. In this case a profiling tool

completes the specification. Once the topology is specified it is augmented with a user connectivity model

and membership assignments.

The Genesis profiling system allows the network designer to dynamically select architectural

components and instantiate them as part of a spawned network architecture. For example, a number of

routing protocols for intra-domain and inter-domain routing can be made available using a component

storage of the parent network (e.g., RIP, OSPF, BGP). Similarly, QOS or resource provisioning

architectures based on well-founded models can be dynamically selected and used for controlling resources

in virtual networks. Transport protocols (e.g., TCP, RTP, UDP) and network management components

(e.g., SNMP) made available as software building blocks can be instantiated on-demand.

A number of important characteristics of a virtual network are realized as component parts to routelets,

including forwarding algorithms, addressing schemes, QOS provisioning capability, encryption, tunneling

and multicast support. These features can be explicitly specified in the virtual network profile, selected

from a database of existing architectural components or inherited from a parent. Routelets can be explicitly

specified in the virtual network profile or network designers can select routelets from a library to realize a

certain service. An important part of profiling is the description of the routelets and virtual links that

connect and form a network-wide topology. Ports and forwarding engines are composed to meet the

specific architectural requirements of the virtual network architecture in terms of the characteristics of a

programmable low-level data path.

The Genesis profiling system is illustrated in Figure 7. Network architects utilize a graphical utility

profiling tool to generate the virtual network profile. The profiling system interacts with a parent virtual

network kernel through a life cycle server as illustrated. A profiler service queries information about the

parent network from a profile database. The profile database provides information about the topology and

architecture of the parent network. The first level of information exposes a coarse presentation of the

network topology while the second level presents details on intermediate nodes and links. The database

provides quantitative and qualitative characteristics of virtual networks.

 47

Spawning

Once the network architecture has been fully specified in terms of a profiling script it can be dynamically

created. The process of spawning a network architecture relies on the dynamic composition of the

communication services and protocols that characterize it and the injection of these algorithms into the

nodes of the physical network infrastructure constituting a virtual network topology. The spawning process

systematically sets up the topology and address space, allocates resources, and binds transport, routing and

network management objects to the physical network infrastructure. Throughout this process a virtual

network admission test is in operation.

Spawning child network architectures includes creating child transport and programming environments

and instantiating the control and management objects that characterize network architectures. The creation

process associated with spawning a child transport environment centers around the creation and

composition of routelets, the bootstrapping of routelets into physical routers based on the child network

topology, and finally, the binding of virtual links to routelets culminating in the instantiation of a child

transport environment over a parent network. The Genesis Kernel allows a child network to inherit the life

cycle support from its parent.

Management

Once a profiled architecture has been successfully spawned the virtual network needs to be controlled

and managed. The management phase supports virtual network resource management based on per-virtual

network policy that is used to exert control over multiple spawned network architectures. The resource

management system can dynamically influence the behavior of a set of virtual network resource controllers

through a slow timescale allocation and re-negotiation process. Virtual network resource management is a

subject of on-going study, whereas several virtual network resource management systems have been

studied by the community [28, 49].

Architecting

By observing the dynamic behavior of virtual networks, spawned network architectures can be refined.

Through the process of architecting a network designer uses visualization and management tools to analyze

 48

the pros and cons of the virtual network design space and through refinement modify network objects that

characterize the spawned network architecture. For example, the Cellular IP architecture could be refined to

optimally operate in pico-, campus- and metropolitan-area environments through the process of architecting

and refinement.

Architecting appears to be an exceedingly difficult task. One of the goals of our work is to build more

powerful tools to help with the architecting process allowing for a more systematic study of the design

space under operational conditions. The development of visualization tools is an important part of this

work. However, the effective use of architecting depends on more than a visualization tool. Rather, it

depends on a well founded understanding of what should be achieved versus what may be achieved and

how to modify a prototype network architecture accordingly.

3.3 Implementing Spawning Networks

We have been working on the design and implementation of the kernel since the Spring of 1998 and have

completed the implementation of Genesis Kernel over PC-based and network processor-based routers

[105]. The transport and programming environments have been implemented using commodity operating

systems, binding tools for network processors (see Chapter 5), and distributed systems technology. There

remain a number of technical barriers to realizing the lifecycle service capability, particularly in the areas

of analyzing, synthesizing and improving network architectures.

3.3.1 The Transport Environment

In this section we describe our initial implementation of the Genesis Kernel framework for PC-based

routers. The transport environment has been implemented in user space using dynamically linked libraries

(i.e., shared libraries and DLLs) in the FreeBSD and Windows NT operating systems. The transport

modules have been implemented as C++ objects. Our implementation balances the flexibility of user-space

development [136] against the performance issues associated with the lack of high-resolution timers and

context switching. The transport environment is derived from the BSD kernel implementation of TCP/IP.

The networking code was extracted as transport modules and used as a basis for implementing a

 49

programmable IP datapath. A parent network architecture was developed in this manner supporting the

majority of features found in IP [115]. In addition, we modified the Mobiware and Cellular IP software

distributions [30] [32] to create child network architectures. Figure 8 illustrates the implementation of an

IPv4 routelet.

Figure 8: IPv4 Routelet Implementation

Link Layer Support

The Genesis Kernel separates the link and internetworking layers through a generic link layer interface,

as illustrated in Figure 8. We have taken care to decouple the data structures describing the link and

internetworking layers. Information associated with the layer two interface is managed by link layer

modules while information associated with the layer three interface is managed as part of the routelet state,

as is the case with the IPv4 routelet. Typically, spawned virtual networks transmit packets through their

 virtual ethernet

virtual network
demultiplexor

virtual ethernet

ARP

input port

verifier forwarder eligibility

TTL

route
lookup

forwarding engine

header
initialization

IP
checksum

output port

generic
link layer
interface

physical
interface

outgoing packet

control unit
generic

 part
socket layer

TCP UDP

protocol control blocks

routelet state socket interface

IPC IPC IPC

incoming packet

specific
 part

metabus

 50

parent network’s capacity arbitrators. Only the transport environment of the virtual network at the ‘root’ of

the inheritance tree (i.e., the root network) needs to interact with the physical link layer.

The link layer interface supports generic methods for sending and receiving frames and configuring the

link layer software. In Figure 8, the link layer modules represent virtual Ethernet modules. We use the

term ‘virtual’ in this context because link layer modules use low-level programming APIs to send and

receive frames to and from the network device drivers. For example, we have used the BSD Packet Filter

(BPF) as a network programming API in FreeBSD.

Packet Flows

At a router, packets are forwarded from incoming to outgoing physical interfaces traversing virtual

network demultiplexors and routelets. Memory management is realized as follows. Transport modules can

drop packets when and where needed (e.g., a queue may drop a packet if the length of the queue exceeds a

given threshold). In addition, allocation controllers enforce hierarchical memory management according to

the virtual network inheritance tree. Virtual network demultiplexors configure link layer modules

controlling the devices where packets are received from.

Routelet Components

Routelet components are shown in Figure 8. Ports and engines are modular elements that perform basic

functions on packets. In the current implementation IP option processing and fragmentation and reassembly

mechanisms have not been implemented. The verifier module inspects the IP header to determine if the

header of an incoming packet is valid. The forwarder module checks whether a packet has reached its final

destination or not. The eligibility module checks whether a packet is eligible to be forwarded. Link level

broadcasts, loopback packets and packets addressed to class D and E destinations are dropped. The TTL

module decrements the TTL field in the packet header. After this processing, the forwarding engine

performs a route lookup to determine the packet’s outgoing interface. The output port accepts packets from

forwarding engines and higher level protocols. If a packet is received from a higher level protocol, the

output port initializes the packet header using the header initialization module. The IP checksum module

computes the IP header checksum. Finally the packet is forwarded to an ARP module, which performs

 51

layer two address resolution that takes into account the specific link layer technology used. An ARP

module is selected when the root network is bootstrapped on to the hardware.

Routelet State

Routelet state comprises a virtual network generic part and virtual network specific part. The generic part

includes pointers to all transport modules that are used by a routelet and a script that reflects the

composition of routelet ports and engines. The composition of the specific part is dependent on the

particular routelet being programmed. In the case of the IPv4 routelet shown in Figure 6, the virtual

network specific part contains information associated with the routelet’s interfaces and the routing tables

used for IP forwarding.

Transport Protocol Stacks

In many cases routelets subsume transport protocol stacks. For example, the IPv4 routelet supports TCP

and UDP protocol stacks. TCP is used for exchanging signaling messages for routing, resource reservation,

and control and management. Routelet support for TCP communications is similar to the BSD kernel

implementation. The socket layer realizes high-level communication functions such as connection

establishment and release. Programmable network objects use Inter-Process Communication (IPC) to

interact with the socket layer, where IPC is used as a replacement for system calls that an operating system

kernel employs to transfer control to the protected environment of the kernel. TCP port numbers can be re-

used over multiple TCP connections provided that these connections are realized by different routelets.

Routelets use different IPC channels, which are created dynamically during the spawning phase. The socket

layer is not the only component of a routelet that uses IPC. Routelet controllers (i.e., spawning,

composition, allocation and datapath controllers) and the routelet state management also use IPC.

3.3.2 The Programming Environment

Metabus

 The metabus comprises an orblet component and set of metaservers, as illustrated in Figure 9. The

orblet represents the metabus component that provides a communication medium between object clients

 52

and servers. Current ORB implementations are tailored toward a single monolithic transport service. This

limitation makes existing CORBA implementations unsuitable for programming virtual network

architectures that may use different transport environments. To resolve this issue we have implemented the

‘acceptor-connector’ software pattern [121] in the orblet. The acceptor connector pattern wraps low-level

connection management tasks (e.g., managing a TCP connection) with a generic software API. The orblet

can use a range of transport services on-demand in this case. To use a specific transport service, the orblet

dynamically binds to an inter-ORB protocol engine supported by the Genesis Kernel. We have created an

IIOP protocol engine for interacting with IP-based routelets.

Figure 9: Metabus Architecture

Metaservers provide naming services for the metabus. The kernel automates the process of creating

naming services and associating naming services with objects. Currently, the reference to a naming service

is hard-coded in existing CORBA programming environments. In contrast, metaserver references are

dynamically passed to objects during the spawning phase, where metaservers communicate using their

spawned transport environment. In this manner, isolation between distinct sets of architectural objects that

define spawned network architectures is maintained by metabuses. In summary, isolation between virtual

networks is realized as follows. Each metabus uses a separate transport environment for object interaction

where the transport environment is dependent on the spawned network architecture. Each metabus offers

dedicated naming services to the spawned network architecture.

routelet

orblet

inter-ORB protocol engine

metaservers

IPC

 53

The orblet is implemented using the OmniORB [97] from AT&T Research Labs, Cambridge, which

represents a lightweight CORBA implementation. Currently, we use a single metaserver per spawned

virtual network. In the future, we plan to use multiple metaservers and develop metabridges that would

support interaction between different virtual networks.

Binding Interface Base.

The binding interface base shown in Figure 6 represents a collection of interfaces for programming

network architectures. CORBA/IDL is used for describing object interfaces. The following interfaces are

common to all routelets:

• a VirtualSpawningController interface, which abstracts the spawning controller, is used for creating

new routelets and querying configuration information associated with a spawned virtual network (e.g.,

routelet specific IPC channel identifiers);

• a VirtualCompositionController interface, which abstracts the composition controller, is used to

modify routelet ports and engines, and to access system parameters that characterize the operational

behavior of the transport modules. The structure of ports and engines is captured by composition

scripts which are exchanged between the VirtualCompositionController object and higher level objects

that use the interface; and

• a VirtualAllocationController interface, which is used to access resource allocation information

associated with a spawned virtual network. Typically, allocated resources include communication (i.e.,

link capacities) and computation (i.e., memory and CPU) resources. Currently, only memory

allocations are supported by the Genesis Kernel.

The VirtualRouteletState and VirtualDatapathController interfaces illustrated in Figure 6 are specific

to the network architecture being programmed. For example, the IPv4 routelet supports interfaces for the

configuration of virtual links and the insertion and removal of routing table entries. In this respect, the

binding interface base replaces the ‘ioctl’ function calls and routing sockets used in the BSD networking

code distribution.

 54

3.3.3 The Life Cycle Environment

Profiling Service

The current release of the Genesis Kernel only supports a subset of the virtual network requirements

discussed in Section 3.2. The profiling of the communication protocols, network services, address space

and topology, which characterize spawned virtual network architectures are supported. However, other

virtual network requirements (e.g., security, QOS) are for further study.

An overview of the profiling process is illustrated in Figure 10. The profiling process separates the

‘binding rules’, which define the transport, control and management systems (e.g., a rule for placing a

bandwidth broker inside the network), from the ‘binding data’ (e.g., system parameters, user preferences,

etc.). Spawned virtual networks represent the instantiation of a set of binding rules over binding data and

are composed using profiling scripts. A profiling script is written in two distinct forms:

• a compact form, which is the form that the network designer uses to specify an architecture and where

the separation between binding rules and binding data is applied; and

• an analytical form, which is an internal representation that the Genesis Kernel uses to drive the

spawning process.

Figure 10: Profiling Process

As illustrated in the figure, the compact form comprises three parts. The first part represents a set of

binding rules characterizing the composition of routelets and higher level protocols. Binding rules specify

which components should be used for constructing a network architecture and arguments used to initialize

these components. The binding rules also specify which architectural components are inherited from the

parent network. The second part of the compact form represents binding data that captures the arguments

binding data

binding rules

topology

compact form

profiler spawneranalytical
form

 55

that customize the architectural components of virtual networks. The binding data defines the operating

point within the network design space for a particular spawned network architecture. The third part of the

compact form defines the virtual network topology and address space. The topology is specified as a virtual

network graph where all virtual links are annotated and network node addresses declared. Collectively,

these three parts of the compact form specify a virtual network architecture in terms of its protocols,

services, topology and address space.

The compact form is not well suited to drive the spawning process for a number of reasons. First, the

compact form may be syntactically incorrect. Second, the virtual network topology is specified using the

addressing scheme of a child network not a parent. Parent network addresses are needed for spawning a

child network because the spawning service is supported by the parent network’s kernel. Binding rules and

binding data need to be associated with each other so that the spawning service can create new

communication services at network nodes in a parent network. Given these comments, the profiling service

converts the virtual network script from a compact to an analytical form.

 There are various steps involved in the script conversion process. First, the profiling service converts

the topology description from the child’s address space to the parent’s address space. This may involve the

selection of parent virtual links that satisfy a given set of constraints. As described by the Genesis

Framework, the profiling service interacts with the parent network’s resource management system to

allocate link resources for child networks. Currently, we have not addressed topology conversion and

resource management issues. Once the child’s network topology has been converted and mapped to its

parent’s network topology the profiler associates binding rules with binding data. The compact form groups

binding rules according to the type of node they describe (e.g., an edge router, core router or base station).

To produce the analytical form, the profiler combines the binding rules with topology and binding data,

customizing each node in a spawned virtual network with a specific set of parameters. The node type is

used as a key for associating binding rules with binding data. Because virtual network architectures are

characterized by a finite set of binding rules and network nodes, the complexity of associating binding rules

with binding data is polynomial as a function of the number of nodes in the virtual network graph and the

number of node types. The conversion to the analytical form results in the creation of separate scripts that

describe each network node in the spawned network architecture. Scripts are sent to all parent nodes

 56

associated with a spawned child network. A separate script specifies the bindings that take place across

child routelets (e.g., bindings between network control and management objects).

Figure 11: Profiling Script: A Snippet of the Binding Rules for the Cellular IP Network

Architecture.

We have completed the first version of the profiling service. Both the compact and analytical forms are

written in XML, which is suitable for describing information structures. We have used a limited XML

grammar with tags for declaring architectural components and their parameters and bindings. To associate

binding rules with binding data, we manipulate tree structures derived from profiling scripts. The profiler

performs the association between the different parts of the profiling script to produce the analytical form.

The profiler has been developed using Expat [51].

<?xml version="1.0"?>
<compact_form>
<binding_rules>
<architecture>"cip"</architecture>
 <node_types>
 <type>
 <name>"base_station"</name>
 <data>
 <parameter>"number_of_leaves"</parameter>
 <parameter>"root_address"</parameter>
 <parameter_array>
 <length>"number_of_leaves"</length>
 <parameter>"leaf_addresses"</parameter>
 </parameter_array>
 <parameter>"soft_state_timer"</parameter>
 <parameter>"delay_buffer_size"</parameter>
 <parameter_array>
 <length>"number_of_leaves" + 1</length>
 <parameter>
 <name>"vn_demuxors"</name>
 <type>VN_DEMUX</type>
 </parameter>
 </parameter_array>
 <parameter_array>
 <length>"number_of_leaves" + 1</length>
 <parameter>
 <name>"arbitrators"</name>
 <type>ARBITRATOR</type>
 </parameter>
 </parameter_array>
 </data>
 </type>
 </node_types>
 <routelets>
 <routelet>
 <name>"cip_routelet"</name>
 ...

 57

Figure 11 shows a snippet from the binding rules describing the Cellular IP network architecture. The

snippet describes how the Cellular IP routelet is parameterized. The profiling XML grammar allows for the

composition of network architecture components including ports, forwarding engines, routing daemons,

handoff controllers and mobility agents. The profiling service is far from complete, however. The profiling

service applies syntactic control over scripts but not semantic control. A syntactically correct script may

hide erroneous object bindings. Object bindings are resolved during the spawning phase, however. An

incorrect profiling script would result in the termination of the spawning process. A more important issue is

associated with the capability of the kernel to determine whether a profiled network architecture satisfies

the needs of the users that the architecture was spawned for.

Spawning

The spawning process, illustrated in Figure 12, is initiated once the analytical form is generated.

Spawning services include the following:

• a spawner service, which applies centralized control over the spawning process interacting with the

profiling and management services;

• a component storage, which represents a distributed database of virtual network software building

blocks; and

• a set of constructor objects, which run on all nodes in a parent topology and interact with the spawner

to create a child network.

Constructors support the creation of routelets, the instantiation of a metabus and the deployment of child

network architecture objects on a single network node. The spawner is a distributed system, which controls

the spawning process, through the execution of a profiling script. We currently use a single spawner object

in our spawning networks testbed. The component storage represents a database for transport modules and

network objects. The spawner “announces” the child network’s bandwidth requirements to a virtual

network resource manager. The resource manager is associated with the virtuosity kernel plug-in [28] and

represents a distributed controller, which performs admission testing for child networks. If the admission

test is successful the child network is spawned.

 58

Figure 12: The Spawning Phase

Child routelets are bootstrapped by the parent’s spawning controller. The spawning controller interacts

with the allocation controller to reserve parent routelet’s computational resources for the execution of a

child routelet. Following this, the child routelet’s state information is initialized. During this phase of the

spawning process a spawner acquires all the necessary transport modules that were not available at its local

node. Transport modules are stored in a component storage as dynamically linked libraries and metabus

objects. When the initialization of the routelet’s state is complete, the child control unit is spawned. During

this phase the standard controllers are created, specifically the spawning, composition and allocation

controllers.

When the bootstrapping process is complete the child routelet is capable of undertaking all the remaining

spawning tasks. The composition of a routelet’s ports and engines is carried out by the child’s composition

routelet
state

control
unit

arbitrator

cl
as

si
fi

er

C P U

parent

metabus

GUI

life cycle
server

architecting

spawning

m
an

ag
em

en
t

re
so

ur
ce

pr
of

ili
ng

spawner

constructor

BIB

services

programming
environment

output
port

architecture
child network

metabus
BIB

packets

state control
unit

child

routelet

C P U
output port

environment
transport

packets

queue

 59

controller. Finally, the child network's data path controller is composed and its queues configured to

forward traffic to the parent network queues. This represents the last phase of the spawning process where

routelets bind to virtual links forming a virtual network topology. Currently, we use FCFS queues as

capacity arbitrators [28]. Virtual network capacity scheduling has been investigated in [28, 132]. Following

the creation of the transport environment, the spawning process creates the programming environment and

instantiates the child network architecture objects (i.e., network control and management objects). At this

point the child network is executing on the Genesis Kernel and the network hardware.

3.4 Programming Network Services

In this section we describe how network services can be programmed using the Genesis Kernel. We

focus on routing. Routing protocols differ significantly. For example, consider two well-known intra-

domain routing protocols: RIP and OSPF. Although these protocols both operate on the same type of

networks and their task is similar (i.e., to route packets based on the optimal path between a pair of nodes)

each protocol takes a distinct approach to the formulation of forwarding tables. RIP performs the

computation of the optimal routes in a distributed fashion between autonomous system (AS) routers using

the Bellman-Ford algorithm [75]. OSPF floods information about adjacencies to all routers in the network

where each router locally computes the shortest paths by running the Dijkstra's algorithm. BGP, the inter-

domain routing protocol, is based on a different design approach, where backbone routers exchange routing

information in terms of path vectors [75]. Path vectors are used for loop prevention and policy-based

routing and include the complete list of autonomous systems to each destination.

3.4.1 Binding Model

To program routing services, we introduce a binding model that decomposes routing protocols into

fundamental building blocks, define programmable objects for routing protocols and use these objects to

construct well known (i.e., distance vector, link state, path vector) as well as new routing services. To

formulate our binding model we have studied the design and implementation of existing Internet routing

protocols [75]. We have found a set of attributes that are common to routing protocols and identified the

role of each attribute in the process of formulating forwarding tables.

 60

Figure 13: Binding Model for Routing Protocols

We observe that routing protocols use some type of database. This can be a link state database (e.g., as

in the case of OSPF), a distance vector database (e.g., as in the case of RIP), or a path vector database (e.g.,

as in the case of BGP). In addition, routing protocols use some mechanism for announcing routing

information inside the network. This mechanism can be link state flooding such as in the case of OSPF or

periodic announcements to neighbor routers as in the case of RIP. Finally, routing protocols use different

algorithms and metrics for calculating optimal paths to various destinations. We believe that routing

protocol implementations should separate the routing database from the routing information announcement

and the optimal path calculation introducing standard interfaces between these components. This technique

allows protocol developers to create routing architectures in a modular fashion, and Internet Service

Providers (ISPs) to introduce new routing services into their networks more dynamically.

A binding model characterizing each routing protocol is illustrated in Figure 13. The binding model

reflects the structure of routing protocol implementations in a single network node. The components of our

binding model include:

• a database object, which is used for maintaining distributed routing state. It can represent a distance

vector, link state or path vector database;

• an update object, which updates the database when new routing information is received. The manner in

which the database is updated is dependent on the routing protocol being programmed;

• a set of optimal path algorithms, which operate on the contents of the database to calculate forwarding

tables. Each algorithm may use a different metric and operate over a different timescale;

distribution
systems

database

update

optimal path
algorithms

event
generator

timers

distributors

packet processors

distribution
systems

database

update

optimal path
algorithms

event
generator

timers

distributors

packet processors

 61

• an event generator, which initiates the transmission of routing information, updating of the database or

the calculation of optimal paths. The event generator is programmable and can be triggered by timer

objects;

• distributors, which disseminate routing information in the network. Distribution systems can simply

send updates periodically as in the case of RIP or implement complex protocols such as the 'hello' and

'flooding' protocols as in the case of OSPF; and

• packet processors, which process routing packets before they are transmitted to the network or after

they are received from the network.

By introducing standard interfaces between these routing components we enable code reuse and ease

the process of developing new routing protocols. Component interfaces are independent of the specific

routing protocols being programmed. By allowing components to create bindings at run-time we enable the

dynamic introduction of new routing services into networks.

3.4.2 An SDK for Routing Protocols

To realize our binding model we have designed a routing SDK consisting of a hierarchy of base

classes, as illustrated in Figure 14. Our SDK called ‘Routerware’ consists of classes can be implemented

using object oriented programming languages and environments such as C++, CORBA and Java. Currently,

Routerware runs on top of the metabus, described in Section 3.3.

Generic Classes

Routerware consists of three groups of classes. At the lowest level, a set of generic classes offers basic

functionality to the layers above. A database class supports generic methods for creating new databases and

for adding, removing or searching entries. An authentication algorithm class implements a set of

authentication algorithms used by routing protocols (e.g., the MD5 algorithm), while a timer management

class supports a simple start/stop/reset timer. The network connection class is more complex since it

provides the mechanisms used by the protocol at the lowest level for transmitting routing messages to the

network. A range of diverse communication mechanisms are supported including TCP and UDP socket

 62

management and remote method invocations. Because many routing protocols are multithreaded, a thread

management class wraps operating system specific methods for creating and managing threads.

Figure 14: Routerware

Routing Component Classes

The next layer of abstraction contains routing component classes. Routing component classes represent

building blocks that can be used to construct different routing architectures. Routing component classes are

either new classes or extend the generic classes described above. A routing database extends the generic

database class encapsulating all the route entries available at a network node. The routing database class

provides information about network nodes and their associated paths, which can be used for performing

route entry lookups. We use a generic data structure to represent a routing database entry. An update class

performs the steps necessary for a generic type of routing update. A distributor class retrieves all the route

entries that have to be transmitted, sets up the necessary network connections, and finally sends the update

timer
management

authentication
algorithm

network
connection

event
generator

 database

routing
database

update protocol
 timer

optimal path
algorithm

metric

RIP protocol
update

RIP route
comparison

RIP entry
processing

OSPF link-
state database

OSPF Dijkstra
 algorithm

RIP event
generator

distributor

 thread
 management

RIP classesOSPF classes

routing
protocol
classes

routing
component
classes

generic
classes

 63

information. This is a generic class that can be further extended or used as part of more complex protocol-

specific distributor classes.

A metric class defines different types of metrics and a set of fuzzy comparison methods for these

metrics. Different types of metrics can be combined to support customized routing policies. A protocol

timer class extends the generic timer class to support a range of timer events used by routing algorithms.

Timer objects bind to routing protocol specific routines that handle events generated by timers. An optimal

path algorithm class provides abstractions used for configuring algorithms that calculate forwarding tables.

Programmers can use this class to specify families of protocols associated with optimal path algorithms,

types of metrics or database fields. Optimal path algorithm class is an abstract class. Each routing protocol

is expected to extend this class in order to define the core of the algorithm.

Routing Protocol Classes

Routing protocol classes use the remaining Routerware classes to implement specific routing

protocols. Routing protocol classes fully describe the objects that participate in a routing protocol

implementation. Examples of these classes, specific to the RIP and OSPF protocols, are illustrated in

Figure 14. A RIP protocol update class implements routing updates that are specific to RIP. Another class

could implement link state updates specific to OSPF. Each protocol is associated with a protocol entry

processing class. For example the RIP entry processing class supports methods for processing RIP route

entries received from the network. The operations implemented here concern route entry processing only.

The reception of packets containing these entries and the extraction of entries is handled by other generic

classes described above.

Protocol-specific event generator classes (e.g., the RIP event generator class) interact with timers to

generate events when needed. Timer-related constants can be set and the distribution of the interval

between two subsequent events specified in case this interval is stochastic. Event generator objects can be

configured with information about the actions taken in the case of various events. For example, a RIP event

generator can be programmed to call a regular update when the corresponding timer expires. Finally, route

comparison classes provide methods for comparing route entries. Route comparison classes make use of

 64

metric classes to produce results. Optimal path algorithm classes (e.g., the OSPF Dijkstra algorithm class)

make use of metric classes.

The classes described above can be used by many well-known routing protocols. Some routing

protocols require additional components. In the case of link-state protocols for example, a set of classes

describing flooding mechanisms are needed. Flooding protocol classes extend a generic distributor class

(shown in Figure 14) using functionality provided by the lower layers. For example, a flooding protocol

class can make use of a database class in order to retrieve entries for transmission. Similarly, a flooding

protocol class can make use of a network connection class in order to create the necessary end-to-end

connections to transmit routing entries.

3.4.3 Routing Protocol Composition

In what follows, we show how the building blocks discussed in the previous section can be used to

construct routing protocols. We begin by examining intra-domain routing protocols focusing on RIP as an

example. We then discuss inter-domain routing protocols focusing on BGP.

Intra-domain Routing

The part of a programmable RIP implementation (shown in Figure 15) that directly communicates with

the network is the network connection object. The network connection object uses the metabus to send or

receive data to and from other routers. Another variation of RIP could use UDP sockets or remote method

invocations of other types (e.g., CORBA IIOP, Java RMI). In the case of sockets, a RIP packet processing

object is involved which reads routing protocol specific headers from received packets and applies

appropriate incoming filters in order to verify the origin and the validity of the received packets. In the case

of remote method invocations, content processing is not applied to headers but on the arguments of remote

method invocations. An authentication password is passed to the object that implements authentication

algorithms in order to perform validity checks and notify the RIP packet processing object. The algorithms

implemented can be simple password or MD5 cryptographic checksum. These algorithms are used by many

routing protocols including EIGRP, OSPF and RIPv2.

 65

Figure 15: Programmable RIP

Once a packet has been examined and verified a route entry is extracted and sent to the RIP entry

processing object. The RIP protocol update object is then invoked, which in turn exchanges information

with the metric object and the routing database. The routing database replies with the route entry for the

same node (if one exists). Following this, the metric object inputs the two entries and produces the

comparison result based on a specified set of metrics. If the received entry is better than the existing one the

routing database object is used to replace the existing entry. Following this, the RIP event generator

initiates a RIP triggered update. Updated entries are finally transmitted to the neighboring routers via the

network connection object.

Regular RIP updates are periodically initiated using a distributor object, as shown in Figure 15. The

distributor object enforces the ‘split horizon’ [75] principle to the way routing entries are announced in the

network. The split horizon principle suggests that announcements concerning destinations should not be

sent to routers that are in the shortest paths to these destinations. This feature makes RIP more robust

against routing loops and link failures.

network
connection

RIP packet
processing

 RIP entry

 processing

RIP event
generator

 RIP protocol
 update

routing

database

metric

authentication
 algorithm

RIP regular
update

RIP triggered
update

RIP distributor

incoming
packet

outgoing
packet

 66

Link state routing architectures can be realized using the same binding model and base classes as in the

case of RIP. The mechanisms for distributing and processing route entries are different, however. For

example, an incoming OSPF packet needs to traverse a packet processing object specific to OSPF. State

advertisements need to be extracted and entered in a link-state database. A shortest path algorithm object

can apply Dijkstra's algorithm to the contents of the link state database in order to calculate forwarding

tables. If there is a need for an update, a flooding protocol can make use of the network connection object

to communicate with other routers in the network.

Figure 16: Programmable BGP

Inter-domain Routing

Inter-domain routing protocols can be implemented by combining objects from Routerware, as shown

in Figure 16. In the case of BGP, a transport control object extends the network connection class, providing

the reliable data transfer mechanisms required by BGP messages. The transport control object receives path

entries from the network in the form of BGP update messages. Path entries are processed in a manner

similar to the way RIP processes route entries. Each entry is compared with the corresponding entry for the

transport
 control

BGP packet
processing

 BGP entry

 processing

BGP event
 generator

 BGP protocol
 update

 AS routing

database

policies

authentication
 algorithm

BGP update

BGP open &
keep alive

BGP distributor

BGP
notification

incoming
packet

outgoing
packet

 67

same destination at the local AS routing database. The AS routing database maintains information about

destination autonomous systems, their associated paths and their path attributes. The shortest path to a

destination is selected by default. Alternatively, the network administrator can program customized policies

for selecting the best path. Policies can be implemented as Routerware objects that dynamically bind to the

BGP protocol as shown in Figure 16. A BGP protocol update object compares path entries selecting the

best path to an autonomous system.

Other features of the BGP protocol are supported as separate Routerware objects. Open, update, keep

alive and notification messages are sent by their associated Routerware objects, as shown in Figure 16.

Protocol enhancements can take place with simple software upgrades. For example, one can add support for

classless inter-domain routing (CIDR) into BGP by replacing the BGP update and entry processing objects

shown in Figure 16. These objects can be replaced by other objects that exchange network layer

reachability information (NLRI) [75] in addition to the path entries contained in the update messages.

Network layer reachability is a feature introduced in the fourth version of BGP for route aggregation.

3.5 Experiences

In order to evaluate the Genesis Kernel we have built a spawning networks testbed and designed a set of

experiments to verify the kernel’s capability to dynamically create, manage and architect the baseline

network architectures. We have evaluated the performance of the spawned baseline architectures against

the performance observed when the same architectures are implemented in ‘standalone’ testbeds. The goal

of the evaluation is more qualitative in nature and aimed at showing proof of concept rather than a

quantitative comparison.

3.5.1 Spawning Networks testbed

The spawning networks testbed has been built using PC-based routers and network processor-based

routers. In what follows we describe experiments using PC-based routers. The performance of the Genesis

Kernel on network processor-based routers is studied in Chapter 5. The spawning networks testbed has

been designed to support the spawning of the baseline network architectures. We deployed a parent

network architecture that supports IP routing as the root network, as illustrated in Figure 17. Once the root

 68

(parent) network was boostrapped onto the network hardware, we were able spawn the Cellular IP [30] and

Mobiware [32] child networks over the root network providing wireless data and multimedia services to

mobile users, respectively. The Mobiware and Cellular IP architectures were refined (i.e., architected)

using the Genesis Kernel by adding new handoff control algorithms to the Mobiware child network and

tuning the parameters associated with the Cellular IP child network.

Figure 17: Spawning Networks Testbed

The spawning networks testbed comprises heterogeneous link layer technologies that interconnect

routers, switches and base stations, as illustrated in Figure 17. The testbed provides wireless access to

mobile hosts and comprises seven multi-homed 300 MHz Pentium PC routers, three ATM switches (viz.

ATML Virata, Fore ASX/100, and NEC model 5 switches) and two PC base stations. Link interconnects

between PC routers, PC base stations and ATM switches comprise 100 Mbps Ethernet links and 155 Mbps

wireline ATM links. PC base stations provide radio access to the wireline network. The radios are based on

100 MbpsEthernet

Fore ASX100

NEC Model 5Virata

 IPv4 root (parent) network

Cellular IP child
network

Mobiware child
network

WaveLAN
base stations

Genesis Kernel

routers

ATM Switches

 69

WaveLAN operating in the 2.4-2.8 GHz band. We use the 2 Mbps WaveLAN cards (not IEEE 802.11

compliant) over the 10 Mbps cards because these cards support a low-level radio utility API for

programming beacons.

In our experiments, the spawning capability is supported in the network and not in end-systems.

Programmability support for the end-systems is discussed in Chapter 5. The Genesis Kernel code has been

designed to run on Windows NT and FreeBSD operating systems.

3.5.2 An IPv4 Root (Parent) Network

In this experiment we investigate the capability of the kernel to spawn an IP virtual network architecture

supporting standard IPv4 packet forwarding, and interior and exterior routing services. We deployed a

parent network architecture supporting IPv4 over the spawning testbed as a root network. The architecture

consists of the IPv4 routelet discussed in Section 3.2 and a set of distributed objects offering interior and

exterior routing services. We have developed an object-based implementation of the Routing Information

Protocol (RIP), which is used in the Internet for interior routing, and the Border Gateway Protocol (BGP),

which is used for interconnecting autonomous systems, based on our routing SDK. In order to spawn the IP

routing architecture we deviate from the standard spawning procedure described in Section 3.3. The reason

for this is that there is no communication capability in the network hardware to support the spawning

process, (i.e., the root network has no parent). To resolve this problem we have added a ‘bootstrap’

interface to the Genesis router process. The first architecture “spawned” onto the hardware is actually

bootstrapped. Therefore the root network is always a special case in spawning networks.

In Figure 18, we compare three implementations of IPv4 that include a spawned IPv4 root (parent)

network and two standalone FreeBSD IPv4 implementations, (i.e., one user-space and one FreeBSD

kernel). We include a user-space implementation of IP because routelet forwarding engines are currently

implemented in user-space too. It should be noted that one difference between the user-space

implementations is that routelets implement a virtual network demultiplexor in the datapath while the

standalone user-space IPv4 implementation does not.

Figure 18 shows the end-to-end delay and throughput results across a single hop. We observe that the

difference between the routelet and the standalone kernel IPv4 router is 2 ms for small packet sizes

 70

increasing to 9 ms when the MTU is 1500 bytes. Figure 18 also shows the throughput achieved by the three

IP implementations over a single hop. On average the routelet system attains about 75% of the kernel router

throughput. One performance penalty paid by the routelet implementation is associated with copy-in/copy-

out operations that take place between when a packet enters and leaves a Genesis router. The next steps of

our work included porting the Genesis Kernel to the Intel IXA router architecture [69-72] where the

routelet implementation gained performance from executing on the network processor IXP1200 (see

Chapter 5).

Figure 18: Routelet Performance

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

E
nd

-t
o-

E
nd

 D
el

ay
 (

m
s)

Packet Size (bytes)

Routelet Performance

Kernel
Root IPv4 Routelet

User-space IPv4 Router

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

T
hr

ou
gh

pu
t (

M
bp

s)

Packet Size (bytes)

Routelet Performance

Kernel
Root IPv4 Routelet

User-space IPv4 Router

 71

3.5.3 Wireless Child Networks

In this experiment we investigate the ability of the Genesis Kernel to spawn baseline child networks on

the IPv4 root (parent) network. This represents one level of nesting and executes the spawning capability,

which could not be exercised during deployment of the root network. We spawned Mobiware and Cellular

IP child networks on the testbed. Mobiware is specifically designed to support multimedia services with

service-level assurances, whereas Cellular IP, is designed to deliver packet data with fast handoff and

paging support. The implementation of Mobiware and Cellular IP datapaths is illustrated in Figure 19.

 Mobiware [32] is a connection-oriented mobile network architecture that includes session rerouting,

mobility state management and wireless transport configuration algorithms. All sessions that operate

between a mobile host and its associated Internet gateway are abstracted and represented as a single state

entity called a flow bundle. Flow bundles are used during handoff to switch multimedia flows that are

supported using an adaptive QOS scheme [94, 95]. Open programmable switches allow for the

establishment, removal, rerouting and adaptation of flow bundles.

The Mobiware network uses two distinct types of datapath. An IP datapath for signaling and an ATM

datapath for transport. The IP datapath is used for network control and management. The ATM datapath,

which is independent of the Genesis transport environment is used for transporting audio and video flows.

IP packets do not traverse the Mobiware routelet. Rather, IP packets are forwarded using the ports and

engines of the root network, as illustrated in Figure 19. A GSMP client engine is incorporated into the

Mobiware routelet and used for controlling the ATM switches in the spawning networks testbed. The

GSMP engine does not receive packets from virtual network demultiplexors but communicates via ATM

sockets with ATM switches in the network.

Cellular IP [30] is a packet-based mobile network architecture that is designed to give high performance

delivery of data with fast handoff and scalability support through paging. In Cellular IP, packets sent from a

mobile host create a soft-state routing path between the mobile host and its Internet gateway. The wireless

access network maintains mobile-specific routing cache in support of fast handoff and paging cache to

track idle mobile hosts.

The Cellular IP routelet comprises an ‘uplink’ interface and a set of ‘downlink’ interfaces. The uplink

interface connects the routelet with an Internet gateway. The downlink interfaces receive packets from

 72

mobile hosts and forward them to the gateway. Each interface is associated with a different forwarding

engine. When a virtual network demultiplexor receives a packet carrying the Cellular IP identifier it

forwards the packet to the Cellular IP routelet, as illustrated in Figure19. Forwarding engines update paging

and routing caches inserting a pointer to the downlink path on behalf of the mobile host that sends the

packet.

Figure 19: Mobiware and Cellular IP Datapaths

Currently, we have not fully implemented the ability of child networks to spawn their own children. This

is topic for further study. Therefore, the baseline child networks do not inherit life cycle services, as

discussed in Section II. Both child networks inherit the topology and address space of the root (parent)

network, however. A mobile host can take advantage of both child networks to receive real-time

multimedia and data services. For example, the signaling overhead of the Mobiware child network makes it

unsuitable for packet data delivery, whereas the Cellular IP child network does not implement QOS

support. A detailed description of the Mobiware and Cellular IP architectures is beyond the scope of this

input port forwarding engine

Cellular IP routelet (child)

verifier

FCFS queue

IPv4 routelet (root)

routelet state
paging cache,
route cache

Mobiware routelet (child)

GSMP client engine

 uplink
interface

 downlink
interface

Cellular IP
packets

virtual network
demultiplexor

Mobiware and root
routelet packets

paging
update

routing
update

 73

chapter. For full details of their specification, performance and source code release see [32] and [30],

respectively.

We have conducted a set of tests that compare the performance of the Mobiware and Cellular IP child

networks against their ‘standalone’ counterparts. In all cases the spawning and standalone testbeds were

lightly loaded during the experiments. In order to evaluate the Mobiware child network we streamed a

number of video flows to a mobile host and performed continuous handoffs, as shown in Figure 20. We

varied the number of flows delivered to a mobile host and measured the average handoff latency for the

Mobiware child and standalone architectures. The standalone Mobiware architecture uses OmniORB for

object interaction. The main performance difference between the spawned and standalone Mobiware

architectures is related to the transport environment used for signaling. The Mobiware child network uses

the metabus, whereas standalone Mobiware uses OmniORB and the kernel transport services. The

performance results for the comparison are shown in Figure 20. The figure shows the average handoff

latency experienced by a mobile host when using the standalone and spawned Mobiware architectures as

the number of flows in a flow bundle increases. The plot also shows the performance with and without flow

bundling. We observe higher latency in the case of the spawned Mobiware architecture because of the

metabus and routelet overheads.

To evaluate the spawned Cellular IP child network we measure the TCP throughput across a Cellular IP

virtual wireless link. We compare the TCP performance of the Cellular IP child network with the

standalone system. Both the standalone and spawned architectures are implemented in user space. The

main difference between the two systems is that the datapath for the standalone system is not burdened with

virtual network demultiplexing, as is the case with the Cellular IP child network.

Measurements are taken for the ‘hard’ and ‘semisoft’ Cellular IP handoff modes [30], as shown in Figure

20. The hard handoff mode represents a ‘break before make’ style of handoff where the mobile host

switches to the new base station and then forwards a packet to create the new downlink soft-state path

between the mobile and the cross over switch. The Cellular IP semisoft handoff improves handoff

performance by reducing packet loss during handoff. Before handoff, a mobile host sends a short control

message called a semisoft packet to the new base station and then returns immediately to listen to the old

base station. The semisoft packet configures routing cache mappings and sets up the soft-state path between

 74

a cross over switch and the mobile host. After a very short semisoft delay, the host performs regular hard

handoff. In addition, forwarding delay is introduced at the cross over switch in order to compensate for the

time needed to accomplish semisoft handoff. We observe from Figure 20 that the child network achieves

similar performance to the standalone network architecture over a wide range of handoff rates.

Figure 20: Performance of Spawned Network Architectures

3.5.4 Architectural Refinement

Currently, the Genesis Kernel does not fully support architecting. However, profiling and spawning tools

allow us to experiment with modifying the structure and building blocks of network architectures. In what

follows, we discuss two examples of architectural refinement. The first experiment allows different handoff

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11

H
an

do
ff

La
te

nc
y

(m
s)

Number of flows

Mobiware Performance

 Handoff latency of stand-alone Mobiware with flow bundles
Handoff latency of stand-alone Mobiware without flow bundles

Handoff latency of spawned Mobiware with flow bundles
Handoff latency of spawned Mobiware without flow bundles

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60

D
ow

nl
in

k
T

C
P

 th
ro

ug
hp

ut
 (

kb
ps

)

Number of handoffs per minute

Cellular IP Performance

hard handoff, stand-alone Cellular IP
hard handoff, spawned Cellular IP

semisoft handoff, stand-alone Cellular IP
semisoft handoff, spawned Cellular IP

 75

algorithms to be added to a Mobiware child network. The second experiment allows us to refine a Cellular

IP child network that improves TCP performance with handoff

Mobiware is designed to support multiple styles of handoff control through the separation of handoff

control and mobility management. Handoff control and mobility management systems are implemented as

separate programmable architecture, as discussed in detail in Chapter 4. By hiding the implementation

details of mobility management algorithms from handoff control systems the handoff detection state (e.g.,

the best candidate access point for a mobile host) can be managed separately from the handoff execution

state (e.g., mobile registration information). In this case, Mobiware allows different styles of handoff

control to seamlessly share the same mobility management services. An intermediate layer of distributed

objects called handoff adapters serve as the glue between handoff control systems and mobility

management services.

Handoff control objects include beacon producer and measurement producer objects, which invoke low-

level wireless APIs for transmitting beacons and generating raw channel quality measurements. Signal

strength monitor objects collect average wireless signal strength measurements on-demand. Detection

algorithm objects make handoff decisions. Handoff control objects can be dispatched to strategic locations

in the network (e.g., base stations and mobile capable routers/switches) to simultaneously serve the needs

of different handoff styles. The initially spawned Mobiware architecture only supports the mobile

controlled handoff style. We modified the Mobiware profiling script to introduce additional handoff styles.

The profiling script was modified to include new distributed objects that support mobile assisted and

network controlled handoff styles. These two schemes place the complexity associated with controlling

handoff into the network. This has the benefit of serving low-power mobile hosts that may not be capable

of continuously taking signal strength measurements.

Cellular IP base stations do not buffer packets during handoff causing packet loss and reduced TCP

performance. To eliminate packet loss during handoff we have introduced a packet circular buffer called a

‘delay device’ at base stations. The delay device also helps resolve the problem of the new base station

‘getting a head’ of old base stations when using semisoft handoff. A mobile host 'sees' gaps in TCP streams

if the forward base station gets ahead of the old base station. This has an adverse impact on TCP

 76

performance. The delay device resolves this issue supporting a loose form of synchronization control

typically found in cellular systems.

Figure 21: Architecting Cellular IP

Figure 21 shows the downlink performance of a TCP flow as the rate of handoff increases. The Cellular

IP child network is spawned and supports hard and semisoft handoff capability but has no delay device

implemented. The plot shows wireless TCP throughput associated with the initial Cellular IP child network

when a mobile host performs hard handoff. Through profiling we modified the original script to include the

delay device and spawned a new child network. To add the delay device, we modified the binding model of

the Cellular IP root forwarding engine. Instead of using the default routelet lookup module, we introduced a

new forwarding element that delays and buffers packets during handoff. The TCP improvement from using

the delay device is shown in Figure 21. The figure shows the TCP performance for a delay device that

could be programmed to buffer 1 or 8 packets. The plot shows that semisoft handoff outperforms hard

handoff. In the case of semisoft handoff, we observe that the deeper the buffer the better the TCP

performance. Note that when the buffer is programmed to accommodate 8 packets during handoff we

observe that TCP performance is equivalent to the case were the mobile host is stationary. This represents

the best possible performance of 1.6 Mbps.

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60

D
ow

nl
in

k
T

C
P

 th
ro

ug
hp

ut
 (

kb
ps

)

Number of handoffs per minute

Architecting Cellular IP

hard handoff
semisoft handoff (1 buffer)
semisoft handoff (8 buffer)

 77

3.6 Related Work

The Tempest project [141, 142] has investigated the deployment of multiple coexisting control

architectures in broadband ATM environments. Tempest supports programmability at two levels of

granularity. First, switchlets are logical network elements that result from the partitioning of ATM switch

resources supporting the introduction of alternative control architectures in the network. Second, services

can be refined by dynamically loading programs into the network that customize existing control

architectures. Resources in an ATM network can be divided by using a switch control interface called a

resource divider. In Genesis, the divider mechanism is integrated into the routelet rather than being

externally supported as in the case of switchlets. This capability allows a child routelet to spawn its own

child networks supporting the nesting principle that underpins spawned network architectures. Routelets

apply the concept of resource partitioning to the internetworking layer supporting the programmability of

new internetworking architectures with programmable QOS. Routelets are designed to operate over a wide

variety of link layer technologies rather than simply ATM technology as is the case with virtual switches

[2] and switchlets [141].

 Virtual private network services have been the subject of a substantial amount of research in

broadband ATM networks. In [37], the concept of a virtual path group is introduced as a virtual network

building block to simplify virtual path dynamic routing. In [152], the concept of nested virtual ATM

networks is discussed and an architecture that supports resource management of broadband virtual

networks presented. The Genesis Kernel framework also uses the concept of “nesting” pursuing the

programmability and automated deployment of network architectures spanning transport, control and

management planes at the internetworking layer and above. Typically, spawned network architectures

support alternative signaling protocols, communications services, QOS control and network management in

comparison to parent architectures. A related project called Virtual Network Service (VNS) [96]

investigated QOS provisioning in IP virtual networks. The project proposes the partitioning and allocation

of network resources such as link bandwidth and router buffer space to virtual networks according to some

predetermined policy.

The X-Bone [137] project aims to automate the process of establishing IP overlay networks. Currently,

overlays (e.g., M-Bone, 6-Bone, A-Bone) are deployed manually by system administrators and the

 78

configuration of tunneled connectivity between routers and hosts that characterize overlay networks is

handcrafted. X-Bone constitutes the natural evolution of the M-Bone and uses a two layer multicast IP

system to facilitate the dynamic deployment of different overlays in the Internet. X-Bone overlays are not

programmable, however. The Supranet [48] project considered a network-less society where networks and

service creation are facilitated and tailored to group collaborative needs. A Supranet is a virtual network

that requires the definition of the characteristics of the collaborative environment that benefits from the

services it provides. Group membership, network topology, resource capacity, security mechanisms,

controlled connectivity, and secure multicast represent the requirements for a specific virtual network

service to any group.

The active networking community [134, 135] has investigated the deployment of multiple coexisting

execution environments through appropriate operating system support and an active network encapsulation

protocols. In [135], the use of active networking technology is studied for the deployment of IP based

virtual networks. In most of the current research in active networks the dynamic deployment of software at

runtime is accomplished within the confines of a given network architecture and node operating system. In

contrast, we have investigated ways to construct network architectures that are fundamentally different

from their underlying infrastructures.

Perhaps the piece of work that is most related to our own is an attempt to define a unifying set of

programming interfaces for networks described in [102]. The main difference between our network

programming interfaces and the interfaces suggested in [102] is that in [102] the main abstraction for

network service creation is a graph capturing the connectivity that is supported between the users of a

network. In our case we do not provide explicit interfaces for graph creation but we support this capability

implicitly by allowing the network designers to program distinct routing strategies from a minimal set of

routing APIs. In this way the communication graph is created through the interaction of distributed objects

programmed using our APIs and classes.

3.7 Summary

In this chapter we have presented the design, implementation and evaluation of the Genesis Kernel; a

programming system capable of spawning network architectures on-demand. The Genesis Kernel presents

 79

a new approach to the deployment of network architectures through the automation of a virtual network life

cycle process. We have presented the implementation of the Genesis Kernel and discussed our experiences

in building a “spawning” network testbed that is capable of creating distinct network architectures on-

demand. Network architectures are created as programmable virtual networks. Our programming system is

based on a methodology that allows a “child” network to operate on top of a subset of its “parent’s”

network resources and in isolation from other spawned virtual networks. We have showed through

experimentation how a number of diverse network architectures can be spawned and architecturally

refined.

 80

Chapter 4

End-System Connectivity

4.1 Introduction

In Chapter 4 we address the problem of supporting end-system connectivity focusing on programmable

mobile networks. Programmable mobile networks can be spawned using programming systems such as the

Genesis Kernel discussed in Chapter 3. The problem of supporting end-system connectivity with

programmable network architectures concerns the design of appropriate end-system and network software

support so that hosts can be dynamically connected to programmable networks with diverse sets of

protocols for transport control and management. While the problem has a trivial solution for static hosts

(i.e., static hosts can install the software support needed for connecting to programmable network

architectures off-line), the problem is more interesting in wireless cellular networks. Supporting end-system

connectivity in programmable mobile networks is not an easy task because mobile devices may roam

across access networks with heterogeneous mobility management architectures. While a variety of handoff

algorithms have been proposed and investigated in the past [123, 138, 145] these algorithms are mostly

tailored toward the needs of some specific type of mobile device or access network. The diversity in

 81

signaling systems that characterize wireless access network architectures poses a challenge in realizing

inter-system handoff.

In this chapter we propose a solution to the intersystem handoff problem where the implementation

details of mobility management algorithms are hidden from handoff control systems, allowing the handoff

detection state (e.g., the best candidate access point for a mobile device) to be managed separately from

handoff execution state (e.g., mobile registration information). The same detection algorithms operating in

mobile devices, or access networks can interface with multiple types of mobility management architectures,

operating in heterogeneous access networks.

The main results of our work are: (i) we present the design, implementation and evaluation of a

‘reflective handoff’ service that allows access networks to dynamically inject signaling systems into mobile

devices before handoff. Thus, mobile devices can seamlessly roam between wireless access networks that

support radically different mobility management systems; and (ii) we show how a ‘multi-handoff’ access

network service can simultaneously support different styles of handoff control over the same wireless

access network. This programmable approach can benefit service providers who need to be able to satisfy

the mobility management needs of a wide range of mobile devices from cellular phones to more

sophisticated palmtop and laptop computers. To allow a range of mobile devices to connect to

programmable mobile networks we further decompose handoff control process into programmable objects,

separating the transmission of beacons, from the collection of wireless channel quality measurements and

from the handoff detection algorithm.

This chapter is structured as follows. In Section 4.2, we provide a description of a programmable

handoff architecture that solves the end-system connectivity in wireless access networks. Following this, in

Sections 4.3 and 4.4 we present the implementation and evaluation of our architecture, respectively,

focusing on the deployment of the multi-handoff and reflective handoff services. In Section 4.5 we discuss

the related work. Finally, in Section 4.6, we provide some concluding remarks.

 82

Figure 22: Programmable Handoff Architecture

4.2 Programmable Handoff Architecture

The aim of our work is to support connectivity between heterogeneous mobile devices and

heterogeneous wireless access networks. To accomplish our goal we introduce a number of guidelines for

designing access network and mobile terminal software. Our guidelines, discussed below, are included into

a programmable handoff architecture that can be used for profiling, composing and deploying handoff

services. Our programmable handoff architecture is illustrated in Figure 22. The architecture comprises a

binding model and a service creation environment. The binding model describes how distributed objects

can be combined to form programmable handoff services on-demand. The service creation environment,

which constitutes part of the Genesis Kernel life cycle environment, allows network architects to design

and dynamically deploy handoff services taking into account user, radio and environmental factors.

beaconing systems

measurement systems

detection algorithms

 handoff adapters

session
rerouting

mobility
state

wireless
transport

mobile
registration

service
controller

service
controller

profiling
script

binding
calls

handoff
control
model

mobility
management

model

handoff execution interface

 binding model service creation environment

service
controller

profiler

Programmable MAC layers

data link adapters

physical layers

software
radio
model

 83

 The binding model comprises a handoff control model, a mobility management model and a software

radio model. Service controllers realize each model separately. To support connectivity between

heterogeneous mobile devices and heterogeneous wireless access networks, the binding model supports the

separation of handoff control from mobility management, the decomposition of the handoff control process

and the programmability of the physical and data link layers. A handoff execution interface separates

handoff control from mobility management. Handoff adapters integrate handoff control systems with

mobility management services. In what follows, we describe each component of the binding model in

detail.

4.2.1 Handoff Control Model

A handoff control model separates the algorithms that support beaconing, channel quality

measurement and handoff detection, as illustrated in Figure 22. Typically, these functions are supported as

a single ‘monolithic’ software structure in existing mobile systems. By separating the handoff detection

from wireless channel quality measurements, we allow for new detection algorithms to be dynamically

introduced in access networks and mobile devices. For example, detection algorithms specific to wireless

overlay networks can be introduced into mobile devices allowing them to perform vertical handoffs [123],

or detection algorithms specific to micro-cellular networks can be selected to compensate against the street-

corner effect [138]. By separating the collection of wireless channel quality measurements from the

beaconing system, mobile networks can support different styles of handoff control over the same wireless

infrastructure. For example a WISP may want to offer a network-controlled handoff service (e.g., supported

in AMPS [59] cellular systems) for simple mobile devices, a mobile-assisted handoff service (e.g., as in

GSM [59]) for more sophisticated mobile devices involved in the process of measuring channel quality and

a mobile-controlled handoff service (e.g., the handoff scheme considered by the Mobile IP Working

Group) for more sophisticated laptop or palmtops mobile computers.

The handoff control model comprises the following services:

• detection algorithms, which determine the most suitable access points that a mobile device should be

attached to. Wireless access points can be selected based on different factors including channel quality

 84

measurements, resource availability and user-specific policies [145]. A mobile device can be attached

to one or more access points at any moment in time.

• measurement systems, which create and update handoff detection state. By handoff detection state we

mean the data used by detection algorithms to make decisions about handoff. Detection algorithms and

measurement systems use the same representation for handoff detection state.

• beaconing systems, which assist in the process of measuring wireless channel quality. Programmable

beacons can be customized to support service-specific protocols like QOS-aware beaconing [32] or

reflective handoff as discussed in Section 4.3.

4.2.2 Mobility Management Model

The mobility management model reflects the composition of services that execute handoff, as

illustrated in Figure 22. We adopt a generalized architectural model that is capable of supporting the design

space of different mobile networking technologies. To program mobility management systems one needs to

be able to introduce new forwarding functions at mobile capable routers/switches (e.g., Cellular IP [30] or

HAWAII [118] forwarding engines) as well as distributed controllers that manage mobility (e.g., Mobile IP

foreign agents). The mobility management model discussed in this chapter is limited to supporting handoff

services only. Other mobility management functionality (e.g., location, fault and account management)

typically found in mobile networks will be considered as future work.

We identify the following services as part of the handoff execution process:

• session rerouting mechanisms, which control the datapath in access networks in order to forward data

to/from mobile devices through new points of attachment. Rerouting services may include admission

control and QOS adaptation for the management of wireless bandwidth resources.

• wireless transport objects, which interact with the physical and data link layers in mobile devices and

access points to transfer active sessions between different wireless channels. A channel change may be

realized through a new time slot, frequency band, code word or logical identifier. Transport objects can

provide valued-added QOS support (e.g., TCP snooping [123]).

• mobile registration, which is associated with the state information a mobile device exchanges with an

access network when changing points of attachment.

 85

• mobility state, which can be expressed in terms of a mobile device’s connectivity, addressing and

routing information, bandwidth and name-space allocations and user preferences.

4.2.3 Software Radio Model

The software radio model defines the composition of physical and data link layer services, as

illustrated in Figure 22. The software radio model supports functions such as the dynamic assignment of

channel locations and widths, and the selection of modulation and coding techniques used on each channel.

Software radios allow mobile devices to dynamically ‘tune’ to the appropriate air-interface of the serving

access network, while roaming between heterogeneous wireless environments. MAC layer protocols can be

made programmable [81] supporting services with different QOS requirements. Physical and data link layer

modules can be implemented in various ways [20, 21, 81, 98, 99]. Data link ‘adapters’ separate data link

layer modules from the lower physical layer components. For example, data link adapters allow

programmable MAC protocols to operate on top of any type of channel coding or modulation scheme, as

discussed in [81].

4.2.4 Handoff Execution Interface

A handoff execution interface, illustrated in Figure 22, separates handoff control from mobility

management. Handoff control and mobility management systems are implemented as separate

programmable architectures. By hiding the implementation details of mobility management algorithms

from handoff control systems the handoff detection state (e.g., the best candidate access points for a mobile

device) can be managed separately from handoff execution state (e.g., mobile registration information).

This software approach can be used to enable inter-system handoff between different types of wireless

access networks. The basic idea behind realizing inter-system handoff is that the same detection

mechanisms operating in mobile devices and access networks can interface with multiple types of mobility

management architectures that operate in heterogeneous access networks (e.g., Mobile IP [11], Cellular IP

[30], Mobiware [32] and HAWAII [118] access networks). Handoff control systems issue a number of

generic service requests through the handoff execution interface, which mobility management systems

execute according to their own programmable implementation. For example, a generic ‘pre-bind’ method

 86

call to a candidate access point would be executed by establishing a signaling channel in a Mobiware

architecture [32], or by joining a multicast group specific to a mobile device and buffering packets in a

Daedalus/BARWAN [123] architecture. In one extreme case where the location of the handoff control

system is at the mobile device, different mobility management protocols can be dynamically loaded into

mobile devices allowing them to roam between heterogeneous access networks in a seamless manner.

Examples of handoff execution methods include:

• handoff methods, which map down to mobility management services that execute handoff (e.g.,

register the care-of address of a mobile device with its home agent).

• pre-bind methods, which initiate ‘priming actions’ at candidate access points associated with a mobile

device (e.g., load an active filter for transport adaptation [32], start buffering packets, etc.).

• configure methods, which install new signaling systems or delete existing ones (e.g., replace the

mobile device’s Mobiware control plane with a Cellular IP one during reflective handoff).

We observe that it is difficult to consider a single handoff execution interface that is capable of

encompassing all existing and future wireless systems. Rather, it is more likely that a handoff execution

interface will support a particular ‘family’ of wireless technologies. In this case, network architects can

select execution methods that satisfy the set of handoff control and mobility management systems which

they wish to program.

4.2.5 Handoff Adapters

Programmable access networks allow different styles of handoff control (e.g., mobile controlled,

mobile assisted and network controlled handoff) to seamlessly share the same mobility management

services offered. However, seamless integration of handoff control systems with mobility management

services is difficult to realize. In our framework, we introduce the concept of ‘handoff adapters’ which

represent an intermediate layer of distributed objects that can be used for integrating the handoff control

model with the mobility management model. Handoff adapters represent a set of distributed objects that

serve as the ‘glue’ between handoff control systems and mobility management services. Handoff adapters

and mobility management services collectively implement handoff execution algorithms. Handoff adapters

 87

can be centralized (i.e., running in a single host or network node) or distributed. In the distributed case,

handoff adapters are deployed at mobile devices, access points or mobile capable routers/switches.

Handoff adapters are an important part of our programmable handoff architecture. First, handoff

adapters control the handoff execution process. Handoff adapters invoke mobility management services in

an order that is specific to the handoff style being programmed. Mobility management services (i.e., session

rerouting, wireless transport, mobile registration and mobility state management services) are invoked as

part of the handoff execution process. For example, in a forward mobile controlled handoff, an adapter

would invoke a radio link transfer service before session rerouting. In the backward, mobile assisted

handoff the order of this execution would be reversed. Each handoff style uses a separate adapter. To

invoke mobility management services, adapters distribute method invocations to the network nodes or hosts

where mobility management services are offered. Handoff is usually detected at a single host or network

node (e.g., a mobile device, access point, or mobile capable router/switch). In contrast, mobility

management services can be offered at multiple hosts or network nodes inside a wireless access network

(e.g., at wireless access points or by mobility agents in the network).

Second, handoff adapters ‘translate’ the handoff execution interface to the interfaces supported by

specific mobility management architectures. In this manner, adapters hide the heterogeneity of mobility

management architectures enabling inter-system handoffs. Adapters may interact with distributed mobility

agents, databases supporting mobile registration information, or open network nodes to realize handoff in

many different ways. For example, a ‘Mobile IP’ adapter would interact with a Mobile IP scheme to

support connectivity for mobile devices (e.g., acquiring a care-of address through DHCP and registering the

care-of address with a home agent). A Cellular IP or HAWAI ‘adapter’ would transmit control messages

for establishing mobile-host specific routing entries in the access network. The role of adapters is further

discussed in the Section 4, where we describe distributed algorithms for programmable handoff.

4.3 Design and Implementation

We have designed and implemented two new handoff services based on the programmable handoff

architecture. A multi-handoff access network service simultaneously supports three styles of handoff

control over the same physical wireless access network that are commonly found in mobile networks:

 88

Network Controlled HandOff (NCHO), Mobile Assisted HandOff (MAHO) and Mobile Controlled

Handoff (MCHO). In addition, a reflective handoff service allows mobile devices to reprogram their

protocol stacks in order to seamlessly roam across heterogeneous wireless environments. Wireless access

networks dynamically load signaling system support into mobile devices. We call this service ‘reflective’ in

this context because mobile devices can identify the mobility management architectures and radios

supported by neighboring wireless access networks, and customize their signaling systems and wireless

links in order to interact with disparate access networks.

In order to support the dynamic introduction of handoff control and mobility management services, we

have implemented a service creation environment as part of the Genesis Kernel spawning service that

explicit supports transportable code by dynamically selecting, deploying and binding distributed objects.

The service creation environment is implemented on top of the programming environment of the Genesis

Kernel. The service creation process allows the network architect to create new objects using inheritance of

abstract classes (e.g., an abstract handoff detection algorithm class). Service controllers activate objects

invoking binding calls on object control interfaces for the deployment of services. Programmable handoff

services are composed using profiling scripts. Network architects can customize objects during the

profiling process. In this case parameters characterizing the operation of a service (e.g., user, service

specific or environmental parameters) can be passed in objects at run-time through the profiler and service

controllers.

In what follows, we present the design and implementation of the multi-handoff and reflective handoff

services, and discuss the profiling process.

4.3.1 Multi-handoff Access Network Service

Objects

A multi-handoff access network service is composed from a set of distributed objects. We have

deployed a multi-handoff access network service over our experimental testbed based on WaveLAN radios.

Figure 23 shows the implementation of the handoff control model for the multi-handoff access network

service. As discussed earlier, the handoff control model separates the algorithms that support beaconing,

channel quality measurement and handoff detection. Objects shown in Figure 23 are grouped into

 89

beaconing systems, measurement systems, and detection algorithms, which are the components of the

handoff control model. Figure 2 also shows object interactions and their invocation order (e.g., NCHO-1,

NCHO-2, etc). The handoff control objects comprise:

Figure 23: Implementation of the Handoff Control Model

• beacon producer (BeaconProducer) and measurement producer (MeasurementProducer) objects, which

invoke low-level wireless LAN utility functions. Beacon producer objects transmit beacons at

specified frequencies. Measurement producer objects generate ‘raw’ channel quality measurements.

Measurement and beacon producer objects can simultaneously participate in multiple styles on handoff

control.

• signal strength monitor (*_APSNRMonitor, *_MDSNRMonitor) objects, which collect and average

wireless signal strength measurements. SNR represents only one of the many measurements that can

be used for handoff decision-making.

• detection algorithm (*_DetectionAlgorithm) objects, which make decisions for handoff based on signal

strength measurements. Each handoff style employs its own set of signal strength monitors and

MeasurementProducer MeasurementProducer

NCHO_APSNRMonitor

NCHO_DetectionAlgorithm

(NCHO-1)
queryBeaconInfo

(NCHO-2)
detectHandoff

(NCHO-4)
queryBeaconInfo

neighboring access points access point

(NCHO-3)
getMobileSNR

(NCHO-5)
reportMobileSNR

NCHO_APSNRMonitor

MeasurementProducer MeasurementProducer

MAHO_APSNRMonitor MAHO_MDSNRMonitor

MAHO_DetectionAlgorithm

(MAHO-1)
queryBeaconInfo

(MAHO-2)
detectHandoff (MAHO-3) measureON

 (MAHO-6) measureOFF

(MAHO-4)
queryBeaconInfo

(MAHO-5)
measureReport

access point mobile device

MCHO_DetectionAlgorithm

mobile device

(MCHO-2)
queryBeaconInfo

MCHO_MDSNRMonitor

MeasurementProducer

(MCHO-1)
getAPSNR

measurement
systems

network controlled
handoff (NCHO)

mobile assisted
handoff (MAHO)

mobile controlled
handoff (MCHO)

detection
algorithms

BeaconProducer BeaconProducer BeaconProducer BeaconProducer

mobile device mobile deviceaccess point

beacons

beaconing
systems

access points

 90

detection algorithms in order to determine the best access points that mobile devices should be

attached to.

Our implementation of the mobility management model is based on an extended Mobiware [32]

architecture. Mobiware is programmable, promoting the separation between signaling, transport and state

management. Mobility management services include session rerouting, mobility state management and

wireless transport configuration, as discussed in Section 4.2. All sessions that operate between a mobile

device and an associated Internet gateway are abstracted as a single state entity called a ‘flow bundle’ in a

Mobiware wireless access network. Flow bundles are used during handoff to switch IP flows in Mobiware

access networks and provide general purpose encapsulating and routing services similar to ATM virtual

paths or IP tunnels. Open programmable switches allow the establishment, removal, rerouting and

adaptation of flow bundles. Thus, the access network behaves as a pool of resources allowing different

handoff styles to operate in parallel. Mobiware comprises the following mobility management objects:

• mobility agent (MobilityAgent) objects, which reroute sessions to/from mobile devices when mobile

devices change their points of attachment. Mobility management is a fully distributed algorithm that

includes one or more mobility agents for scalability. Using flow bundles a mobility agent object only

has to discover a single crossover switch and reroute all sessions to/from the new access point of a

mobile device. All handoff styles can simultaneously use the same mobility agent objects.

• mobile registration database (MobileRegistrationDB) objects, which cache flow-bundle state in

wireless access points. Unique flow bundle identifiers characterize mobile devices and their associated

state. Flow bundle state is expressed in terms of namespace (i.e., VCI/VPI) allocations, QOS

adaptation profiles and active transport preferences.

• datapath (AP_Datapath) objects, which configure wireless transport mechanisms in wireless access

points and mobile devices. For example, datapath objects support the dynamic introduction of value-

added QOS algorithms (e.g., media scaling and adaptive FEC) in wireless access points to compensate

against time-varying impairments.

The handoff execution interface comprises a generic ‘pre-bind’ method that initiates ‘priming’ actions

at wireless access points and a generic ‘handoff’ method that executes handoff. The arguments passed into

the handoff method include the access point and mobile device identifiers that participate in the handoff

 91

operation. Access points are identified by name, IP address and WaveLAN NWIDs where NWIDs are

logical channel identifiers. Mobile devices are only identified by name and IP address. No NWID is

required because the mobile device’s NWID changes during handoff. The name and IP address of a

wireless interface (i.e., an access point or mobile device) is included in WaveLAN beacons. In this manner,

mobile devices can identify access points in a wireless access network and access points can detect the

presence of mobile devices in coverage areas.

Currently, our handoff execution interface is simple and supports programmable handoff services

using WaveLAN-based radios. Handoff adapters have been implemented for the network controlled,

mobile assisted and mobile controlled handoff styles. Handoff adapters comprise adapter objects deployed

in mobile devices, access points and in the network. The order in which mobility management services are

invoked is dependent on the specific handoff style executing.

Distributed Algorithms

Using the distributed objects described above we implemented a set of algorithms to support

alternative styles of handoff control in a multi-handoff access network. Figures 24-26 illustrate a set of

distributed algorithms that realize network controlled, mobile assisted, and mobile controlled handoff

styles, respectively. Each algorithm comprises handoff detection and handoff execution processes. The

object interaction and invocation order for each handoff algorithm is shown in Figure 23. Handoff control

objects implement the handoff detection process, and mobility management objects and handoff adapters

implement the handoff execution process. Handoff styles differ in the location where handoff control takes

place and is executed.

Network Controlled Handoff

In the network controlled handoff scheme a signal strength monitor object, running in a wireless access

point, continuously measures the signal strength of a mobile device, as indicated by NCHO-1 in the

handoff detection algorithm shown in Figure 24(a). The signal strength monitor initiates handoff (NCHO-

2) when the signal strength drops below a certain threshold. A detection algorithm, running in the wireless

access network, queries and compares mobile-device measured signal strength from all neighboring access

 92

points (NCHO-3 to NCHO-5). Wireless SNR values determine the best candidate access point for the

mobile device. Neighboring monitors report average the SNR measured over two consecutive beacon query

intervals. Beacon query intervals are user defined, typically being 300 msec in duration. Handoff execution

is initiated when a candidate access point is detected with a better service quality than the current point of

attachment. The handoff detection process is repeated once handoff execution is complete. Network

controlled handoff moves most of the complexity for controlling handoff from the mobile device to the

network. This style of handoff simplifies the mobile device software design.

(a) handoff detection (b) handoff execution

Figure 24: Network Controlled Handoff

The wireless access network initiates the handoff execution process. The detection algorithm interacts

with a handoff adapter object to realize handoff. The handoff adapter invokes a getFlowBundleState()

method on a mobile registration database located at the mobile device’s old access point to obtain the flow

bundle state information, as indicated by NCHO-6 in Figure 24(b). As discussed previously, the flow

bundle state represents the aggregate state information for all flows/sessions to and from a mobile device.

 HANDOFF-DETECTION //Network-Controlled HandOff (NCHO)
(access_point AP, mobile_device mobile, int thres) {

 let am be a NCHO_APSNRMonitor object located at AP;
 let mp be a MeasurementProducer object located at AP;
 let da be a NCHO_DetectionAlgorithm object located
 inside the access network;

 while (true) {
NCHO-1: am invokes mp.queryBeaconInfo (mobile);
 am calculates the average signal strength SNR-avg for mobile;
 if (SNR-avg <= thres) {
NCHO-2: am invokes da.detectHandoff (AP, mobile);
 break; }
 else {
 sleep (am.queryInterval); }}
 for (each neighboring access point AP-neigh) {
 let am-neigh be a NCHO_APSNRMonitor object located at AP-neigh;
NCHO-3: da invokes am-neigh.getMobileSNR(); }

NCHO-4,5: obtained SNR values are compared
 da calculates the best candidate access point AP-best for mobile;
 HANDOFF-EXECUTION (AP-best, AP, mobile);
 HANDOFF-DETECTION (AP-best, mobile, thres); }

HANDOFF-EXECUTION
(access_point AP-new, access_point AP-old, mobile_device mobile) {

 let ha be a NCHO_Adapter object located inside the access network;
 let ha-old be a NCHO_Adapter object located at AP-old;
 let ha-new be a NCHO_Adapter object located at AP-new;
 let ma be a MobilityAgent object located inside the access network;
 let rdb-old be a MobileRegistrationDB object located at AP-old;
 let rdb-new be a MobileRegistrationDB object located at AP-new;
 let dp-new be a AP_Datapath object at AP-new;

 //query for mobility state
NCHO-6: ha invokes rdb-old.getFlowBundleState (mobile);
 let state-old be the flow-bundle state returned by rdb-old;

 //session re-routing
NCHO-7: ha invokes ma.handoffFlowBundle (state-old, mobile);
 ma calculates the cross-over switch for mobile;
 ma reroutes the flow-bundle associated with mobile;
 let state-new be the flow-bundle state returned by ma;

 //wireless transport configuration
NCHO-8: ha invokes dp-new.setUpDatapath (state-new, mobile);
NCHO-9: ha-old invokes mobile.handoffNotice (AP-new);
NCHO-10: mobile invokes this.radioLinkTransfer (AP-new);

 //mobile registration
NCHO-11: ha invokes rdb-new.mobileRegistration (state-new, mobile);
NCHO-12: ha-new binds to mobile; }

 93

This state information is used to speed handoff in a Mobiware access network [32]. The mobility agent

object interacts with a router object and open programmable switch servers to calculate the cross-over

switch on behalf of a mobile device and reroute the mobile device’s active sessions (NCHO-7) represented

by the flow bundle state. Following this the handoff adapter object invokes a setUpDatapath() method to

create a channel in the new access point accommodating active transport ‘plug-ins’ for value-added QOS

support (NCHO-8). Once this is complete, the wireless radio link transfer takes place at the mobile device

(NCHO-9, NCHO-10). Channel change is realized as a change in WaveLAN NWID. Finally, the handoff

adapter registers the mobile device with the new access point (NCHO-11).

(a) handoff detection (b) handoff execution

Figure 25: Mobile Assisted Handoff

Mobile Assisted Handoff

The mobile assisted handoff scheme moves some of the functional support, and therefore complexity,

to the mobile device. In this scheme, an access point continuously measures the signal strength of a mobile

device, as indicated by MAHO-1 in Figure 25(a). If the signal level drops below a certain threshold, a

 HANDOFF-DETECTION //Mobile-Assisted HandOff (MAHO)
(access_point AP, mobile_device mobile, int thres) {

 let am be a MAHO_APSNRMonitor object located at AP;
 let mp be a MeasurementProducer object located at AP;
 let da be a MAHO_DetectionAlgorithm object located at AP;
 let mm be a MAHO_MDSNRMonitor object located at mobile;
 let mp-mobile be a MeasurementProducer object located at mobile;

 while (true) {
MAHO-1: am invokes mp.queryBeaconInfo(mobile);
 am calculates the average signal strength SNR-avg for mobile;
 if (SNR-avg <= thres) {
MAHO-2: am invokes da.detectHandoff (AP, mobile);
 break; }
 else {
 sleep (am.queryInterval); }}
MAHO3: da invokes mm.measureON();
 while (true) {
 //mobile measures signal strength from all neighboring access points
MAHO-4: mm invokes mp-mobile.queryBeaconInfo();
MAHO-5: mm invokes da.measureReport();
 da calculates the best candidate access point AP-best for mobile;
 if (AP-best != AP) {
MAHO-6: da invokes mm.measureOFF();
 break; }
 sleep (mm.queryInterval); }

 //handoff execution and binding
 HANDOFF-EXECUTION (AP-best, AP, mobile);
 let da-best be a MAHO_DetectionAlgorithm object
 located at AP-best;
MAHO-7: da-best binds to mm;
MAHO-8: mm binds to da-best;
 HANDOFF-DETECTION (AP-best, mobile, thres); }

HANDOFF-EXECUTION
(access_point AP-new, access_point AP-old, mobile_device mobile) {

 let ha-old be a MAHO_Adapter object located at AP-old;
 let ha-new be a MAHO_Adapter object located at AP-new;
 let ma be a MobilityAgent object located inside the access network;
 let rdb-old be a MobileRegistrationDB object located at AP-old;
 let rdb-new be a MobileRegistrationDB object located at AP-new;
 let dp-new be a AP_Datapath object at AP-new;

 //query for mobility state
MAHO-9: ha-old invokes rdb-old.getFlowBundleState (mobile);
 let state-old be the flow-bundle state returned by rdb-old;

 //session re-routing
MAHO-10: ha-old invokes ma.handoffFlowBundle (state-old, mobile);
 ma calculates the cross-over switch for mobile;
 ma reroutes the flow-bundle associated with mobile;
 let state-new be the flow-bundle state returned by ma;

 //wireless transport configuration
MAHO-11: ha-old invokes dp-new.setUpDatapath (state-new, mobile);
MAHO-12: ha-old invokes mobile.handoffNotice (AP-new);
MAHO-13: mobile invokes this.radioLinkTransfer (AP-new);

 //mobile registration
MAHO-14: ha-old invokes rdb-new.mobileRegistration (state-new, mobile);
MAHO-15: ha-new binds to mobile; }

 94

detection algorithm running in the mobile device’s serving access point invokes a MeasureON() method to

initiate signal strength measurements at the mobile device (MAHO-3). Measurements are reported via a

MeasureReport() invocation (MAHO-5). The detection algorithm does not need to collect any additional

measurements in support of handoff. Rather, the handoff decision is based on data collected by the mobile

device. Our implementation of mobile assisted handoff is based on the GSM mobile assisted handoff

scheme [59]. In the mobile assisted handoff scheme, handoff execution is driven by an adapter object

running at the mobile device’s old access point and not in a server operating in the wireless access network.

Handoff execution includes flow-bundle rerouting, wireless transport management and mobile registration,

as in the case of network controlled handoff, as indicated by MAHO-9 to MAHO-14 in Figure 25(b). In the

case of mobile assisted handoff the handoff execution algorithm is distributed resulting in shorter handoff

completion times. When handoff execution is complete, the handoff adapter and detection algorithm

objects operating in the new access point bind to the mobile device (MAHO-7, MAHO-15).

Mobile Controlled Handoff

In the mobile controlled handoff scheme the signal strength measurements are taken by the mobile

device, as indicated by MCHO-1 in Figure 26(a). If a candidate access point having better signal strength is

detected then the handoff execution process is initiated. The mobile controlled handoff scheme moves most

of the complexity for detecting handoff to the mobile device alleviating the network from centralized

control of the handoff process. In this respect mobile controlled handoff is scalable and more distributed

than the other schemes. However, it assumes that the mobile device (e.g., a wireless laptop device) can

continuously monitor signal strength measurements.

A handoff adapter object located at the mobile device drives handoff execution. Mobile controlled

handoff is executed as a forward, soft handoff. To accomplish soft handoff, our radios based on WaveLAN

operate in promiscuous mode so that the mobile device simultaneously receives data from multiple access

points. First, wireless radio link transfer takes place (MCHO-6) as a change in WaveLAN NWID.

Following this a mobility agent object is invoked via adapter objects located at the mobile device and new

access point. The mobility agent object reroutes the flow bundle, which is specific to a mobile device

(MCHO-8). Finally, mobile registration (MCHO-9) and wireless transport configuration steps take place

 95

(MCHO-10). Forward handoff requires the creation of a binding between an adapter object running in the

mobile device and an adapter object operating at the new access point. These adapter objects are used to

contact the mobility agent operating in the wireless access network. To eliminate the latency introduced by

object bindings we setup and cache bindings prior to handoff execution (MCHO-3 to MCHO-5). An object

binding is established at the best candidate access point when the signal strength in the main

communication path drops below a certain threshold. The ‘pre-bind’ method call supported by the handoff

execution interface is used for this purpose. Different combinations of handoff adapters result in different

styles of programmable handoff (e.g., backward, hard handoff, etc).

(a) handoff detection (b) handoff execution

Figure 26: Mobile Controlled Handoff

Our system implementation has been optimized to reduce the binding and Remote Procedure Call

(RPC) overhead (i.e., latency) associated with open signaling. Oneway CORBA calls (as part of the

CORBA-based metabus) have been used to increase the level of parallelism for the interaction of

programmable handoff objects. A mobility agent has been designed to setup wireline connections in the

wireline access network by sending parallel invocations to switch servers [90]. This results in a speed up of

the re-routing phase of the handoff algorithm over conventional hop-by-hop signaling Mobile registration

 HANDOFF-DETECTION //Mobile-Controlled HandOff (MCHO)
(access_point AP, mobile_device mobile, int thres) {

 let mm be a MCHO_MDSNRMonitor object located at mobile;
 let mp be a MeasurementProducer object located at mobile;
 let da be a MCHO_DetectionAlgorithm object located at mobile;
 let ha be a MCHO_Adapter object located at mobile;

 while (true) {
 //mobile measures signal strength from all neighboring access points
MCHO-1: da invokes mm.getAPSNR();
MCHO-2: mm invokes mp.queryBeaconInfo();
 da calculates the best candidate access point AP-best for mobile;
 if (AP-best != AP) {
 HANDOFF-EXECUTION (AP-best, AP, mobile);
 HANDOFF-DETECTION (AP-best, mobile, thres);
 return; }
 let SNR-avg be the average signal strength from AP
 if ((AP-best == AP) && (SNR-avg <= thres)) {
 //pre-bind
 da calculates the second best access point AP-sec for mobile;
 let ha-sec be a MCHO_Adapter object located at AP-sec;
MCHO-3: mobile invokes this.radioLinkTransfer (AP-sec);
MCHO-4: ha binds to ha-sec;
MCHO-5: mobile invokes this.radioLinkTransfer (AP); }
 sleep (da.queryInterval); }}

HANDOFF-EXECUTION
(access_point AP-new, access_point AP-old, mobile_device mobile) {

 let ha be a MCHO_Adapter object located at mobile;
 let ha-new be a MCHO_Adapter object located at AP-new;
 let ma be a MobilityAgent object located inside the access network;
 let rdb-new be a MobileRegistrationDB object located at AP-new;
 let dp-new be a AP_Datapath object at AP-new;
MCHO-6: mobile invokes this.radioLinkTransfer (AP-new);

 //flow-bundle state is stored at mobile devices as well as access points
 let state-old be the flow-bundle state stored at mobile;
MCHO-7 ha invokes ha-new.handoffExecution (AP-old, state-old, mobile);
MCHO-8: ha-new invokes ma.handoffFlowBundle (state-old, mobile);
 ma calculates the cross-over switch for mobile;
 ma reroutes the flow-bundle associated with mobile;
 let state-new be the flow-bundle state returned by ma;

 //mobile registration
MCHO-9: ha-new invokes rdb-new.mobileRegistration (state-new, mobile);

 //wireless transport configuration
MCHO-10: ha-new invokes dp-new.setUpDatapath (state-new, mobile);
MCHO-11: ha-new invokes mobile.handoffNotice (AP-new); }

 96

databases have been implemented as hash tables to allow information retrieval in Θ(1) time. Flow bundle

identifiers have been used as hash keys. Mobility agents have been implemented in ‘multi-threaded’ as well

as ‘sequential’ modes. For the experiments reported in this chapter, mobility agents operate in a sequential

mode (e.g., reroute flow bundles one-by-one). Results from our experiments are discussed in Section 4.4.

4.3.2 Reflective Handoff Service

We have implemented reflective handoff as a mobile controlled handoff scheme. Access points

transmit beacons that additionally carry globally unique identifiers designating specific access networks. A

reflective detection algorithm uses access network identifiers to determine whether a mobile device is

likely to move to the coverage area of a new access network. Each mobile device maintains a local cache of

signaling system modules. Signaling system modules are collections of objects supporting mobility

management services in mobile devices. Before a mobile device performs a handoff to a new access

network, it checks whether a signaling module associated with the new candidate access network is cached.

If a signaling module is not cached it is dynamically loaded. Access points support module loaders

deployed during the service creation process. A signaling system is loaded from the old access network. A

two-way handshake mechanism is used for loading signaling modules, which are loaded before reflective

handoff is executed. Access networks schedule the transmission of signaling modules over the air interface,

to avoid flooding the wireless network.

Reflective handoff is managed by handoff adapters, which activate or deactivate signaling modules on-

demand. The handoff execution interface for the reflective handoff service includes a ‘configure’ method,

which is used for binding new signaling systems. Parameters associated with access network state (e.g., the

address of the gateway to the Mobile IP Internet) are passed into signaling modules upon activation.

Module loaders transmit access network state when loading signaling system support into mobile devices.

Reflective handoff may involve the loading of entire mobility management protocol stacks or configuration

scripts, which customize objects already cached at mobile devices.

Two distinct types of access networks support reflective handoff in our testbed as shown in Figure 27:

Mobiware and Cellular IP access networks. Cellular IP [30] delivers fast local handoff control in datagram

oriented access networks. In addition, Cellular IP supports per-mobile host state, paging, routing and

 97

handoff control in a set of access networks that are interconnected to the Internet through gateways. In

Cellular IP, packets sent from mobile hosts create routing caches pointing to the downlink path so that

packets destined to a mobile device can be routed using the route cache. Mobiware and Cellular IP

signaling modules use the IP protocol to communicate with access networks. Mobiware and Cellular IP

access networks support the same wireless data link and physical layers (WaveLAN) in our testbed but use

different mobility management systems. Future work will include extending reflective handoff to allow

access networks to load software radio-based physical and data link layer support into mobile devices.

Figure 27: Reflective Handoff Service

In our testbed, a Mobile IP enabled internetwork connects the Mobiware and Cellular IP wireless

access networks via gateways. Mobile IP is used for managing macro-level mobility between gateways,

whereas the Cellular IP and Mobiware wireless access support fast local handoff control. Hierarchical

mobility management in IP-based mobile networks has been widely reported in the literature [30, 118]. A

mobile device attached to an access network uses the IP address of the gateway as its care-of address.

Access networks provide mechanisms for initiating Mobile IP-based inter-gateway handoffs and for

establishing datapaths between gateways and access points where mobile devices are attached.

mobile IP enabled
internetwork

handoff
execution
interface

handoff control

handoff adapter

Mobiware
module

Cellular IP
module

home agent

gateway #1 gateway #2

Cellular IP
access
network

Mobiware
access
network

access
point

access
point

module/script
loader

host

(a) loading a signaling module (b) activating a signaling module

 98

Signaling modules implement generic handoff execution functions as dynamic link libraries using the

Windows NT operating system. Three types of handoff are supported: (i) ‘internal’ handoffs, which take

place between access points of the same access network; (ii) ‘entry’ handoffs, which take place when a

mobile device is attached to a new access network; and (iii) ‘exit’ handoffs, which take place when a

mobile device leaves an access network. The handoff execution interface supports method calls for internal,

entry and exit handoffs.

Reflective handoff requires that all the signaling modules associated with the handoff process are

loaded and activated. Reflective handoff has been implemented as the process of invoking an ‘exit’ handoff

on the signaling system of the old access network and an ‘entry’ handoff on the signaling system of the new

wireless access network. Access networks realize execution calls in different ways and support mechanisms

for registering the care-of address of mobile devices (i.e., gateway IP address) with their corresponding

home agents. Care-of address registration has been realized as part of ‘entry handoff’ or ‘exit handoff’.

When an entry handoff takes place, access networks check whether the care-of address of a mobile device

has been registered with its home agent. If the care-of address is not registered then the access network

initiates registration. Registration support during ‘exit’ handoff is optional.

We have programmed our handoff control system to load signaling modules as soon as the mobile

device detects that it is inside the coverage area of an access network where the signaling system is not

cached. This loading algorithm minimizes the probability of handoff failure due to absence of a signaling

module at the mobile device. A soft state mechanism used for managing stored signaling modules is used to

avoid having large caches. A timer associated with a module is refreshed while a mobile device remains

inside the coverage area of an access network associated with a particular module or set of modules.

Mobile devices can permanently cache signaling modules associated with access networks, however.

4.4 Evaluation

To evaluate the programmable handoff architecture we use a mixture of testbed implementation and

emulation in order to study proof of concept and scalability issues associated with our design. We extend

the spawning testbed developed at Columbia University to support the Mobiware [32] and Cellular IP [30]

architectures over separate physical topologies in order to test the reflective handoff service. The Mobiware

 99

testbed is used to implement and evaluate the multi-handoff access service while the reflective handoff

service is evaluated using a combination of Cellular IP and Mobiware wireless access networks. In what

follows, we discuss the results from the implementation and evaluation.

Peer Host Home Agent

AP1
AP2

AP3
AP4

MobilityAgent

ATML2

ATML1

SwitchServer

SwitchServer

FORE ASX100

NEC Model 5

ATML3

AP5

AP6

Gatewayrouting updates-

MCHO_Adapter

MCHO_Adapter

NEC Model 5

LAN

Cellular IP testbedMobiware testbed

paging updates

Figure 28: Experimental Environment

4.4.1 Experimental Platform

Our experimental environment is illustrated in Figure 28. The Mobiware testbed provides wireless

access to the Internet and comprises four ATM switches (viz. ATML Virata, Fore ASX/100, and NEC

model 5 switches) and four wireless access points. To provide a larger network testbed for programmable

handoff evaluation, switches allow multiple virtual network elements to be operational within the same

physical nodes. Three virtual ATM switches (ATML 1, 2, and 3 shown in Figure 8) in our network are

‘switchlets’ [141] physically co-located at the same physical switch. Each switchlet corresponds to a

different CORBA server with a different name space and manages its own resources independently from

other co-located switchlets. Access points are multi-homed 300 MHz Pentium PCs that provide radio

access to a wireline IP switched access network. High performance notebooks provide support for mobile

applications and mobile access to network services. Wireline ATM links operate at OC-3 rates between the

 100

switches and at 25 Mbps between the switches and access points. Our testbed radios are based on

WaveLAN operating in the 2.4-2.8 GHz ISM band. We use 2 Mbps WaveLAN cards for which we have a

low-level radio utility API for programming beacons, getting signal-strength measurements and controlling

some radio aspects. The Cellular IP access network consists of three base stations based on multi-homed

300 MHz Pentium PCs. One of the base stations serves as a gateway router to the Internet. Interconnects

between Cellular IP base stations are 100 Mbps full duplex links. Mobiware and Cellular IP access

networks are connected to a 100 Mbps Ethernet LAN supporting Mobile IP.

Access points and switches of the Mobiware testbed support our service creation environment,

programmable handoff control and mobility management systems. For the results provided in this chapter

the mobile devices and access points use a version of metabus based on IONA’s Orbix v2.0 CORBA

running Windows NT and UNIX operating systems. Cellular IP base stations, gateways and mobiles use

the Cellular IP protocol [30].

We augmented the experimental testbed platform discussed above with an emulation mode to evaluate

the scalability of the programmable handoff architecture to support large numbers of mobile devices. Our

aim is to analyze how well our middleware architecture performs in meeting the requirements imposed by

different types of mobile environments. An emulation platform has been built consisting of a mobility

emulator and the programmable handoff architecture operating in the access points and mobile capable

switches of the extended Mobiware testbed.

The mobility emulator, shown in Figure 29, emulates the random movement of mobile devices and

supports different levels of mobility and signaling load. The only major modification made to the access

network source code used for the experimental evaluation relates to the measurement producer objects,

which measure channel quality in wireless access points. Measurement producer objects have been

modified to suppress the generation of real channel quality measurements. Rather producer objects receive

data from a mobility emulator. Emulated mobile devices have been programmed to remain inside the same

cell for an exponentially distributed interval and to move with the same probability to any neighboring cell.

The propagation model used by the mobility emulator is based on the path loss component of signal fading

only.

 101

Figure 29: Mobility Emulator

4.4.2 Multi-handoff Access Service Analysis

A number of experiments provide insight into the performance of the multi-handoff access network

service. An important objective of the evaluation of service is to measure the latency associated with

various handoff styles. For these experiments, we streamed a single video flow (i.e., true_lies.mpg at 350

kbps) from a fixed network server to three mobile devices and performed successive handoffs with these

mobile devices between access points AP2 and AP3, as illustrated in Figure 28. The system is lightly

loaded and the cross over switch located at the ATML2 switch. The network is programmed to

simultaneously support mobile controlled, mobile assisted and network controlled handoff styles with each

mobile device being programmed to support a different style of handoff under consideration.

Table 2 summarizes our handoff latency measurement results for each one of the three schemes.

Twenty measurements for each handoff style were recorded. The average handoff latency measured for the

mobile-controlled handoff is 41 msec. This measurement comprised 22 msec for wireline connection setup

and 19 msec for wireless connection setup between the access point and mobile device. Mobiware active

 102

filters were not used in the experiments. For an evaluation of the Mobiware active filtering system see [32].

Mobile controlled handoff is associated with the least amount of latency. In this scheme a mobile device

periodically takes signal strength measurements and initiates handoff. The average handoff latency

measured for the mobile assisted handoff scheme is 750 msec. The greatest portion of the latency (709

msec) is absorbed by the measuring process, which records neighboring access point signal strength from

the perspective of the mobile device. The ‘hunt’ period over which measurements are collected at the

mobile device is set to 300 msec, whereas beacons are transmitted by access points and mobile devices

every 100 msec. Our detection algorithm initiated handoff if a candidate access point with better SNR was

present over two successive hunt periods. The average network controlled handoff latency measured is 683

msec. The measurement collection component of handoff latency is 641 msec. These results indicate that

the performance of a multi-service access network is satisfactory when the network is lightly loaded. Our

system performs well because binding latencies are eliminated. We experienced higher latencies when

bindings between objects were not setup or cached prior to handoff.

wireline
connection
latency
(msec)

wireless
connection
latency
(msec)

measurement
collection
latency
(msec)

total
latency
(msec)

Mobile Controlled Handoff 22 ± 1 19 ± 1 - 41 ± 1

Mobile Assisted Handoff 21 ± 1 20 ± 1 709 ± 65 750 ± 65

Network Controlled Handoff 22 ± 2 20 ± 1 641 ± 59 683 ± 59

Table 2: Handoff Latency Measurement

To test the scalability of our system we used the mobility emulator. We emulated the movement of 120

mobile devices and took measurements over a period of 10 min. Half the emulated mobile devices used

mobile assisted handoff and the other half network controlled handoff. We measured the average handoff

latency observed by each emulated mobile device and varied the average time between successive

handoffs, which resulted in different cell crossing rates and signaling loads. The average handoff latency

 103

experienced by a single mobile device as a function of the cell crossing rate (characterizing the mobile

environment) is presented in Figure 30(a). The figure shows that the average handoff latency for the mobile

assisted and network controlled handoff styles is much higher when the system operates under signaling

load. The average handoff latency experienced by a mobile device when performing mobile assisted

handoff is 750 msec in the case of a lightly loaded testbed. However, the measured latency for the same

handoff scheme is between 1.03 and 2.23 sec when the average cell crossing rate ranged between 2

handoffs/sec and 6 handoffs/sec. In the case of a network controlled handoff the average handoff latency

measured is between 1.29 and 3.63 sec.

The increase in average handoff latency observed when the system operates under signaling load is

partially caused by the fact that signaling functions are implemented as interactions between distributed

objects. A common feature of many implementations in CORBA is that remote method invocations are

queued until they are served in a first come-first served basis. However, in many distributed systems, such

as programmable signaling platforms, service requests occur in bursts. In this case, significant latency can

be introduced between the time a request is issued and the time it is served. Latency is introduced during

the handoff process in the case of programmable handoff control. This latency is represented as the period

between which the handoff execution call is issued by the detection algorithm and the point at which the

mobility agent services the call. In the case of a network controlled handoff, this latency is compounded by

the fact that access points transmit measurements reporting signal strength associated with mobile devices.

To minimize such latency, we enhanced mobile assisted handoff adapters to transmit aggregated

service requests to mobility agents using a single remote method invocation (i.e., signaling interaction). In

addition, we enhanced signal strength monitors to transmit aggregated signal strength reports. Aggregated

calls carry all service requests that have been issued in the interval between two successive invocations. We

call this interval between two successive aggregated calls the aggregated signaling time. We experimented

with different values of aggregated signaling time and measured the average handoff latency experienced

by mobile devices using mobile assisted and network controlled handoff. We took care that access points

were not synchronized when transmitting aggregated calls, avoiding further increase in handoff latency.

 104

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 3 4 5 6

av
er

ag
e

ha
nd

of
f l

at
en

cy
 (

se
c)

average cell crossing rate (handoffs/sec)

Mobile Assisted Handoff
Network Controlled Handoff

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300 350 400 450 500 550

av
er

ag
e

ha
nd

of
f l

at
en

cy
 (

se
c)

aggregated signaling time

Mobile Assisted Handoff, low mobility
Network Controlled Handoff, low mobility

(a) Handoff Latency as a Function of
the Average Cell Crossing Rate

(b) Handoff Latency as a Function of
the Aggregated Signaling Time (Low Mobility

Case)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300 350 400 450 500 550

av
er

ag
e

ha
nd

of
f l

at
en

cy
 (

se
c)

aggregated signaling time

Mobile Assisted Handoff, moderate mobility
Network Controlled Handoff, moderate mobility

 0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300 350 400 450 500 550

av
er

ag
e

ha
nd

of
f l

at
en

cy
 (

se
c)

aggregated signaling time

Mobile Assisted Handoff, high mobility
Network Controlled Handoff, high mobility

(c) Handoff Latency as a Function of
the Aggregated Signaling Time (Moderate Mobility

Case)

(d) Handoff Latency as a Function of
the Aggregated Signaling Time (High Mobility

Case)

Figure 30: Handoff Latency Under Load Conditions

Three sets of experiments evaluate the benefit of aggregated signaling techniques. In the first

experiment, the average cell crossing rate of the mobile environment is 2 handoffs/sec. In the next

experiment, the average cell crossing rate of the mobile environment is 4 handoffs/sec corresponding to

more frequent mobility. In the third experiment, the average cell crossing rate of the mobile environment is

6 handoffs/sec. The results from these experiments are shown in Figures 30(b)-30(d).

Aggregation of CORBA calls at access points results in reduction in the average handoff latency

experienced by mobile devices. Optimal values for the aggregated signaling time ranged between 50 and

200 msec. Higher aggregation signaling times result in increased latencies. Aggregation reduces the

 105

average handoff to 980 msec for the mobile assisted handoff scheme and 1.08 sec for the network

controlled handoff scheme in the case of lowest cell crossing rate. In the case of the highest cell crossing

rate the handoff latency is reduced to 1.10 sec for the mobile assisted handoff scheme and 2.41 sec for the

network controlled handoff scheme. While it is difficult to compare results from different signaling systems

operating under different load conditions we report for the purpose of qualitative analysis that the average

handoff latency in MAHO cellular systems is around 0.9 sec. Network controlled handoff latency varies

between 5-10 sec in different cellular systems.

signaling module
Size

(Kbytes)

Loading time

(sec)

Mobiware 1054 7 ± 1

Cellular IP 69 0.4 ± 0.1

Table 3: Signaling Modules

4.4.3 Reflective Handoff Analysis

In this section we evaluate the reflective handoff service between Mobiware and Cellular IP wireless

access networks. Mobiware and Cellular IP represent rather different wireless access network architectures

and their implementation platforms support strikingly different signaling protocols. In this respect

supporting seamless handoff between these two networks is good test scenario for reflective handoff. For

full details on Mobiware and Cellular IP handoff algorithms see [30] and [32], respectively.

An illustrative example of the performance of our video application is shown in Figure 31. Packet

traces are shown for a video stream (i.e., true_lies.mpg) delivered to a mobile device on the downlink

during reflective handoff. To study the effect of packet losses on reflective handoff we disable the

promiscuous mode of WaveLAN radios. In this way, mobile devices are unable to simultaneously receive

data from multiple access points. In the experiments, we successively force handoff between Mobiware and

 106

Cellular IP access networks. Reflective handoff latency ranges between 60 and 100 msec. In the example

shown in Figure 31, a Cellular IP to Mobiware handoff takes about 90 msec to complete, whereas a

Mobiware to Cellular IP handoff takes approximately 60 msec, including entry and exit handoff. A

significant part of the overall handoff latency is absorbed by the Mobile IP signaling component (42 msec

over a single hop). Typically, loading times do not affect handoff performance because signaling modules

are loaded prior to handoff execution. Activation latencies are 10 msec for the Mobiware and Cellular IP

modules. Cellular IP only initiates care-of-address registration during ‘entry handoffs’. Mobiware supports

care-of address registration during both entry and exit handoffs.

Packet loss during Cellular IP to Mobiware reflective handoff is greater than Mobiware to Cellular IP

because the care-of address registration occurs after the wireless radio link transfer takes place (i.e., a

change in WaveLAN NWID). Mobiware to Cellular IP handoff is more efficient because care-of address

registration occurs first and is initiated by the Mobiware access network during exit handoff. Some

forwarding delay is introduced at the gateway that connects the Cellular IP access network with the Mobile

IP enabled core network. Forwarding delay is introduced temporarily when compensating against the time

required to complete reflective handoff. This forwarding delay is 60 msec in the Mobiware to Cellular IP

reflective handoff example as shown in Figure 31. The performance cost of reflective handoff is increased

jitter which many adaptive applications are capable of absorbing.

Table 3 summarizes the characteristics of the signaling modules used in our experiments. The

Mobiware signaling module has been implemented using CORBA technology (Iona’s ORBIX), while the

Cellular IP module does not use CORBA. Signaling modules can have varying sizes and memory

footprints, which affect their downloading time and performance. The size of the Mobiware and Cellular IP

signaling modules are 1054 Kbytes and 69 Kbytes, respectively. Mobiware implements a complex QOS-

adaptive mobility management architecture, while Cellular IP implements a simple in-band handoff scheme

without QOS support. The implementation of the Mobiware signaling module is based on a commercial

Object Request Broker (ORB), which is not customized for wireless environments or for on-demand code

loading. This results in a significant footprint and loading time (7 sec). Clearly, this result indicates that

reflective handoff is not a practical solution for the current ORB and Mobiware signaling module,

especially when one considers a 2 Mbps air interface. Using radios with speeds of 10 and 25 Mbps reduces

 107

the loading times to 1.4 sec and 0.56 sec, respectively. Future work will include porting the programmable

handoff architecture to a ‘light-weight’ microORB [107], which will further decrease the footprint of

programmable signaling modules.

Our implementation of reflective handoff operates well in our testbed where signaling modules are

loaded over slow time scales. Soft state timers associated with module caches operate over tens of minutes.

We plan to investigate scalability issues associated with the reflective handoff scheme and its applicability

to mobile devices with varying loading requirements and processing capabilities.

4.5 Related Work

While the research community has addressed the programmability of the physical layer [20, 21, 98, 99]

and quality of service control [32, 94, 95] in mobile networks, little work has been done on using

programmability for solving the inter-system handoff problem. On the other hand a variety of ‘monolithic’

handoff algorithms have been proposed and investigated in the past [123, 138, 145] but these algorithms

are mostly tailored toward the needs of some specific type of mobile device or access network.

Programmable mobile networks represent an emerging area of research. In [20, 21, 98, 99] the

programmability of the physical layer is addressed based on digital signal processing techniques and wide-

band analog-to-digital conversion. A programmable MAC framework is presented in [34] that supports

adaptive real-time applications over time-varying and bandwidth-limited networks allowing mobile

applications to map their service requirements into groups of ‘bearer’ traffic classes supported by a

programmable scheduler. Active networking services for wireless and mobile networks are discussed in

[85].

In this chapter, we investigate technology for connecting mobile devices to programmable mobile

networks. Our methodology focuses on a framework for making handoff programmable. Handoff

represents an important service in wireless networks characterizing the capability of access networks to

respond to mobile user requirements. We believe that the capability of making mobile networks

programmable will help accelerate the deployment of new services in mobile and wireless networks and

speed innovation.

 108

4.6 Summary

In Chapter 4 we address the problem of supporting end-system connectivity focusing on programmable

mobile networks. Supporting end-system connectivity in programmable mobile networks is not an easy

task because mobile devices may roam across access networks with heterogeneous mobility management

architectures. While a variety of handoff algorithms have been proposed and investigated in the past these

algorithms are mostly tailored toward the needs of some specific type of mobile device or access network.

In this chapter we propose a solution to the intersystem handoff problem where the implementation details

of mobility management algorithms are hidden from handoff control systems, allowing the handoff

detection state (e.g., the best candidate access point for a mobile device) to be managed separately from

handoff execution state (e.g., mobile registration information). The same detection algorithms operating in

mobile devices, or access networks can interface with multiple types of mobility management architectures,

operating in heterogeneous access networks.

The main results of our work are: (i) we present the design, implementation and evaluation of a

‘reflective handoff’ service that allows access networks to dynamically inject signaling systems into mobile

devices before handoff. Thus, mobile devices can seamlessly roam between wireless access networks that

support radically different mobility management systems; and (ii) we show how a ‘multi-handoff’ access

network service can simultaneously support different styles of handoff control over the same wireless

access network. This programmable approach can benefit service providers who need to be able to satisfy

the mobility management needs of a wide range of mobile devices from cellular phones to more

sophisticated palmtop and laptop computers. To allow a range of mobile devices to connect to

programmable mobile networks we further decompose handoff control process into programmable objects,

separating the transmission of beacons, from the collection of wireless channel quality measurements and

from the handoff detection algorithm.

 109

Chapter 5

Programming the Data Path

5.1 Introduction

In Chapter 5 we study the performance of the Genesis Kernel programming system, discussed in

Chapter 3. In particular, we focus on the problem of efficiently programming the data path. We focus our

study on a network processor-based implementation of the Genesis Kernel because network processors are

suitable building blocks for software-base routers, comprising multiple processing units for parallel packet

processing. Recently, there has been a growing interest in network processor technologies [68-72] that can

support software-based implementations of the critical path while processing packets at high speeds.

Network processors use specialized architectures that employ multiple processing units to offer high

packet-processing throughput. We believe that introducing programmability in network processor-based

routers is an important area of research that has not been fully addressed as yet. The difficulty stems from

the fact network processor-based routers need to forward minimum size packets at line rates and yet

support modular and extensible data paths. Typically, the higher the line rate supported by a network

processor-based router the smaller the set of instructions that can be executed in the critical path.

 110

Data path modularity and extensibility requires the dynamic binding between independently developed

packet processing components. While code modularity and extensibility is supported by programming

environments running in host processors (e.g., high level programming language compilers and linkers),

such capability cannot be easily offered in the network. Traditional techniques for realizing code binding,

(e.g., insertion of code stubs or indirection through function tables) introduce some overhead when applied

to network processors in terms of additional instructions in the critical path. This overhead can be

significant in some network processors. One solution to this problem is to optimize the code produced by a

binding tool, once data path composition has taken place. Code optimization algorithms can be complex

and time-consuming, however. For example, code optimization algorithms may need to process each

instruction in the data path code several times resulting in O(n) or higher complexity as a function of the

number of instructions in the critical path. Such algorithms may not be suitable for applications that require

fast data path composition, (e.g., data path composition on a packet by packet basis). We believe that a

binding tool for network processor-based routers needs to balance the flexibility of network

programmability against the need to process and forward packets at line rates. This poses significant

challenges.

In this chapter, we present the design, implementation and evaluation of NetBind, a high performance,

flexible and scalable binding tool for creating modular data paths in network processor-based routers. By

“high performance” we mean that NetBind can produce data paths that forward minimum size packets at

line rates without introducing significant overhead in the critical path. NetBind modifies the machine

language code of components at run time, directing the program flow from one component to another. In

this manner, NetBind avoids the addition of code stubs in the critical path.

By “flexible” we mean that NetBind allows data paths to be composed at fine granularity from

components supporting simple operations on packet headers and payloads. NetBind can create packet-

processing pipelines through the dynamic binding of small pieces of machine language code. A binder

modifies the machine language code of executable components at run-time. As a result, components can be

seamlessly merged into a single code piece. For example, in [80] we show how Cellular IP [140] data paths

can be composed for network processor-based radio routers.

 111

By “scalable” we mean that NetBind can be used across a wide range of applications and time scales.

In order to support fast data path composition, NetBind reduces the number of binding operations required

for constructing data paths to a minimum set so that binding latencies are comparable to packet forwarding

times. In NetBind, data path components export symbols, which are used during the binding process. Each

symbol is associated with some specific instruction executed in the critical path (e.g., a branch instruction

or an arithmetic logic unit instruction that uses a critical register). Not all instructions in the critical path are

exported as symbols, however. The number of symbols exported by data path components, h, is typically

much smaller than the total number of instructions executed in the critical path, n. The NetBind binding

algorithm does not inspect every instruction in the data path code but only the symbols exported by data

path components. Because of the fact that h is much smaller than n, the time it takes to inspect every

exported symbol is typically much smaller than the time it takes to inspect every instruction in the data path

code. For this reason, the NetBind binding algorithm can compose packet processing pipelines very fast, in

the order of microseconds. The NetBind binding algorithm is associated with O(h) complexity.

While the design of NetBind is guided by a set of general principles that make it applicable to a class

of network processors, the current implementation of the tool is focused toward the Intel IXP1200 network

processor. The IXP1200 network processor targets fast Ethernet, OC-3 and OC-12 line rates. We have not

yet investigated forwarding at Gigabit speeds (e.g., OC-48, OC-192). However, there is strong indication

that NetBind can be applied to these line rates due to the simplicity and generality of the binding process.

This chapter is structured as follows. In Section 5.2 we present an overview of network processor

architectures, and IXP1200 in particular, and discuss issues and design choices associated with dynamic

binding. Specifically, we investigate tradeoffs that are associated with different design choices and discuss

their implications on the performance of the data path. In Section 5.3, we present the design and

implementation of NetBind. We discuss NetBind implementation is Section 5.4. In Section 5.5 we describe

how an IPv4 data path can be constructed using NetBind. In Section 5.6, we use a number of NetBind

created IPv4 [31] data paths to evaluate the performance of the system. We also evaluate the MicroACE

system [71] developed by Intel to support binding between software components running on Intel IXP1200

network processors, and identify pros and cons in comparison to NetBind. Section 5.7 discusses the related

work, and finally, in Section 5.8, we provide some concluding remark.

 112

Figure 31: Internal Architecture of the IXP1200

5.2 Dynamic Binding in Network Processors

5.2.1 Network Processors

Features

A common practice when designing and building high performance routers is to implement the fast path

using Application Specific Integrated Circuits (ASICs) in order to avoid the performance cost of software

implementations. ASICs are usually developed and tested using Field Programmable Gate Arrays, which

are arrays of reconfigurable logic. Network processors represent an alternative approach to ASICs and

FPGAs, where multiple processing units, (e.g., the microengines of Intel's IXP network processors [69-72]

or the dyadic protocol processing units of IBM's PowerNP processors [68]) offer dedicated computational

support for parallel packet processing. Processing units often have their own on-chip instruction and data

stores. In some network processor architectures, processing units are multithreaded. Hardware threads

usually have a separate program counter and manage a separate set of state variables. However, each thread

shares an arithmetic logic unit and register space. Network processors do not only employ parallelism in the

execution of the packet processing code, rather, they also support common networking functions realized in

hardware, (e.g., hashing [69], classification [68] or packet scheduling [68]). Network processors typically

consume less power than FPGAs and are more programmable than ASICs.

microengine 0

microengine 1

microengine 2

microengine 3

microengine 4

microengine 5

StrongARM
Core

hash
unit

IX Bus
controller

4K
scratch
memory

SDRAM
controller

PCI
controller

SRAM
controller

PCI
bus

IX
bus

 113

The IXP1200 Network Processor

IXP1200 network processor incorporates seven RISC CPUs, a proprietary bus (IX bus) controller, a

PCI controller, control units for accessing off-chip SRAM and SDRAM memory chips, and an on-chip

scratch memory. The internal architecture of the IXP1200 is illustrated in Figure 31. In what follows, we

provide an overview of the IXP1200 architecture. The information presented here about the IXP1200

network processor is sufficient to understand the design and implementation of NetBind. For further details

about the IXP1200 network processor see [70]. One of the IXP1200 RISC CPUs is a StrongARM Core

processor running at 200 MHz. The StrongARM Core can be used for processing slow path exception

packets, managing routing tables and other network state information. The other six RISC CPUs, called

“microengines” are used for executing the fast path code. Like the StrongARM Core, microengines run at

200 MHz. Each microengine supports four hardware contexts sharing an arithmetic logic unit, register

space and instruction store.

Each microengine has a separate instruction store of size 1K instructions (i.e., 4K bytes) called

“microstore”. Unlike the StrongARM Core processor, microengines do not use instruction or data caches

because of their associated performance implications. For example using a data cache in the critical path is

effective only when it is easy to determine whether some portion of the data path structures (e.g.,

classification, forwarding or scheduling data structures) is used more often that others. Each microengine

incorporates 256 32-bit registers. Among these registers, 128 registers are General Purpose Registers

(GPRs) and 128 are memory transfer registers. The register space of each microengine is shown in Figure

32. Registers are used in the following manner. GPRs are divided into two banks, (i.e., banks A and B,

shown in Figure 32), of 64 registers each. Each GPR can be addressed in a “context relative” or “absolute”

addressing mode. By context relative mode, we mean that the address of a register is meaningful to a

particular context only. Each context can access one fourth of the GPR space in the context relative

addressing mode. By absolute mode, we mean that the address of a register is meaningful to all contexts.

All GPRs can be accessed by all contexts in the absolute addressing mode.

The memory transfer registers are divided between SRAM and SDRAM transfer registers. SRAM and

SDRAM transfer registers are further divided among “read” and “write” transfer registers. Memory transfer

registers can also be addressed in context-relative and absolute addressing modes. In the context relative

 114

addressing mode, eight registers of each type are accessible on a per-context basis. In the absolute

addressing mode, all 32 registers of each type are accessible by all contexts.

The IXP1200 uses a proprietary bus interface called “IX bus” interface to connect to other networking

devices. The IX bus is 64-bit wide and operates at 66 MHz. In the evaluation boards we use for

experimenting with NetBind, the IXP1200 is connected to four fast Ethernet (100 Mbps) ports. The IX bus

controller (shown in Figure 31) incorporates two FIFOs for storing minimum size packets, a hash unit and a

4K “scratch” memory unit. The scratch memory is used for writing or reading short control messages,

which are exchanged between the microengines and the StrongARM Core.

Figure 32: Microengine Registers

5.2.2 Dynamic Binding Issues

There are many different techniques for introducing new services into software-based routers [45, 46,

133, 135, 148]. At one end of the spectrum, the code that implements a new service can be written in a high

level, platform-independent programming language (e.g., Java) and compiled at runtime producing

32 SRAM
read registers

64 32-bit
GPRs

(Bank A)

64 32-bit
GPRs

(Bank B)

ALU

32 SRAM
write registers

32 SDRAM
write registers

Shifter

32 SDRAM
read registers

‘read’
transfer
registers

‘write’
transfer
registers

 115

optimized code for some specific network hardware. In contrast, data paths can be composed from packet

processing components. Components can be developed independently from each other, creating

associations at run time. This dynamic binding approach reduces the time for developing and installing new

services, although it requires that algorithmic components are developed and tested in advance. In what

follows, we discuss issues associated with the design of a dynamic binding system for network processor-

based routers.

The main issues associated with the design of a binding system for network processor-based routers

can be summarized as:

• Headroom limitations;

• Register space and state management;

• Choice of the binding method;

• Data path isolation and admission control;

• Processor handoffs;

• Instruction store limitations; and

• Complexity of the binding algorithm.

Headroom Limitations

Line rate forwarding of minimum size packets (64 bytes) is an important design requirement for

routers. Routers that can forward minimum size packets at line rates are typically more robust against

denial-of-service attacks, for example. Line rate forwarding does not mean zero queuing. Rather, it means

that the output links of routers can be fully utilized when routers forward minimum size packets.

A necessary condition for achieving line rate forwarding is that the amount of time dedicated to the

processing of a minimum size packet does not exceed the packet's transmission or reception times,

assuming a single queuing stage. If multiple queuing stages exist in the data path, then the processing time

associated with each stage should not exceed the packet's transmission or reception times.

Given that the line speeds at which network processor-based routers operate are high, (e.g., in the order

of hundreds of Mbps or Gbps), the amount of instructions that can be executed in the critical path is

typically small, ranging between some tens to hundreds of instructions. The amount of instructions that can

 116

be executed in the critical path without violating the line rate forwarding requirement is often called

headroom.

Headroom is a precious resource in programmable routers. Traditional binding techniques used by

operating systems or high-level programming languages are not suitable for programming the data path in

network processor-based routers because these techniques waste too much headroom, and, thereby limit the

performance of the router. This is because such binding techniques burden the critical path with

unnecessary code stubs, or with time-consuming memory read/write operations for accessing function

tables. An efficient binding technique needs to minimize the amount of additional instructions introduced

into the critical path. The code produced by a good dynamic binding tool should be as efficient, and as

optimized, as the code produced by a static compiler or assembler.

Register Space and State Management

The exchange of information between data path components typically incurs some communication

cost. The performance of a modular data path depends on the manner in which the components of the data

path exchange parameters between each other. Data transfer through registers is faster and more efficient

than memory operations. Therefore, a well-designed binding tool should manage the register space of a

network processor system such that the local and global state information is exchanged between

components as efficiently as possible.

The number of parameters which are used by a component determines the number of registers a

component needs to access. If this number is smaller than the number of registers allocated to a component,

the entire parameter set can be stored in registers for fast access. The placement of some component state in

memory impacts the data path's performance. Although modern network processors support a large number

of registers, register sets are still small in comparison to the amount of data that needs to be managed by

components. Transfer through memory is necessary when components are executed by a separate set of

hardware contexts and processing units. A typical case is when queuing components store packets into

memory, and a scheduler accesses the queues to select the next packet for transmission into the network.

For fast data path composition, register addresses need to be known to component developers in

advance. A component needs to place parameter values into registers so they can be correctly accessed by

 117

the next component in the processing pipeline. There are two solutions to this problem. First, the binding

mechanism can impose a consensus on the way register sets are used. Each component in a processing

pipeline can place parameters into a predetermined set of registers. The purpose of each register, and its

associated parameter, can be exposed as a programming API for the component.

A second solution is more computationally intensive. The binding tool can scan all components in a

data path at run time and make dynamic register allocations when the data path is constructed or modified.

In this case, the machine language code that describes each component needs to be modified reflecting the

new register allocations made by the binding tool. Such code optimization algorithm may be time

consuming, and not suitable for applications requiring fast data path composition.

Choice of the Binding Method

Apart from the manner in which parameters are exchanged between components, the choice of the

binding technique significantly impacts the performance of a binding algorithm. There are three methods

that can be used for combining components into modular data paths. The first method is to insert a small

code stub that implements a dispatch thread of control into the data path code. The dispatch thread of

control directs the program flow from one component to another based on some global binding state and on

the parameters returned by each module. This method is costly. The minimum amount of state that needs to

be checked before the execution of a new component is an identifier to the next module and a packet buffer

handle exchanged between components. Checking this amount of state requires at least four compute

cycles. If a data path is split between six components, then the total amount of overhead introduced in the

critical path is twenty four compute cycles which is a significant part of the network processor headroom in

many different network processors. For example in IXP network processors that target the OC-48 and OC-

192 line rates, the headroom is equal to 57 compute cycles. In this case the binding overhead accounts for

42% of the headroom. The dispatch loop approach is more appropriate for static rather than dynamic

binding and can impact the performance of the data path because of the overhead associated with the

insertion of a dispatch code stub.

An enhancement on the first method for dynamic binding adds a small vector table into memory. The

vector table contains the instruction store addresses where each component is located. A data path

 118

component obtains the address of the next component in the processing pipeline in one memory access

time. In this approach, no stub code needs to be inserted in the critical path. When a new component is

added, only the content of the vector table needs to be modified. Although this approach is more suitable

for dynamic binding, it involves at least one additional memory read operation for each component in the

critical path. In commercial network processors that target OC-48 and OC-192 speeds memory access

latencies can be several times larger than the network processor headroom (e.g., 100-300 compute cycles).

As a result it is difficult to apply the vector table technique in order to support modular data paths at such

speeds.

The third binding method is more interesting. Instead of deploying a dispatch loop, or using a vector

table, the binding tool can modify the components' machine language code at run time, adjusting the

destination addresses of branch instructions. No global binding state needs to be maintained with this

approach. Each component can function as an independent piece of code having its own “exit points” and

“entry points”. Exit points are instruction store addresses of branch instructions. These branch instructions

make the program flow jump from one component to another. Entry points are instruction store addresses

where the program flow jumps. The impact of this approach on network processor headroom can be

significant since instructions that check global binding state are omitted. The third binding method

introduces less overhead in terms of additional processing latency in the critical path. For these reasons, we

have used the third binding method in NetBind. In this thesis we refer to this method as ‘code morphing’

method because it modifies the machine language code of components at run time.

Data Path Isolation and Admission Control

To forward packets without disruption, data paths sharing the resources of the same network processor

hardware need to be isolated. In addition, an admission control process needs to ensure that the resource

requirements of data paths are met. Resource assignments can be controlled by a system-wide entity.

Resources in network processors include bandwidth, hardware contexts, processing headroom, on-chip

memory, register space, and instruction store space.

One way to support isolation between data paths is to assign each data path to a separate processing

unit, or a set of hardware contexts, and to make sure that each data path does not execute code that exceeds

 119

the network processor headroom. Determining the execution time of programs given some specific input is

typically an intractable problem. However, it has been shown that packet processing components can have

predictable execution times [109]. One solution to the problem is to allow code modules to carry their

developer’s estimation of the worst case execution time in their file headers. The time reported in each

file’s header should be trusted, and code modules should be authenticated using well-known cryptographic

techniques. To determine the worst case execution time for components, developers can use reasonable

upper bounds for the time it takes to complete packet processing operations.

Bandwidth can be partitioned using packet scheduling techniques. Packet scheduling techniques, (e.g.,

deficit round robin [75], weighted fair queuing [75], or start time fair queuing [60]), can be implemented

either in the network processor hardware, or, as part of a packet-processing pipeline. Hierarchical packet

scheduling algorithms [14] can be used for dividing bandwidth between a hierarchy of coexisting data

paths. The implementation of packet scheduling algorithms in network processors is beyond the scope of

this thesis.

Processor Handoffs

Sometimes the footprints of data paths can be too large so that they cannot be placed in the same

instruction store. In this case, the execution of the data path code has to be split across two, or more

processing units. Another case arises when multiple data paths are supported in the same processor. In this

case, the available instruction store space of processing units may be limited. As a result, the components

of a new data path may need to be distributed across multiple instruction stores. Third, the execution of a

data path may be split across multiple processing units when “software pipelining” [73] is employed for

increasing the packet rate that can be achieved in a network processor architecture. Software pipelining is a

technique that divides the functionality of a data path into several stages. Pipeline stages can potentially run

in different processing units. Multiple stages can be executed at the same time forwarding the packets of

different data flows.

We call the transfer of execution from one processing unit to another (that takes place when a packet is

being processed), “processor handoff”. Processor handoffs impact the performance of data paths and need

to be taken into account by the binding system. The performance of processor handoffs depends on the type

 120

of memory used for communication between processing units. A dynamic binding system should try to

minimize the probability of having high latency processor handoffs in the critical path. This is not an easy

task and requires a search to be made on all possible ways to place the code of data paths into the

instruction stores of processing units.

Instruction Store Limitations

Instruction store limitations represent a constraint on the number of data paths or processing functions

that can be simultaneously executed in the same network processor. A solution to this problem would be to

have the binding system fetch code from off-chip memory units into instruction stores on an on-demand

basis. This solution, however, can significantly impact the performance of the critical path because of the

overhead associated with accessing memory units.

Complexity of the Binding Algorithm

The last consideration for designing a dynamic binding system is the complexity of the binding

algorithm. In many cases, the complexity of a binding algorithm affects the time scales over which the

binding algorithm can be applied. A complex binding algorithm needs time to execute, and is typically, not

suitable for applications that require fast data path composition. Keeping the binding algorithm simple

while producing high performance data paths is an important design requirement for a good binding

system. Applications that require real-time binding include classification, forwarding and traffic

management. The performance of such data path algorithms depends on the properties of classification

databases [61, 83], routing tables and packet scheduling configurations [119]. These properties typically

change at run time calling for advanced service creation environments for programming the data path

efficiently. A dynamic binding system should ideally support a wide range of packet processing

applications ranging from the creation of virtual networks over slow time scales to the fast creation of

customized data paths, after disasters occur. Disasters typically result in rapid changes on the input traffic

characteristics and topologies of communication networks. To accommodate increased traffic demands or

to reroute traffic to alternate links once some part of the communication infrastructure is physically

 121

damaged, communication networks need to be highly adaptive, calling for new techniques and software

methodologies for rapid service creation.

Figure 33: Data Path Specification Hierarchy

5.3 NetBind Design

NetBind is a binding tool we have developed that offers dynamic binding support for the IXP1200

network processor and is part of the composition controller of the routelet architecture of the Genesis

Kernel (see Chatpter 3). NetBind consists of a set of libraries which can modify IXP1200 instructions,

create processing pipelines or perform higher-level operations such as data path admission control.

Components are written in machine language code called microcode. NetBind groups components into

processing pipelines that execute on the microengines of IXP1200.

5.3.1 Design Principles

The most fundamental principle in the design of NetBind is that binding is performed by avoiding the

use of code stubs or indirection due to their associated performance penalty. As a consequence, NetBind

pipelines

forwarding
enginesinput

ports
output
ports

input argument

components symbols

exit point

entry point

global variable

transport modules

IXP1200
 specification

network
processor

specification

virtual:
router

specification

 122

modifies the machine language code of components at run-time in order to construct consistent packet

processing pipelines. Since the minimum step required for advancing the program sequence from one

component to another is a branch operation, NetBind modifies the destination addresses of branch

instructions connecting components. In this way, NetBind allows the program sequence to continue to the

next component in a pipeline, after the previous component’s code is executed.

NetBind uses no global binding state. Because of this reason, NetBind requires that components

expose registers used for inter-component communication as a programming API. Registers are exported as

binding symbols. NetBind splits the register space into regions and imposes a consensus on how registers

are used. Parameters exchanged between components do not need to be stored as global binding state. In

addition, no global biding state needs to be checked every time a new component’s code executes. This

reduces the overhead introduced in the critical path significantly, as discussed in the evaluation section.

Registers are used in three different ways in the components we experimented with. First, components use

registers to hold input argument values, as explained in detail below. Second, components use registers to

exchange information produced and consumed during the execution of a packet processing pipeline. Third,

components use registers to share information between each other. We distinguish registers between ‘input

argument’, ‘pipeline’ and ‘global variable’ registers depending on the way registers are used. By exporting

registers as input argument, pipeline and global variable, components can communicate with each other

with the least possible communication cost.

A second principle followed in the design of NetBind is that binding is performed by inspecting a

much smaller number of instructions than the body of code executed in the critical path. This second

principle results in fast data path composition. To reduce the number of instructions inspected during

binding, NetBind requires from components to allocate register addresses statically. Statically allocated

register addresses are exported as part of each component’s API. The only exception to this rule concerns

the allocation of global variable register addresses. Global variables represent a shared resource because

they are accessed by multiple simultaneously running hardware threads and referenced using the absolute

addressing mode. As a result, global variables addresses need to be allocated dynamically on an on-demand

basis to packet processing pipelines.

 123

5.3.2 Data Path Specification Hierarchy

Before creating data paths, NetBind captures their structure and building blocks in a set of executable

profiling scripts. NetBind uses multiple specification levels to capture the building blocks of packet

forwarding services and their interaction. NetBind uses multiple specification levels in order to offer the

programmer the flexibility to select the amount of information that can be present in data path profiling

scripts. Some profiling scripts are generic, and thus applicable to any hardware architecture. Some other

profiling scripts can be specific to network processor architectures, potentially describing timing and

concurrency information associated with components. A third group of scripts can be specific to a

particular chip such as the IXP1200 network processor.

Figure 33 illustrates the different ways data paths are profiled in NetBind. First, a virtual router

specification can be applied to any hardware architecture. The virtual router specification is part of the

compact form of the Genesis profiling script (see Chapter 3). The virtual router specification is generic and

can be applied to many different types of programmable routers (e.g., PC-based programmable routers [46,

79], software [148] or hardware [133] plugin-based routers or network processor-based routers [128,

129]).The purpose of the virtual router specification is to capture the composition of a router in terms of its

constituent building blocks and their interaction, without specifying the method which is used for

component binding. Programmable routers can be constructed using a variety of programming techniques

ranging from higher level programming languages (e.g., Java) to hardware plugins based of FPGA

technologies. The virtual router specification can be used for network spawning in a heterogeneous

infrastructure of programmable routers of many different types. The virtual router specification describes a

virtual router as a set of input ports, output ports and forwarding engines. The components that comprise

ports and engines are listed, but no additional information is provided regarding the contexts that execute

the components and the way components create associations with each other. There is no information about

timing and concurrency in this specification.

A network processor specification augments the virtual router specification with information about the

number of hardware contexts that execute components and about component bindings. The network

processor specification exposes information about the hardware contexts that execute data paths in order to

 124

allow the programmer to control the allocation of computational resources (i.e., hardware threads and

processing units).

Components are grouped into processing stages. A processing stage is a part of a software pipeline and

consists of a set of components that are executed by one or multiple hardware contexts sequentially.

Components exchange packets between each other in a “push” or a “pull” manner. Components that

sequentially exchange packets in a push manner are grouped into the same stage of a pipeline. A data path

software pipeline is split between at least two stages if components perform different operations on packets

simultaneously. For example, components may need to place packets (or pointers to packets) into memory,

while other components may need to concurrently process or remove packets from memory. In this case,

the first set of components should be executed by a separate set of hardware contexts other than those,

which execute the second set.

In the network processor related specification, components are augmented with symbols, which are

represented as strings. The profiling script specifies one-to one bindings between symbols and between

components. Symbols abstract binding properties of components such as registers or instruction store

addresses. Symbols are used in the binding process.

The network processor specification is dynamically created from the virtual router specification. The

virtual router specification does not include information about symbol bindings. Because of this reason, the

virtual router specification is not sufficient to describe the interaction between components at the network

specification level. To convert the virtual router specification into the network processor specification,

NetBind queries a database which stores information about symbol bindings. Groups of symbol bindings

are being stored for each component binding used in the data path. The NetBind binding approach assumes

that the number of components and symbols used for constructing data path algorithms is limited (i.e., in

the same order of magnitude as the classes and methods found in a higher level programming language

API). If this assumption is true, it may not be difficult for component developers to specify exactly which

symbol bindings should characterize the interaction between components in the data path.

An IXP1200 specification relates the components of a programmable data path with binding properties

associated with the IXP1200 architecture. This type of specification shows how data paths are constructed

for a specific network processor. Components are implemented as blocks of instructions (microwords)

 125

called transport modules. Each transport module supports a specific set of functions. Transport modules can

be customized or modified during the binding process. Symbols are specified as “entry points”, “exit

points”, “input arguments” or “global variables”.

Exit points are instruction store addresses of branch instructions. These branch instructions make the

program flow jump from one transport module to another. Entry points are instruction store addresses

where the program flow jumps. Input arguments are instruction store addresses of “immed” IXP assembler

instructions that load GPRs with numeric values. These numeric values, (e.g., Cellular IP timers, IPv4

interface addresses), customize the operation of transport modules. Global variables are GPRs that are

accessed using the absolute addressing mode. These GPRs hold numeric values that are shared across

pipelines or data paths. For example, the SRAM address of a packet buffer in an IPv4 data path needs to be

declared as global variable since this value is shared between the packet buffer and a scheduler. Network

processor related specifications are automatically translated into IXP12000 related specifications by the

NetBind binding system.

5.3.3 Register Allocations

Register allocations realized in NetBind are shown in Figure 34. We observe that in data path

implementations we have experimented with, registers are used in three ways. First, registers can hold

numeric values used by a specific component. Each component implements an algorithm that operates on

numeric values. When a component creates new values, it replaces old numeric values with the new ones in

the appropriate microengine registers. We call these registers pipeline registers. The algorithm of each

component places some numeric values into pipeline registers, which are used by the algorithm of the next

component in the pipeline. In this manner pipeline registers are shared among all components of a pipeline.

Pipeline registers are accessed using the context relative addressing mode. Once a component executes it

becomes the owner of the entire set of pipeline registers. In this way, the registers used by different

contexts are isolated.

Second, registers can hold input arguments. Input arguments are passed dynamically into components

when pipelines are created from an external source, (e.g., the control unit of a virtual router [80]). Each

component can place its own arguments into input argument registers overwriting the input arguments of

 126

the previous component. Similar to pipeline registers, input argument registers are accessed in a context

relative addressing manner. Examples of input arguments include the SRAM address where a linked list of

packet buffer descriptors is stored, the SDRAM address where a routing table is located, or, the scratchpad

address, where a small forwarding MIB is maintained.

Third, some registers are shared among different pipelines or data paths. We call these registers global

variable registers. Global variable registers are exported as global variable symbols. These registers need to

be accessed by multiple hardware contexts simultaneously. For this reason, global variable registers are

accessed using the absolute addressing mode.

Figure 34: Register Allocation in NetBind

To reduce the time required for performing data path composition, NetBind uses static register

allocation for pipeline and input argument registers and dynamic allocation for global variable registers. By

static register allocation, we mean that register addresses are known to component developers and exported

as a programming API for each component. By dynamic register allocation, we mean that register

addresses are assigned at run time when data paths are created or modified. An admission controller assigns

global variable registers to data paths on-demand. The microcode of components is modified to reflect the

register addresses allocated to components in order to hold global variables. NetBind uses static register

allocation for pipeline and input argument registers in order to simplify the binding algorithm and to reduce

 global variable registers

pipeline #2argument
registers

(addresses:9-12)

pipeline #1pipeline registers
(addresses:0-8)

component #1 component #2 component #3

pipeline registers

algorithm
#1

algorithm
#2

algorithm
#3

(addresses: 13-15)

 127

the time needed for the creation a modular data path. Otherwise, the NetBind binding algorithm would have

to inspect all instructions in the data path code, locate the instructions where registers are used and assign

register addresses dynamically.

In the current implementation of NetBind, we use eighteen GPRs per context as pipeline registers

(addresses 0-8 of banks A and B) and eight GPRs per context as input argument registers (addresses 9-12

of banks A and B). Memory transfer registers are all pipeline registers. Each context contributes six GPRs

in order to be used as global variable registers. In this manner, a pool of twenty-four global variable

registers are shared among pipelines or data paths. Dynamic register allocation is used for global variable

registers, because these registers are shared between different pipelines or data paths and it is not possible

for their addresses to be known in advance. In our Spawning Networks Testbed, as part of the Genesis

Project, we have used NetBind to build IPv4 [115] and Cellular IP [140] virtual routers. Static register

allocation is sufficient for programming this set of diverse data paths.

Our characterization of registers as ‘input argument’, ‘pipeline’ and ‘global variable’ reflects register

usage in the components we experimented with. Alternative designs may define different types of register

usage. What is important in the design of NetBind is that we allow components to communicate without

checking global binding state every time a new component is executed. This is accomplished by allowing

components to expose registers as a programming API. Registers can be characterized in many different

ways in the API depending on the programmer’s needs.

5.3.4 Binding Algorithm

The NetBind binding algorithm operates on components and modifies their microcode instructions at

run time in order to compose packet processing pipelines A description of the binding algorithm is given

below.

NETBIND-BIND (component-list, binding-list)

1. for i = 1 to number-of-components do

2. place each component into the same microstore

3. for i = 1 to number-of-components do

 128

4. for j = 1 to number-of-input-arguments for the i-th component do

5. j-th-input-argument ← exported-symbol-value for this argument

6. for j = 1 to number-of-global-variables for the i-th component do

7. j-th-global variable ← exported-register-address for this variable

8. for i = 1 to number-of-bindings do

9. exit-point for the i-th binding ← exported-entry poin for this exit point

Figure 35: Dynamic Binding in NetBind

Steps 1, 2 describe the placement of components into a microstore. Steps 3-7 describe the assignment

of input argument values and global variable register addresses. Steps 8, 9 describe the bindings between

exit points and entry points. Assuming steps 1 and 2 can be executed in bounded time (e.g., by a DMA

transfer unit or other hardware acceleration unit) and that the component list passed as input contains m

input arguments, n global variables, and l bindings the complexity of the binding algorithm is O(m+n+l).

This is because steps 3-5 are executed m times overall, steps 6, 7 are executed n times, and steps 8, 9 are

executed l times. The total number of symbols that are processed during the binding process is h = m+n+l.

As a result, the complexity of our binding algorithm is O(h) as stated earlier.

alu[@var1, --,B, arg1]
address of @var1 is 45

alu[@var2 --,B, arg2]
address of @var2 is 46

immed_w0[arg1, 0x0100]
immed_w1[arg1, 0x0002]

immed_w0[arg1, 0x0000]
immed_w1[arg1, 0x0000]

br[end#]

0x0100
0x0002

47

47

entry_point1#

0x0500
0x0001

instruction store instructions
before binding

instructions
after binding

immed_w0[arg1, 0x0000]
immed_w1[arg1, 0x0000]

alu[@var1, --,B, arg1]
address of @var1 is 47

br[entry_point1#]

immed_w0[arg1, 0x0500]
immed_w1[arg1, 0x0001]

alu[@var2 --,B, arg2]
address of @var2 is 47

(1)

(2)

(3)

(4)

 129

Figure 35 illustrates an example how NetBind performs dynamic binding. In this example, two

components are placed into an instruction store. Figure 35 shows the instruction store containing the

components and the instructions of components, which are modified during the binding process. The fields

of instructions, which are modified by NetBind, are illustrated as shaded boxes in the figure.

First, NetBind modifies the microwords that load input arguments into registers. Input argument values

are specified using the NetBind programming API. Input argument values replace the initial numeric values

used by the components. In the example of Figure 35, two pairs of “immed_w0” and “immed_w1”

instructions are modified at run time, during the steps (1) and (2), as shown in Figure 35. The values of

input arguments introduced into the microcode are 0x20100 and 0x10500 for the two components,

respectively.

Second, the binder modifies the microwords where global variables are used. The “alu” instructions

shown in Figure 35 load the absolute registers @var1 and @var2. The absolute registers @var1 and @var2

are global variable registers. An admission controller assigns the addresses of these global variable registers

before binding takes place. The binder then replaces the addresses that are initially used by the programmer

for these registers, (i.e., 45 and 46 as shown in Figure 35), with a value assigned by the admission

controller (47). In this manner, pipelines can use the same GPR for accessing shared information (step 3 in

Figure 35).

Third, the binder modifies all branch instructions that are included in each transport module. The

destination addresses of branch instructions are incremented by the instruction store addresses where

transport modules are placed. Finally, the microwords that correspond to the exit points of transport

modules are modified so that the program flow jumps into their associated entry points (step 4 in Figure

35). By modifying the microcode of components at run time, NetBind can create processing pipelines that

are optimized adding little overhead in the critical path. This is a key property of the NetBind system that

we discuss in the evaluation section.

5.3.4 The Admission Control Algorithm

In NetBind, admission control drives the assignment of system resources including registers, memory,

instruction store space, headroom and hardware contexts. Resource management in network processors is a

 130

difficult problem. The difficulty stems from the fact that network processors use multi-processor

architectures that expose many different types of resources to applications (e.g., multiple types of memory

units, registers, packet processing units and hardware contexts).

Figure 36: Bin Packing Example

We have not fully investigated the resource management problem in network processors as yet.

Instead, we designed a simple heuristic algorithm for admission control. NetBind applies a “best fit” bin-

packing algorithm to determine the most suitable microengines where data path components should be

placed. The best fit bin packing algorithm determines the microengine where a packet processing pipeline

should be placed by calculating the remaining resources (i.e., leftover) after the placement of the pipeline in

each microengine. In order to determine the remaining resources associated with each resource assignment,

NetBind calculates a weighted average, taking every type of resource, (i.e., memory and instruction store

space, hardware contexts, and global variable registers), into account. Each type of resource weighs equally

on the calculation of the leftover resources. The microengine selected is the one that results in the smallest

amount of leftover after the placement of the pipeline.

objects in their arrival order empty bins

object placement by the
best fit algorithm

object placement by
exhaustive search

 131

Maintaining records of resource usage is essential to supporting isolation between data paths. If the

“best fit” algorithm fails NetBind applies an “exhaustive search” algorithm to determine the microengines

where data path components should be placed. Exhaustive search is a technique associated with significant

complexity (i.e., O(m!) as a function of the number of pipelines in the system). However, exhaustive search

works effectively for small number of pipelines and can result in efficient resource allocations when the

best fit algorithm fails.

Real applications do need exhaustive search. Best fit may fail to find the optimal allocation. In what

follows we provide an example that illustrates why exhaustive search is necessary. In the example shown in

Figure 36, microengines are abstracted and referred to as ‘bins’ and pipelines are abstracted and referred to

as ‘objects’ for the sake of simplicity. Let’s assume that we have two bins of size seven and two objects

which need to be placed into the bins of size three each. The best fit algorithm places the two objects in the

first of the bins. If an object of size four needs to be added into the bins as well, the best fit algorithm places

the object in the second bin. If a fourth object, also of size four needs to be added into the bins, then the

best fit algorithm determines that there is not enough space in the system to accommodate the new object.

This happens because the leftover in the first bin is one and in the second bin is three. Exhaustive search in

this case determines that there exists a placement configuration which can accommodate all four objects. In

the optimal configuration each of the bins contains one object of size four and one object of size three.

Before realizing a data path, NetBind examines whether the candidate data path exceeds the network

processor headroom. Each transport module carries an estimate of its worst case execution time. The

execution time for each component is determined from deterministic bounds on the time it takes for

different microengine instructions to complete. With the exception of memory operations, the execution

time of microengine instructions is deterministic and can be obtained using Intel’s transactor simulation

environment [72].

5.4 NetBind Implementation

We have implemented NetBind in C and C++ as a user space process in the StrongARM Core

processor of IXP1200 and used it as part of the Genesis Kernel code release for network processors. The

 132

StrongARM Core processor runs a embedded ARM version of Linux. A diagram of the components of the

NetBind system is shown in Figure 37. The NetBind binding system consists of:

• a network processor specification converter object, which converts a virtual router specification to a

network processor specification. Information about symbol bindings required for the conversion is

obtained from a database of transport modules and symbol bindings.

• a data path constructor object, which coordinates the binding process, accepting as input the network

processor specification of a data path. The data path constructor parses the transport module (.tmd)

files that contain data path components and converts the network processor-related specification of a

data path into an IXP1200-related specification.

• an admission controller object, which determines whether the resource requirements of a data path can

be met; The admission controller performs resource allocation for every candidate data path. If the

resource requirements of a data path can be met, the admission controller assigns a set of

microengines, hardware contexts, global variable registers, memory and instruction store regions to the

new data path. Once admission control takes place, the data path is created.

• a verifier object, which verifies the addresses and values of each symbol associated with a data path

before binding takes place. The verifier object also checks the validity of the resource allocation made

by the admission controller. The verifier object is useful for debugging since it makes sure that no

incorrect or malicious microcode is written into the instruction stores of IXP units. Using a verifier

object one can avoid resetting the system manually every time the data path constructor makes a

mistake.

• a binder object, which performs low-level binding functions, such as, the modification of microwords

for binding, or, the loading of transport modules into instruction stores. The binder is “plug-and-play”

and can either create new data paths, or, modify existing ones at run-time

• a code morphing object, which offers a set of methods that parse IXP1200 microinstructions and

modify the fields of these instructions. The code morphing object is used by the binder.

• a database of transport modules and symbol bindings. Transport modules encapsulate component code

and are accessed by the data path constructor. Symbol bindings are used during the conversion of the

virtual router specification into the network processor specification.

 133

• a microstore object, which can initialize or clear the instruction stores on an IXP1200 network

processor. The microstore object can also read from, or write into, any address of the instruction stores.

Figure 37: The NetBind Binding System

In order to implement the binder object we had to discover the binary representations for many

IXP1200 microassembler instructions. This was not an easy task since the opcodes of microassembler

instructions do not have fixed lengths and they are not placed in fixed locations inside each instruction's bit

set.

Transport modules can be developed using tools such as the Intel Developer Workbench [72]. The

IXP1200 microassembler encapsulates the microcode associated with a component project into a “.uof”

file. The UOF file format is an Intel proprietary format. The UOF header includes information about the

number of microcode pages associated with a Workbench project, the manner in which the instruction

stores are filled and the size of pages associated with a project's microcode. Since we have had no access to

the source code of the standard development tools provided by Intel [72], (i.e., the Intel Developer

Workbench, the transactor simulation environment and the microassembler), we have created our own

datapath constructor

transport
modules

(.tmd files)
admission

controllerbinder

network processor specification

microengines

StrongARM
Core

verifier

microstore
objectcode morphing object

and symbol
bindings

virtual router specification

datapath constructor

transport
modules

(.tmd files)
admission

controllerbinder

network processor specification

microengines

verifier

microstore
object

and symbol
bindings

network processor specification
converter

datapath constructor

transport
modules

(.tmd files)
admission

controllerbinder

network processor specification

microengines

verifier

microstore
object

and symbol
bindings

datapath constructor

transport
modules

(.tmd files)
admission

controllerbinder

network processor specification

microengines

verifier

microstore
object

and symbol
bindings

network processor specification
converter

datapath constructor

transport
modules

(.tmd files)
admission

controllerbinder

network processor specification

microengines

StrongARM
Core

verifier

microstore
objectcode morphing object

and symbol
bindings

virtual router specification

datapath constructor

transport
modules

(.tmd files)
admission

controllerbinder

network processor specification

microengines

verifier

microstore
object

and symbol
bindings

network processor specification
converter

datapath constructor

transport
modules

(.tmd files)
admission

controllerbinder

network processor specification

microengines

verifier

microstore
object

and symbol
bindings

datapath constructor

transport
modules

(.tmd files)
admission

controllerbinder

network processor specification

microengines

verifier

microstore
object

and symbol
bindings

network processor specification
converter

 134

microassembler extensions on top of these tools. Our microassembler extensions have been used for

creating the transport modules of components.

Figure 38: Microassembler Extensions

The UOF file format is suitable for encapsulating statically compiled microcode. The UOF file format

does not include dynamic binding information in the header. For this reason, we introduced a new file

format, the TMD (Transport MoDule) format for encapsulating microcode. Our microassembler extensions

are shown in Figure 38. A utility called uof2tmd takes a .uof file as input and produces a “.tmd” file as

output. The TMD header includes symbol information about input arguments, global variables entry points

and exit points. For each symbol a symbol name, a value and an instruction store address where the symbol

is used are provided. Currently, the information included in the TMD header is obtained from the UOF

header.

5.5 Service Creation Using NetBind

We have used NetBind to create programmable virtual routers that seamlessly share the resources of

the communications infrastructure. The dynamic instantiation of a set of routelets across the network

hardware, and the formation of virtual networks on-demand are research goals discussed in Chapter 3 and

not dealt with in this chapter.

.ucp file .uof file .tmd file

import variables
export functions

.uof

input arguments
global variables

entry points
exit points

.tmd
header

preprocessor assembler uof2tmd

 135

5.5.1 IPv4 Data Path

The data path associated with an IPv4 virtual router implemented using NetBind is illustrated in Figure

39. This data path comprises seven transport modules. In the figure, the first six modules run on

microengine 0 and are executed by all four contexts by the microengine:

Figure 39: An IPv4 Data Path

• a virtual network demultiplexor (receiver.tmd) module receives a packet from the network performs

virtual network classification and places the packet into an SDRAM buffer;

• an IPv4 verifier (ipv4_verifier.tmd) module verifies the length, version and TTL fields of an IPv4

header;

• a checksum verifier (ipv4_checksum_verifier.tmd) module verifies the checksum field of an IPv4

header;

• an IPv4 header modifier (ipv4_hdr_modifier.tmd) module decrements the TTL field of an IPv4 packet

header and adjusts the checksum accordingly;

 receiver.tmd

ipv4_verifier.tmd

ipv4_checksum_verifier.tmd

scheduler.tmd

packet_queue.tmd

ipv4_trie_lookup.tmd

ipv4_header_modifier.tmd

microengine 0

microengine 1

 136

• an IPv4 trie lookup (ipv4_trie_lookup.tmd) module performs an IPv4 route lookup; and

• a packet queue (packet_queue.tmd) module dequeues a packet.

In addition, a seventh module runs on a separate microengine (microengine 1). This module is a

dynamic scheduler that assigns the transmission of enqueued packets to hardware contexts. Context 0

executes the scheduler, whereas contexts 1, 2 and 3, transmit packets to the network.

Figure 40: Network Processor Specification of the Ipv4 Data Path

//declaration of input arguments
decl[symbol, inp_packet_buff_base], 0x20100
decl[symbol, inp_scratchpad_mib], 0x0c0
decl[symbol, inp_scratchpad_pwp], 0x200
decl[symbol, inp_route_base_64k], 0x20000
decl[symbol, inp_route_base_256], 0x30000
decl[symbol, inp_route_base_trie], 0x30100
decl[symbol, inp_ftable_base], 0x8100

//declarations for the packet processing pipeline:
//mpacket receiver:
decl[comp, mpr, mpr, ./receiver.tmd], inp_descriptor_base, inp_packet_buff_base, inp_scratchpad_mib, glo_rdready_sem#,

glo_rec_sem#, glo_dma_sem#, entry_routerinitialize#, exit_to_verifier#

//ipv4 verifier
decl[comp, ipv4_verifier, ipv4_verifier, ./ipv4_verifier.tmd], inp_descriptor_base, inp_packet_buff_base,

entry_verificationbegin#, exit_to_checksum#, exit_to_end_verify1#, exit_to_end_verify2#
//ipv4_checksum_verifier
decl[comp, ipv4_checksum_verifier, ipv4_checksum_verifier, ./ipv4_checksum_verifier.tmd], entry_ipv4_cksum_verify#,

exit_chksum_verify#, exit_to_router#
//ipv4_header_modifier
decl[comp, ipv4_header_modifier, ipv4_header_modifier, ./ipv4_header_modifier.tmd], inp_descriptor_base, inp_packet_buff_base,

entry_ipv4_header_modifier#, exit_ipv4_header_modifier#
//ipv4_trie_lookup
decl[comp, ipv4_trie_lookup, ipv4_trie_lookup, ./ipv4_trie_lookup.tmd], inp_descriptor_base, inp_packet_buff_base,

inp_route_base_64k, inp_route_base_256, inp_route_base_trie, inp_ftable_base, entry_routelookup#, exit_routelookup#
//packet_queue
decl[comp, packet_queue, packet_queue, ./packet_queue.tmd], inp_descriptor_base, inp_scratchpad_mib,

inp_scratchpad_pwp, entry_packet_queue#, exit_packet_queue#

//declaration of bindings for the packet processing pipeline
decl[binding, b0], mpr, exit_to_verifier#, ipv4_verifier, entry_verificationbegin#
decl[binding, b1], ipv4_verifier, exit_to_checksum#, ipv4_checksum_verifier, entry_ipv4_cksum_verify#
decl[binding, b2], ipv4_verifier, exit_to_end_verify1#, ipv4_header_modifier, entry_ipv4_header_modifier#
decl[binding, b3], ipv4_verifier, exit_to_end_verify2#, ipv4_header_modifier, entry_ipv4_header_modifier#
decl[binding, b4], ipv4_checksum_verifier, exit_chksum_verify#, ipv4_header_modifier, entry_ipv4_header_modifier#
decl[binding, b5], ipv4_checksum_verifier, exit_to_router#, mpr, entry_routerinitialize#
decl[binding, b6], ipv4_header_modifier, exit_ipv4_header_modifier#, ipv4_trie_lookup, entry_routelookup#
decl[binding, b7], ipv4_trie_lookup, exit_routelookup#, packet_queue, entry_packet_queue#
decl[binding, b8], packet_queue, exit_packet_queue#, mpr, entry_routerinitialize#

//global variables
decl[gv, var0], mpr, glo_rdready_sem#
decl[gv, var1], mpr, glo_rec_sem#
decl[gv, var2], mpr, glo_dma_sem#

//declaration of the packet processing pipeline that receives and enqueues packets
decl[pline, ipv4_recv, 4], mpr, ipv4_verifier, ipv4_checksum_verifier, ipv4_header_modifier, ipv4_trie_lookup, packet_queue,

b0, b1, b2, b3, b4, b5, b6, b7, b8, var0, var1, var2

//declaration of the packet transmitting pipeline
decl[comp, scheduler, scheduler, ./scheduler.tmd]
decl[pline, ipv4_xmit, 4], scheduler

//aggregate structures
decl[va, aggr0], ipv4_recv, var0
decl[va, aggr1], ipv4_recv, var1
decl[va, aggr2], ipv4_recv, var2

//declaration of the datapath
decl[dpath, ipv4], ipv4_recv, ipv4_xmit, aggr0, aggr1, aggr2

 137

The network processor specification for the router presented above is shown in Figure 40. The

specification is written in a scripting language called ni. This scripting language has been defined and

developed for testing in addition to the XML grammar of the Genesis Kernel. The syntax of ni commands

is similar to the syntax of IXP1200 microcode instructions. The first string in a ni command identifies the

operation which is executed. A number of operands follow. Operands are declared inside brackets and are

separated by commas. The final part of a command consists of one or multiple optional tokens. For a

detailed description of the commands and syntax of the ni scripting language see [105].

In the first part of the network processor specification input arguments are declared. Input arguments

are declared as symbols. Each symbol is associated with a string name. Optional tokens follow the

declaration of input arguments. These tokens specify numerical values assigned to input arguments. For

example, the location of a 64K table used in a 16-bit trie lookup is declared as an input argument named

‘inp_route_base_64k’. This input argument is used for customizing the IPv4 trie lookup module. The

numerical value assigned to this argument is 0x20000, which is an SRAM address location. A different

table location could be specified by introducing a different numerical value in the declaration of the symbol

inp_route_base_64k.

In the second part of the network processor specification the components that constitute the processing

stages and pipelines of the IPv4 data path are declared and their binding symbols specified. Each

component is listed using a ‘decl’ command. Symbols associated with each component are specified as

optional tokens. Symbols include input arguments, global variables, entry points and exit points as

mentioned earlier. For example the component that performs IPv4 routing lookup (ipv4_trie_lookup) is

listed followed by eight symbols as shown in Figure 40. The first symbol (inp_descriptor_base) is an input

argument specifying the SRAM location of a list of packet buffer descriptors used by the IPv4 data path.

The second symbol (inp_packet_buff_base) is an input argument specifying an SDRAM location

where packet buffers are stored. The next three symbols (i.e., inp_route_base_64k, inp_route_base_256 and

inp_route_base_trie) are input arguments specifying SRAM locations of tables constituting a trie data

structure. This trie data structure is used for performing a Longest Prefix Matching (LPM) search on the

destination IP address of each packet. The next symbol (inp_ftable_base) is an input argument specifying

an SDRAM location where next hop information is stored. Finally, the last two symbols (i.e.,

 138

entry_routelookup# and exit_routelookup#) specify the module’s entry and exit points respectively. The

entry point symbol (entry_routelookup#) refers to the first instruction of the trie lookup module, where the

IPv4 routing lookup process begins. The exit point symbol (exit_routelookup#) refers to a branch

instruction executed at the end of the IPv4 routing lookup process, where the sequence of control jumps to

another module.

After the declaration of components, bindings are declared. Nine bindings are declared in the example

of Figure 40 named b0-b8. The declaration of bindings reflects the sequence of control and inter-module

relationship characterizing the IPv4 data path of Figure 41. The execution of the IPv4 data path begins with

the execution of a virtual network demultiplexor module (receiver.tmd). After the execution of this module

a packet is passed into an IPv4 verifier module (binding b0). If the packet header contains valid version and

TTL fields, the sequence of control jumps to the checksum verifier module (binding b1). However, if the

packet header does not contain valid header fields, an exception is raised and the sequence of control jumps

to the IPv4 header modifier module bypassing the checksum verifier module (bindings b2 and b3). After

the checksum verifier module is executed the sequence of control jumps to the IPv4 header modifier

module (binding b4). This module decrements the TTL field of the packet header and re-computes the

checksum. In case the verification of the checksum field fails an exception is raised and the sequence of

control jumps back to the virtual network demultiplexor module (binding b5). Packets with valid checksum

fields are passed to the IPv4 header modifier module and then to the IPv4 trie lookup module (binding b6).

Once routing lookup takes place, packets are placed in appropriate queues (binding b7) and the sequence of

control jumps back to the virtual network demultiplexor (binding b8). Each binding is declared using four

tokens. Tokens specify the source component, exit point, destination component and entry point associated

with each binding.

Following the declaration of bindings, global variables are declared. Next, packet processing pipelines

are declared as collections of components, bindings and global variables. The IPv4 data path described in

the specification of Figure 40 consists of two pipelines: An ‘ipv4_recv’ pipeline which places packets into

queues and an ‘ipv4_xmit’ pipeline which schedules the transmission of packets into the network. In the

last statement of the specification the IPv4 data path is declared as a collection of pipelines and global

variables.

 139

Figure 41: Checksum Verifier Module

//entry points
.export_func oneway 0123 entry_ipv4_cksum_verify# 0 0
.export_func oneway 0123 entry_ipv4_end_verify# 0 0

//exit points
.export_func oneway 0123 exit_chksum_verify# 0 0
.export_func oneway 0123 exit_to_router# 0 0

//REGISTER ALLOCATIONS:
.areg _exception 3
.areg local_a6 6
.breg local_b8 8
.areg _descriptor_address 0

.$$reg $$xdfer0 0

.$$reg $$xdfer1 1

.$$reg $$xdfer2 2

.$$reg $$xdfer3 3

.$$reg $$xdfer4 4

.$$reg $$xdfer5 5

.$$reg $$xdfer6 6

.$$reg $$xdfer7 7

.xfer_order $$xdfer0 $$xdfer1 $$xdfer2 $$xdfer3 $$xdfer4 $$xdfer5 $$xdfer6 $$xdfer7

entry_ipv4_cksum_verify#:
// Checksum is in the two least significant bytes of
//transfer register 4

alu[local_b8, 0, +16, $$xdfer1]
alu[local_b8, local_b8, +, $$xdfer2]
alu[local_b8, local_b8, +carry, $$xdfer6, >>16]
alu[local_b8, local_b8, +carry, $$xdfer3]
alu[local_b8, local_b8, +carry, $$xdfer4]
alu[local_b8, local_b8, +carry, $$xdfer5]

alu[local_b8, local_b8, +carry, 0]
// add in previous carry
ld_field_w_clr[local_a6, 1100, local_b8]
// get high 16 of the total
alu_shf[local_b8, local_a6, +, local_b8, <<16]
// add low 16 bits to upper 16
alu[local_a6, 1, +carry, local_a6, <<16]
// add last carry +1, local_a6 B op=0
alu[local_b8, local_b8, +, local_a6, <<16]
// add 1<<16 to 0xffff to get zero result

br=0[entry_ipv4_end_verify#]
alu[_exception, --, B, 0x0A] //IP_BAD_CHECKSUM
entry_ipv4_end_verify#:

alu[--, --, B, _exception]
br=0[exit_chksum_verify#]

//else if the packet is not correct
//free the buffer space and start all over
//again

immed_w0[local_b8, 0x0000]
immed_w1[local_b8, 0x0010]

alu_shf[--, local_b8, OR, 0x0000]
// merge ov bit with freelist id/bank

sram[push, --, _descriptor_address, 0, 0], indirect_ref, ctx_swap

exit_to_router#:
br[end#]

nop
exit_chksum_verify#:
br[end#]
end#:
nop

 140

5.5.2 Example of a Component

In what follows we describe how one of the components of the IPv4 data path is implemented. We

present the checksum verifier module as it is implemented as part of the NetBind source code distribution

[105].

The checksum verifier module verifies the checksum field of an IPv4 header. The checksum verifier

module consists of twenty three microcode instructions and can be executed by any number of hardware

contexts between one and four in a single IXP1200 microengine. The checksum verifier module exports

two pipeline registers and can be linked with other modules using two entry points and two exit points. The

microcode that implements the checksum verifier module is shown in Figure 41. In the first part of the

code, entry and exit points are declared using the ‘.export_func’ directive of the IXP1200 microassembler.

Next, pipeline and local registers are declared.

Pipeline register names are distinguished from local register names because pipeline register names

begin with the underscore (‘_’) character. Two pipeline registers are declared and exported as a

programming API for the component. The ‘_descriptor_address’ pipeline register holds the address of a

packet buffer descriptor. This packet buffer descriptor indicates the location of a buffer where a packet is

stored in the SDRAM memory unit. The ‘_exception’ pipeline register holds a flag that indicates errors or

failure during the reception of a packet.

After the declaration of pipeline and local registers, memory transfer registers are declared. Register

addresses are allocated statically. Eight SDRAM transfer registers are declared in the code (i.e., $$xdfer0 -

$$xdfer7). These registers hold the fields of the IPv4 packet header that are examined by the checksum

verifier module. The first instruction of the module is marked with the label ‘entry_cksum_verify#’

indicating that this instruction is the module’s entry point. The checksum verify process divides every word

in the packet header into two sixteen bit parts and adds the parts of every word producing a sum. The carry

resulting from each addition is added into this sum. If the checksum field in the packet header is correct,

then the result from all additions is zero. If the value of the checksum field is not correct, then an exception

is raised and the buffer space for the packet is de-allocated. The packet is discarded, in this case. The

program sequence executes the branch instruction labeled ‘exit_to_router#’. This is an exit point leading to

the beginning of the packet receiving code. Otherwise, if the value of the checksum field is correct, then

 141

program sequence executes the branch instruction labeled ‘exit_chksum_verify#’, which is an exit point

leading to the next component in the packet processing pipeline. Both exit points jump to the same label

‘end#’ in the microcode of Figure 41. This happens because the component code of Figure 41 reflects the

component state before binding. At development time all exit points of components branch to the same

instruction which is a ‘nop’ (i.e., no operation) instruction separating transport modules. During binding the

destination addresses of branch instructions are modified. The destination addresses of branch instructions

are set to the entry points of the components where the sequence of control jumps to, as explained earlier.

Figure 42: Pipeline Register Allocations in the Ipv4 Data Path

5.5.3 Hardware Context and Register Allocations

The IPv4 data path of Figure 39 is split into two pipelines as shown earlier. The first pipeline

implements the reception of packets from the network. This pipeline is executed by four hardware contexts

receiver.tmd

_descriptor_address
(register 0, bank A)

ipv4_verifier.tmd

ipv4_checksum_verifier.tmd

ipv4_header_modifier.tmd

ipv4_trie_lookup.tmd

packet_queue.tmd

_output_inteface
(register 4, bank A)

_output_inteface
(register 4, bank A)

scheduler.tmd

microengine 0

microengine 1

receiver.tmd

_descriptor_address
(register 0, bank A)

ipv4_verifier.tmd

ipv4_checksum_verifier.tmd

ipv4_header_modifier.tmd

ipv4_trie_lookup.tmd

packet_queue.tmd

_output_inteface
(register 4, bank A)

_output_inteface
(register 4, bank A)

scheduler.tmd

microengine 0

microengine 1

 142

each serving a different port of the Bridalveil development board (see below). The input FIFO slots of the

IXP1200 network processor are evenly divided between the four contexts and assigned to each port in a

static manner. On the transmit side, however, the scheduling of contexts is done dynamically. We use three

hardware contexts to transmit packets into the network on an on-demand basis and one context to assign

packet transmission tasks to the transmit contexts. The same approach has been followed in the IPv4 data

path reference design distributed by Intel.

Hardware context management is a difficult problem. There is no single solution that satisfies all types

of applications and network processor hardware. Implementing network algorithms in software typically

requires sophisticated hardware context assignment and synchronization. For example in a router system

where the number of output ports is much larger than the number of hardware contexts available for

transmission, static allocation of contexts may not be efficient. In other router systems such as the

Bridalveil development boards, static allocation of contexts may result in better performance [128, 129].

Another case where static allocation of contexts is inefficient is packet scheduling. A scheduler may need

to select the next eligible packet for transmission from a large number of queues or connections. In this

case assigning a single thread for serving each queue may not be possible. In a software implementation of

a hierarchical packet scheduler, it is preferable if single-level schedulers are served by different contexts. In

this way the dequeuing process at each level of the hierarchy can complete without waiting for packets to

be enqueued from previous levels. These contexts need to be assigned dynamically to different levels of the

hierarchy.

These examples indicate that it is better if binding systems offer the flexibility to programmers to

select hardware context allocation and management policies among a range of choices. We believe that

programmers should have the flexibility to select the context allocation and management policies which are

more suitable for the algorithms programmed in the data path. In NetBind contexts can be assigned to input

ports, output ports and other types of resources (e.g., queues) either statically or dynamically. At the

admission control level, the resource requirements of each component are presented as the total number of

contexts needed. Port and queue allocations are hidden from the admission controller. The benefit of this

approach is that the binding and admission control processes are simplified because port and queue

allocations are not taken into account. The disadvantage of this approach is that additional responsibility is

 143

placed on the component developer which needs to know details about the way ports and queues operate in

different router systems. In addition, a strong trust relationship is assumed between programmers at

different levels of the specification hierarchy of Figure 33. The programmers at the virtual router

specification level assume that component bindings are successfully resolved at the network specification

level. Similarly, programmers at the network processor specification level assume that bindings are

successfully resolved at the IXP1200 specification level and that components manage hardware contexts,

ports and queues efficiently.

While port and queue allocations are hidden from the binder and admission controller, register

allocations are exposed. Pipeline and input argument registers are assigned statically as discussed earlier,

while global variable registers are assigned dynamically. In Figure 42 we illustrate the path which a packet

follows through the router system of Figure 39, and the pipeline registers used in this path.

5.6 Evaluation

5.6.1 Experimental Environment

Hardware Environment

To evaluate NetBind, we have set up an experimental environment, as part of our spawning testbed,

consisting of three “Bridalveil” development boards, interconnecting desktop and notebook computers in

our lab. Bridalveil [69] is an IXP1200 network processor development board running at 200 MHz and

using 256 Mbytes of SDRAM off-chip memory. The Bridalveil board is a PCI card that can be connected

to a PC running Linux. The host processor of the PC and the IXP1200 unit can communicate over the PCI

bus. The PC serves as a file server and boot server for the Bridalveil system. PCI bus network drivers are

provided for the PC and for the embedded ARM version of Linux running on the StrongARM Core

processor. In our experimental environment, each Bridalveil card is plugged into a different PC. In each

card, the IXP1200 chip is connected to four fast Ethernet ports that can receive or transmit packets at 100

Mbps.

 144

Software Environment

Initially NetBind was developed for an IXP1200 Ethernet evaluation board running at 166 MHz. To

evaluate NetBind we ported the NetBind code to the Bridalveil system where we could also execute

MicroACE. MicroACE is a systems architecture provided by Intel for composing modular data paths and

network services in network processors. The MicroACE adopts a static binding approach to the

development of modular data paths based on the insertion of a “dispatch loop” code stub in the critical path.

The dispatch loop is provided by the programmer and directs the program flow through the components of

a programmable processing pipeline. MicroACE is a complex system that can be used for programming

microengines and the StrongARM Core. In what follows we provide an overview of MicroACE.

MicroACE overview

MicroACE is an extension of the ACE [71] framework that can execute on the microengines of

IXP1200. In MicroACE, an application defines the flow of packets among software components called

“ACEs” by binding packet destinations called “targets” to other ACEs in a processing pipeline. A series of

concatenated ACEs form a processing pipeline. A MicroACE consists of a “microblock” and a “core

component”. A microblock is a microcode component running in the microengines of IXP1200. One or

more microblocks can be combined into a single microengine image called “microblock group”. A core

component runs on the StrongARM Core processor. Each core component is the control plane counterpart

of a microblock running in the microengines. The core component handles exception, control and

management packets.

Binding in MicroACE

The binding between microblocks in the ACE framework is static and takes place offline. The targets

of a microblock are fixed and cannot be changed at run time. For each microengine, a microcode “dispatch

loop” is provided by the programmer, which initializes a microcode group and a pipeline graph. The size of

a microblock group is limited by the size of the instruction store where the microcode group is placed.

Before a microblock is executed, some global binding state needs to be examined. The global binding state

consists of two variables. A “dl_next_block” variable holds an integer identifying the next block to be

 145

executed, whereas a “dl_buffer_handle” variable stores a pointer to a packet buffer exchanged between

components. Specialized “source” and “sink” microblocks can send or receive packets to/from the network.

Since the binding between microblocks takes place offline, a linker can preserve the persistency of register

assignments

5.6.2 Dynamic Binding Analysis

Qualitative Analysis

MicroACE and NetBind have some similarities in their design and realization but also differences.

MicroACE offers much higher programming flexibility allowing the programmer to construct processing

pipelines in the StrongARM Core and the microengines. NetBind, on the other hand offers a set of libraries

for the microengines only. MicroACE supports static linking allowing programmers to use registers

according to their own preferences. MicroACE does not impose any constraints on the number and purpose

of registers used by components. NetBind on the other hand supports dynamic binding between

components that can take place at run time. To support dynamic binding NetBind imposes a number of

constraints on the purpose and number of registers used by components, as discussed in Section 5.3.

The main difference between NetBind and MicroACE in terms of performance comes from the choice

of binding technique. MicroACE follows a dispatch loop approach where some global binding state needs

to be checked before each component is executed. In NetBind there is no explicit maintenance of global

binding state. Components are associated with each other at run time through the modification of their

microcode. The modification of microcode at run time, which is fundamental to our approach, poses a

number of security challenges, which our research has not yet addressed. Another problem with realizing

dynamic binding in the IXP1200 network processor is that microengines need to temporarily terminate

their execution when data paths are created or modified. Such termination may disrupt the operation of

other data paths potentially sharing the resources of the same processing units. We are investigating

methods to seamlessly accomplish dynamic binding when multiple data paths share the resources of the

same network processor as part of our future work.

 146

 Headroom Analysis

To compare NetBind against MicroACE we estimate the available headroom for the microengines of

the IXP1200 network processor. In what follows, we discuss a methodology on how headroom can be

calculated in any multi-threaded network processor architecture. We assume that each port of a network

processor can forward packets at line speed C, and that a minimum size packet is m bits. The maximum

time a packet is allowed to spend on the network processor hardware without violating the line rate

forwarding requirement is:

C
mT = [Eq. 1]

During this time microengine resources are shared between n hardware contexts. It is fair to assume

that each thread gets an equal share of the microengine resources on average, and that each packet is

processed by a single thread only. Therefore, the maximum time a thread is allowed to spend processing a

packet without violating the line rate-forwarding requirement is:

Cn
m

n
T

⋅
= [Eq. 2]

Typically, microengine resources do not remain utilized all the time. For example, there may be cases

when hardware contexts attempt to access memory units at the same time. In these cases, all contexts

remain idle until a memory transfer operation completes. Therefore, we need to multiply the maximum

time calculated above with a utilization factor ρ in order to have a good estimation of the network processor

headroom. A final expression for the network processor headroom H is given below, expressed in

microengine cycles, where tc is the duration of each cycle:

ctCn
mH
⋅⋅

⋅
=

ρ
[Eq. 3]

The utilization factor was measured when our system was running the IPv4 data path discussed in

Section 5.3, and was found to be equal to 0.98. We doubled the percentage of idle time to have a worst case

estimation of the utilization factor for many different types of data paths, resulting in ρ = 0.96. After

substituting C = 100 Mbps, m = 64 bytes, n = 4, and tc = 5 ns into Eq. 3, we find that the headroom H in the

IXP1200 Bridalveil system is 246 microengine cycles.

 147

Binding Overhead Analysis

We evaluated the performance of the IPv4 data path discussed in Section 5.3 when no binding is

performed (i.e., the data path is monolithic) and when the data path is created using NetBind and

MicroACE. We also implemented a simple binding tool based on the vector table binding technique, as

discussed in Section 5.2. We used this tool in our experiments in order to compare the three binding

techniques (presented in Section 5.2) in a quantitative manner.

binding

technique per component binding instructions

register

operation
conditional

branch
unconditional

branch

memory
(scratch)
transfer

NetBind 1 1 N/A N/A

dispatch loop
(MicroACE) 2 1 2 N/A

vector
table N/A N/A 1 1

Table 4: Binding Instructions in the Data Path

Table 5: Component Sizes and Symbols for the IPv4 Data Path

module name size input arg. global
var.

entry
points

exit
points

receiver (initialization) 48 N/A N/A N/A N/A

receiver 100 3 3 3 3

ipv4_verfier 17 2 0 1 3

ipv4_checksum_verifier 16 0 0 2 1

Ipv4_header_verifier 23 2 0 1 1

ipv4_trie_lookup 104 6 0 1 1

packet_queue 44 3 0 1 1

aggregate (excluding
initialization) 304 16 3 9 10

 148

To analyze and compare the performance of different data paths, we executed these data paths on

Intel's “transactor” simulation environment and on the IXP1200 Bridalveil cards. Table 4 shows the

additional instructions that are inserted in the data path for each binding technique. Our implementation of

the IPv4 data path is broken down into two processing pipelines: a “receiver” pipeline consisting of 6

components (from “receiver” to “packet_queue” in Table 2) and a “transmitter” pipeline consisting of

single component (“scheduler.tmd” in Figure 39). The receiver and transmitter pipelines are executed by

microengines 0 and 1, respectively. Table 5 shows the number of instructions, input arguments, global

variables, entry points, and exit points for each component of the receiver pipeline.

Figure 43: Dynamic Binding Overhead

We added a “worst case” generic dispatch loop to evaluate the MicroACE data path. The dispatch loop

included a set of comparisons that determine the next module to be executed on the basis of the value of the

“dl_next-block” global variable. The loop is repeated for each component. We added 5 instructions for each

component in the dispatch loop: (i) an “alu” instruction to set the “dl_next_block” variable to an

appropriate value; (ii) an unconditional branch to jump to the beginning of the dispatch loop; (iii) an “alu”

Dynamic Binding Execution Overhead

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Number of components

A
dd

iti
on

al
 E

xe
c

C
yc

le
s

NetBind

Vector Table

Dispatch Loop
(MicroACE)

 149

instruction to check the value of the “dl_next_block” variable; and (iv) a conditional and an unconditional

branch to jump to the appropriate next module in the processing pipeline.

The vector table binding technique works as follows. At the initialization stage, we retrieve the entry

point locations using “load_addr” instructions. The vector is then saved into the 4K scratch memory of

IXP1200. For each component, we insert a scratch “read” instruction to retrieve the entry point from the

vector table and a “rtn” instruction to jump to the entry point of the next module. The performance of the

vector table scheme is heavily dependent on the speed of a memory access. If the vector for the next

component in the pipeline can be retrieved in advance, the overhead of binding can be reduced drastically

to 5 cycles per binding.

The advantage of having a multithreaded network processor is that memory access latencies can be

hidden if the processor switches context when performing time consuming memory transfer operations.

Figure 44: Per-Packet Execution Time

Figure 43 shows additional execution cycles for each binding technique. From the figure, we observe

that the dispatch loop binding technique, used by MicroACE, introduces the largest overhead, while the

NetBind code morphing technique and the vector table technique demonstrate smaller overhead. The

overhead of the worst case dispatch loop for a six component data path is 89 machine cycles which

represents 36% of the network processor headroom. NetBind demonstrates the best performance in terms of

Per-Packet Execution Time

0

50

100

150

200

250

300

350

No Binding NetBind Dispatch Loop
(microACE)

Vector Table

m
ic

ro
en

gi
ne

 c
yc

le
s

 150

binding overhead adding only 18 execution cycles when connecting six modules to construct the IPv4 data

path.

Figure 45: Packet Processing Throughput

Figure 43 illustrates that the vector table technique isn’t that much worse than NetBind in the IXP1200

network processor. However memory latencies are much larger in network processors that target higher

speeds than fast Ethernet. In commercial network processors that target OC-48 and OC-192 speeds memory

access latencies can be several times larger than the network processor headroom, as stated earlier. For

example memory access latencies can be as large as 100-300 compute cycles in the IXP2400 and IXP2800

network processors. In these processors the headroom for a single microengine is 57 compute cycles. The

vector table technique requires at least two times the processing headroom for fetching a single component

in these network processors. For this reason it is not easy to support modular line rate forwarding with the

vector table technique. Memory access latencies are likely to be even larger in next generation network

processors targeting faster line rates (e.g., OC-768). The NetBind approach is suitable for this type of

processors because it adds a binding overhead of two compute cycles per component which is insignificant.

Figures 44 and 45 show per-packet execution times and packet processing throughput for the three

binding techniques, and a monolithic data path. The term ‘MAC packets’ used in Figure 45, refers to

Throughput

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

No Binding NetBind Dispatch Loop
(microACE)

Vector Table

M
A

C
 p

ac
ke

ts
 p

er
 s

ec
on

d

 151

minimum size Ethernet packets of 64 bytes each. The measurements were taken for the case where the data

path is split between 6 components, and packets are forwarded at the maximum possible rate from four

input ports to the same output port. To forward packets at the maximum possible rate independent of the

input port speed, we applied the technique suggested in [128, 129], where iterations of the input forwarding

process forward the same packet from the input FIFO slot avoiding port interaction. NetBind has 2%

overhead (execution time) over the monolithic implementation. The vector table and dispatch loop

implementation have 12% and 32% overhead, respectively, over the performance of the pipeline created by

NetBind. Collecting measurements on an IXP1200 system is more difficult than we initially thought. Since

microengines do not have access to an onboard timer, measurements have to be collected by a user program

running on the StrongARM core processor. We created a program consisting of a timing loop that is

repeated for accuracy. The program stops executing and prints out the time difference measured after a

significant number of iterations have taken place.

5.6.3 Binding Latency Analysis

We have measured the time to install a new data path using NetBind. Stopping and starting the

microengines takes 60 µs and 200 µs respectively. The binding algorithm and the process of writing data

path components into instruction stores takes 400 µs to complete. Measurements were taken using the

Bridalveil’s 200MHz StrongArm core processor.

Loading six modules from a remotely mounted NFS server takes about 60ms to complete. Since the

IXP1200 network processor prevents access to its instruction stores while the hardware contexts are

running, we had to stop the microengines before binding, and restart them again after the binding was

complete. We are currently studying better techniques for dynamic placement without disruption to

executing data paths.

5.6.4 NetBind Limitations

NetBind offers significant improvement in terms of data path performance and composition time over

the alternative choices of dispatch loops and indirection. However, NetBind imposes a number of

constraints on the programmer. The most significant limitation of NetBind is that the register APIs

 152

exported by consecutive components in a packet processing pipeline need to match with each other. The

physical register addresses exported by a component need to be the same as the physical register addresses

exported by every subsequent component in packet processing pipelines. This is a significant restriction.

For example a routing lookup component needs to place the identifier to an outgoing interface into the

register where every subsequent component (e.g., a packet queue) expects to find this value.

While this seams to be a significant restriction, we believe that NetBind allows programmers to

effectively write code for a small but significant class of data paths applications. NetBind is most efficient

for applications that manipulate packet header fields, such as packet classification, forwarding and traffic

management. The number of parameters that need to be exchanged between components for this class of

applications is typically small and well defined. For example, parameters exchanged between components

may include packet descriptors, interface identifiers, classifier actions, packet time stamps or eligibility

times. In order to effectively write code using NetBind component developers need to determine the set of

components which interact with their own data path components. Next, component developers need to

make sure that the register APIs which their components export match with the register APIs of subsequent

components in packet processing pipelines. This may not be difficult if the number of parameters

exchanged between components is limited and well defined.

Another limitation of the NetBind approach is that a strong trust relationship is assumed between

developers at different levels of the data path specification hierarchy. As mentioned earlier, the

programmers at the virtual router specification level assume that component bindings are successfully

resolved at the network specification level. Similarly, programmers at the network processor specification

level assume that bindings are successfully resolved at the IXP1200 specification level and that

components manage hardware contexts, ports and queues effectively.

The design of the NetBind tool is independent of the target line rate. This is because the binding

system can construct data paths from many different packet receiving and transmitting components

designed for different network interfaces and speeds. Port and queue allocations are hidden from the binder

and admission controller. While this practice places extra burden on the programmer it simplifies the

binding process and makes the system applicable to a range of network processors. We have not

investigated forwarding at Gigabit speeds (e.g., OC-48, OC-192). However, there is strong indication that

 153

NetBind can be applied to these line rates due to the simplicity and generality of the binding process.

Porting NetBind to network processors that target the OC-48 and OC-192 line rates is left for future work.

5.7 Related Work

Programmable routers represent an active area of research. Click [79] is an extensible architecture for

creating software routers in commodity operating systems. A Click router is constructed by selecting

components called “elements” and connecting them into directed graphs. Click components are

implemented using C++ and, thus, inherit the binding overhead associated with using a higher level

programming language to construct data paths. The software [148] and hardware [133] plugins projects are

investigating extensibility in programmable gigabit routers. These routers are equipped with port

processors, allowing for the insertion of software/hardware components, where, hardware plugins are

implemented as reconfigurable logic. The work on Scout OS [100] is addressing the problem of creating

high performance data paths using general-purpose processors. The installation of packet forwarders in

network processors has been discussed in [129]. Packet forwarders discussed in [129] are rather monolithic

in nature and their installation system does not support binding.

Run-time machine language code generation and modification has been proposed as part of the work

on the Synthesis Kernel [117]. The Synthesis Kernel aims for improving kernel routine performance in

general-purpose processors as well.

5.8 Summary

 We have investigated solutions to the problem of engineering network programming systems so that they

can perform service composition with the least possible overhead. In particular, we presented the design,

implementation and evaluation of the NetBind software system, and compared its performance to the Intel

MicroACE system, evaluating the binding overhead associated with each approach. While the community

has investigated techniques for synthesizing kernel code and constructing modular data paths and services,

the majority of the literature has been focused on the use of general-purpose processor architectures. Little

work has been done using network processors. Our work on NetBind aims to address this gap. We

 154

proposed a binding technique that is optimized for network processor-based architectures, minimizing the

binding overhead in the critical path, and, allowing network processors to forward minimum size packets at

line rates. NetBind aims to balance the flexibility of network programmability against the need for high

performance. We think this a unique part of our contribution. The NetBind source code, described and

evaluated in this chapter, is freely available on the Web (comet.columbia.edu/genesis/netbind) for

experimentation.

 155

Chapter 6

Packet Classification in Programmable Routers

6.1 Introduction

Network programmability requires that a major part of network algorithms is implemented in software.

Software-based network algorithms usually need to maintain and to navigate through search data structures.

Unfortunately, the overhead of navigating through search data structures can often exceed the time and

space budget enforced by router systems. Thus, a key challenge is to design network algorithms that

impose low memory space and time overhead. In this thesis we focus on the design of data path algorithms

because these algorithms operate on the fastest time scale and, as a result, they are associated with smaller

time budgets than control and management plane algorithms. Typically a packet data path comprises

algorithms for classification, forwarding, and traffic management. While forwarding end traffic

management have been investigated in the past [14, 47, 60, 66, 119, 132, 153], we still lack a good solution

for packet classification. The classification problem is challenging, particularly in IP networks because

forwarding decisions are made based on the values of several different header fields (i.e., source and

destination IP addresses, port number of protocol fields) and because classification rules are associated with

arbitrary priority levels.

 156

Packet classification involves identifying flows from among a stream of packets that arrive at routers.

It is a fundamental building block that enables routers to support access control, Quality of Service

differentiation, virtual private networks, and other value added services. To be classified as belonging to a

flow, each packet arriving at a router is compared against a set of rules. Each rule contains one or more

fields and their associated values, a priority, and an action. The fields generally correspond to specific

portions of the TCP/IP header—such as the source and destination IP addresses, port numbers, and protocol

identifier. A packet is said to match a rule if it matches every field in that rule. On identifying the matching

rules, actions associated with the rules are executed.

Packet classification is often the first packet processing step in routers. It requires network systems to

maintain and to navigate through search data structures. Since flows can be identified only after the

classification step, to prevent performance interference across flows, network systems must ensure that

classification operates at line speeds. Unfortunately, the overhead of navigating through search data

structures can often exceed the time budget enforced by the line-speed processing requirement. Thus, a key

challenge is to design packet classification algorithms that impose low memory space and access overhead

and hence can scale to high bandwidth networks and large databases of classification rules.

In this chapter, we take a step in the direction of designing such efficient classification algorithms. In

particular, we study the properties of packet classification rules; our intent is to expose characteristics that

can be exploited to design packet classifiers that can scale well with link bandwidths and the sizes of

classification rule databases. Since access control is the most common application of packet classification

today, we study four databases of classification rules collected from firewalls supported by large ISPs and

corporate intranets. Our analysis yields the following key observations:

1. The fields contained in each rule in firewall databases can be partitioned into two logical entities: (1)

source and destination IP address pairs that characterize distinct network paths, and (2) a set of

transport-level fields (e.g., port numbers, protocol identifier, etc.) that characterize network

applications. In most cases, the number of distinct network paths far exceeds the number of network

applications.

2. The IP address pairs define regions in the two-dimensional space that can overlap with each other.

However, the number of overlaps is significantly smaller than the theoretical upper-bound.

 157

3. Many source-destination IP address pairs share the same set of transport-level fields. Hence, only a

small number of transport-level fields are sufficient to characterize databases of different sizes.

We justify these observations based on standard network administration practices; and thereby argue

that these findings, although derived from a small number of databases, are likely to hold for most firewall

databases. Based on these findings, we provide the following guidelines for designing efficient

classification algorithms.

1. The multi-dimensional classification problem should be split into two sub-problems (or two stages):

(1) finding a 2-dimensional match based on source and destination IP addresses contained in the

packet; and (2) finding a (n-2) dimensional match based on transport-level fields. Whereas the first

stage only involves prefix matching, the second stage involves the more general range matching.

2. Because of the overlap between IP address filters maintained in a database, each packet may match

multiple filters. Identifying all the matching filters is complex. Since the total number of overlaps

observed in firewall databases is significantly smaller than the theoretical upper-bound, a design that

maintains all of the intersection filters and returns exactly a single filter is both feasible an desirable.

3. Since each IP address filter is associated with multiple transport-level fields, identifying the highest

priority rule that matches a packet requires searching through all the transport-level fields associated

with the matching IP filter. Since the number of transport-level fields associated with most databases is

rather small, it is possible to rely upon a small, special-purpose hardware unit (e.g., a TCAM unit) to

perform the (n-2) dimensional searches in parallel.

The chapter is structured as follows. In Section 6.2, we formulate the classification problem and discuss our

methodology for studying ACLs. We discuss our findings in Sections 6.3 and 6.4, and expose the

implications of our findings in Section 6.5. Finally, Section 6.6 summarizes our contributions.

6.2 Problem Formulation

Since access control is the most common application of packet classification today, we focus on the

problem of packet classification in firewalls. In a firewall rule database, each rule contains one or more

fields and their associated values, a priority, and an action. The fields generally correspond to specific

portions of the TCP/IP header—such as the source and destination IP addresses, port numbers, and protocol

 158

identifier. Because of the hierarchical nature of IP address allocation, source and destination IP addresses

are often specified as prefixes. To accommodate a collection of user or network management applications,

port numbers are often specified as ranges. Finally, other protocol attributes, such as the protocol identifier,

are specified as exact values. Table 6 shows some examples of classification rules.

src. IP address dest. IP
address src. Port dest port action priority

128.59.67.100 128.* * 15 drop 2

128.* 128.2.3.1 * 24 DSCP 2 1

Table 6: Examples of Classification Rules

The first rule indicates that packets originating from the IP address 128.59.67.100, and destined to any

host within the IP address domain beginning with 128 and port number 15 should be dropped. The priority

level for this rule is 2. The second rule states that packets originating from any host in the domain

beginning with 128, and destined to the host 128.2.3.1 and port number 24 should be forwarded with the

Differentiated Services Code Point (DSCP) set to 2. This rule has priority level of 1.

In this context, the packet classification problem can be stated as follows: Given a set—often referred

to as an Access Control List (ACL)—of access control rules, determine the action A associated with the

highest priority rule that matches packet p. To reduce the overhead of identifying rules that may match each

packet, most packet classification algorithms employ search data structures for organizing classification

rules. These data structures occupy memory space. Furthermore, navigating on these data structures incurs

several memory accesses. In what follows, we first discuss several existing packet classification algorithms

and argue that they do not scale well with increase in network bandwidth or ACL sizes. We then argue that

understanding the structure and properties of ACLs is crucial in designing efficient, scalable algorithms.

Finally, we describe our methodology for studying the properties of ACLs.

 159

6.2.1 State of the Art

Existing packet classification algorithms [9, 10, 25, 53, 86, 116, 130, 131, 139, 161-163] can be

grouped into four classes: trie-based algorithms, hash-based algorithms, parallel search algorithms, and

heuristic algorithms. Throughout this discussion, we use n to denote the number of rules in a classification

database, k to denote the number of fields (i.e., dimensions), and w to denote the maximum length of the

fields (in bits).

1. Trie-based Algorithms: Trie-based algorithms [10, 25, 131, 139] build hierarchical radix tree structures

where once a match is found in one dimension a search is performed in a separate tree linked into the

node representing the match. Examples of such algorithms are the Grid-of-tries [131] and Area-based

Quad Tree (AQT) [25] algorithms. Trie-based algorithms require, in worst case, as many memory

accesses as the number of bits in the fields used for classification. Multi-bit trie data structures are

more efficient from the perspective of the number of memory accesses required. However, these data

structures incur significantly higher memory space overhead. In general, trie-based schemes work well

for single-dimensional searches. However, the memory requirement of these schemes increases

significantly with increase in the number of search dimensions.

2. Hash-based Algorithms: Hash-based algorithms [130] group rules according to the lengths of the

prefixes specified in different fields. The groups formed in this manner are called ‘tuples’. Hash-based

algorithms perform a series of hash lookups one for each tuple to identify the highest priority matching

rule. Tuple space search has O(n) storage and time complexity. Hash-based algorithms, in the worst

case, require as many memory accesses as the number of hash tables, and the number of hash tables

can be as large as the number of rules in a database. As a result, hash-based techniques do not scale

well with the number of rules. An optimized hashing technique, referred to as rectangle search [130],

reduces the lookup time complexity from O(n) to O(w) in two dimensions. However, to support

lookups in more than two dimensions, the algorithm still requires a significant number of memory

accesses. A lower bound on the complexity of rectangle search is discussed in [130]. It is proven than

tuple probes can be at least w(k-1)/k!

3. Parallel Search Algorithms: These algorithms formulate the classification problem as an n-dimensional

matching problem and search each dimension separately. In some algorithms [9, 86], when a match is

 160

found in a dimension, a bit vector is returned identifying the matches. The logical AND of the bit

vectors returned from all dimensions identifies the matching rules. Such bit-vector techniques are

associated with O(n) memory accesses in the lookup process. Fetching a single bit vector or an

aggregate bit vector (as described in [9]) can be memory access intensive, especially in cases where the

ACL contains more than a few thousand rules. Another parallel search technique called Cross-

Producting Table [131] reduces the lookup time complexity to (O(kw)) where k is the number of fields

and w is maximum length of the fields. However, this technique increases the worst case storage

complexity to (O(nk)) making it impractical.

4. Heuristic Algorithms: A fourth category of algorithms includes heuristic algorithms that exploit the

structure and redundancy in the rule set [61, 62]. The algorithms proposed to-date are associated with

very low lookup time complexity (O(k)); however, they impose significant memory space

requirements (O(nk)). Hence, these algorithms are suitable for single- or two-dimensional searches, but

their space requirement makes them unsuited for the more common five-dimensional searches.

5. From the above discussion, it is apparent that exploiting the structure and properties of ACLs is a

promising direction for designing packet classification algorithms that can scale well with link

bandwidth and ACL sizes. Unfortunately, the literature contains no detailed studies of ACL properties.

This is in-part because ISPs and enterprises, for privacy and security reasons, protect access to their

rule databases. Recently, we have obtained access to four firewall databases from ISPs and corporate

intranets. Hence, in this chapter, we conduct a careful study to expose the structure and properties of

these ACLs, and postulate how these properties can be used to design efficient classification

algorithms. The design of specific packet classification algorithms, however, is beyond the scope of

this chapter.

6.2.2 Experimental Methodology

We analyze four firewall databases; three of these databases are from large ISPs, whereas one is from a

corporate intranet. Table 7 summarizes the basic statistics of these ACLs.

As Table 7 indicates, the ISP ACLs are generally much larger than those of the enterprise intranets.

Further, it shows that the fields specified in ACLs can be partitioned into two logical entities: (1) source

 161

and destination IP address pairs that characterize distinct network paths represented in ACLs, and (2) a set

of transport level fields (e.g., port numbers, protocol identifier, etc.) that characterize network applications.

In most cases, the number of distinct network paths far exceeds the number of network applications

represented in the ACLs.

In what follows, we first analyze IP address pairs and then study the characteristics of transport-level

fields. We justify our findings based on standard practices for creating ACLs used by network

administrators. Hence, we argue that although our observations are derived from a small number of rule

databases, our conclusions are likely to be valid across a large number of such rule databases.

 type number of
rules

number of unique
source/destination IP

address fields

protocol
types

unique port
number
fields

ACL1 ISP 754 426 4 140

ACL2 ISP 607 527 5 30

ACL3 ISP 2399 1588 5 192

ACL4 Intranet 157 98 4 36

Table 7: Summary of ACLs

6.3 IP Prefix Pair Analysis

Each rule in an ACL contains a specification of source and destination IP address pairs (also referred

to as IP address filters). These addresses are specified as wildcards, prefixes, or exact values. Based on

these specifications, the filters represent rectangles, lines or points in the two-dimensional IP address space.

Further, the filters may overlap with each other. In what follows, we first conduct a structural analysis of

the filters; this allows us to characterize ACLs as a composition of different types of filters (i.e., filters that

represent a different shape in the two-dimensional space). We find that only a small number of filters

contain wildcards in the source or the destination dimensions in the ISP ACLs. Further, for most filters that

do not contain any wildcards, the destination field contains complete IP addresses (representing individual

 162

hosts), while the source field contains prefixes (representing IP address domains). Second, we analyze the

overlaps among the filters. This allows us to characterize the number of filters that may match a packet, as

well as the overhead of maintaining in the ACL a unique filter representing each of the overlaps such that

the maximally matching filter can be uniquely identified for each packet. We find that overlaps are created

mostly by filters that contain a wildcard in their source or destination fields. Since only a small number of

filters contain wildcards, the actual number of overlaps observed in ACLs is significantly smaller than the

theoretical upper bound.

 partially-specified
filters fully-specified filters total number of filters

ACL1 4 (1%) 421 (99%) 426

ACL2 68 (13%) 458 (87%) 527

ACL3 160 (10%) 1427 (90%) 1588

ACL4 83 (86%) 14 (14%) 98

Table 8: Partially- and Fully-Specified Filters

 wildcard in source address wildcard in destination address

ACL1 2 2

ACL2 36 32

ACL3 112 48

ACL4 12 71

Table 9: Breakdown of Partially-Specified Filters

 163

6.3.1 Structural Analysis

The source-destination IP address pairs can be classified into two types: Partially-specified filters and

fully-specified filters. Partially-specified filters contain at least one wildcard (*) in the source or in the

destination IP address dimension; these filters capture traffic sent to/from designated servers or subnets of

ISP networks. Fully-specified filters, on the other hand, contain an IP address prefix in both the source and

destination IP address dimensions. These filters identify the traffic exchanged between specific IP address

domains of ISP networks. In most cases, the traffic handled by fully-specified filters is exchanged between

important servers (e.g., web, e-mail, NTP, or streaming servers) and clients.

Each IP address filter can be represented geometrically as a point, a line, or a rectangle in a two

dimensional IP address space. Whereas partially-specified filters of the form (*,*) cover the entire two

dimensional address space, filters of the form (x, *) and (*, y) can be represented either as a line or a

rectangle in the 2-D space depending on the values of x and y. If x and y represent IP address domains (i.e.,

IP prefixes of length smaller than 32), then these filters are represented as rectangles; on the other hand, if x

and y denote hosts (i.e., full 32-bit IP addresses), then the corresponding filters are represented as lines.

Similarly, depending the lengths of x and y, fully-specified IP address filters of the form (x, y) represent

lines, points, or rectangles in the two dimensional space.

The first two columns of Table 8 show the breakdown of partially- and fully-specified filters in our

firewall ACLs. The third column of Table 8 shows the total number of filters, which is equal to the sum of

the number of partially- and fully-specified filters plus one more filter representing the wildcard pair (*, *).

Table 8 illustrates that, whereas partially-specified filters represent a small percentage of the total number

of filters in large ISP databases; they constitute a significant percentage of the relatively small-size

enterprise intranet firewall ACL. This is because large ISPs often describe administrative policies between

specific IP address domains within their network. Examples of such policies include the admission of all

HTTP traffic between a server and a client subnet, or the blocking of all RTSP traffic between two specific

IP address domains. In intranets, on the other hand, administrators do not specify cross-domain traffic

management policies, since such policies are often enforced by their ISP. Instead, most of the rules in

intranet firewalls refer to specific sources or destinations, but not both.

 164

We further analyze the partially-specified filters to determine the relative occurrence of the wildcard in

the source or the destination IP address fields, as well as the lengths of specified IP addresses. We find that

in the intranet ACL, which is the smallest in size, filters with the wildcard in the destination address are the

majority. In the first two ACLs, which are of medium size, there is a balance between the filters that have

the wildcard in the source and destination address fields. In the third ACL, which has the largest size, most

filters have the wildcard in the source address field.

Figure 46: Distribution of prefix lengths for partially-specified filters

source prefix length distribution
 for partially specified filters (%100)

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ACL 1
ACL 2
ACL 3
ACL 4

destination prefix length distribution
for partially specified filters (%100)

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ACL 1
ACL 2
ACL 3
ACL 4

 165

From the results of table 9 it appears as if there is a dependency between the size of an ACL and the

numbers of filters that have the wildcard in the source or destination IP address fields. Typically, the

smaller an ACL is the closer to client networks the firewall is located. The intranet ACL in our example

describes policies that block the traffic form many specific client subnets of the intranet and thus contains

many rules having the wildcard in the destination dimension. Larger ACLs on the other hand are closer to

the Internet core and describe higher-level policies for connecting to important servers or networks. Such

policies are typically expressed as rules having the wildcard in the source dimension.

 domain-domain
filters

host-domain
filters

domain-host
filters

host-host
filters

ACL1 30 31 37 323

ACL2 124 99 154 81

ACL3 165 18 755 489

ACL4 9 0 2 3

Table 10: Breakdown of fully-specified filters

Figure 46 shows the distribution of prefix lengths for partially-specified filters. It shows that the source

and destination IP address specifications are spread across the entire range of prefix lengths, with 8-bit, 16-

bit, 24-bit and 32-bit prefixes constituting the majority. Geometrically, this indicates that most partially-

specified filters represent lines or rectangles characterized by a few standard width values in the two-

dimensional space.

There are four types of fully-specified filters: (1) filters that characterize traffic exchanged between

two domains, (2) filters that characterize traffic originating within a domain but destined to a host, (3)

filters that characterize traffic originating from a host but destined to an IP domain, and (4) filters that

characterize traffic exchanged between a specific pair of hosts. In these filters, a host is represented using a

32 bit address (IPv4 address) while a domain is represented by a shorter prefix. Table 10 shows the

breakdown of these four types of filters in our ACLs. It shows that majority of the fully-specified filters in

ISP databases represent communication where either the sender or the receiver is a host. In many cases

 166

these hosts are servers representing important resources of large networks. On the other hand, in the

intranet ACL the majority of fully-specified filters represent Domain-Domain filters.

source prefix length distribution
for fully specified filters (%100)

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ACL 1
ACL 2
ACL 3
ACL 4

destination prefix length distribution
for partially specified filters (%100)

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ACL 1
ACL 2
ACL 3
ACL 4

Figure 47. Distribution of source and destination prefix lengths for fully-specified filters

Figure 47 shows the distribution of source and destination prefix lengths for fully-specified filters.

Geometrically, this indicates that most fully-specified filters represent lines or points in the two-

dimensional space. The spatial distribution of IP prefixes is a very important property, especially to analyze

 167

requirements to store the IP prefixes. We have created 4-bit trie data structures for both the source and

destination IP addresses, measured the number of trie blocks required to store IP prefixes, and compared

this number with the theoretical maximum for number of trie blocks. The results are shown in Table 11.

We find that the total number of trie blocks needed to represent source and destination prefixes is much less

than the theoretical upper bound in real world data bases.

From the above analyses, we derive the following general conclusions:

1. Filters in real world ACLs are either fully-specified or partially-specified. Partially-specified filters

represent a small percentage of the total number of filters in medium and large size ACLs.

2. The breakdown of partially-specified filters between filters having the wildcard in source and

destination IP addresses may depend on the size of the ACL. Careful study of more ACLs would help

investigating the existence of such dependency.

3. Most fully specified filters are segments of straight lines or points in medium and large size ACLs.

4. Trie data structures representing source and destination prefixes require much fewer blocks than the

theoretical upper bound.

 number of unique
source prefixes

observed number
of source trie

blocks

theoretical bound on the
number of source trie

blocks

ACL1 97 29 759

ACL2 182 231 1439

ACL3 431 496 3256

ACL4 79 127 615

 number of unique
destination prefixes

observed number
of destination trie

blocks

theoretical bound on the
number of destination trie

blocks

ACL1 205 383 1623

ACL2 207 243 1639

ACL3 516 620 3855

ACL4 20 60 155

Table 11: Trie-Block Analysis

 168

Figure 48: Worst-case filter structure

6.3.2 Overlap Analysis

The geometrical objects representing filters may overlay in the two dimensional space. Since each

packet represents a point in the two dimensional space, it may be contained within the geometrical space

defined by one or more filters in the ACL. In such an event, a packet may match multiple filters within the

ACL; hence, identifying the highest priority rule requires comparing transport-level fields associated with

all the matching filters with the appropriate fields contained in the packet. Clearly, the larger the number of

filters that a packet may match with, the greater is the complexity of identifying the highest priority rule

that matches the packet. In the worst-case, if all filters within an ACL overlap with each other (as shown in

Figure 48), then identifying the highest priority rule for a packet that represents a point in the intersection

of these filters may require a search on all filters. Thus, the complexity of packet classification depends on

the amount of overlap between filters (which in turn determines the number of filters that may match a

packet).

F1

F2

F3

Fn-1

Fn

…

F1

F2

F3

Fn-1

Fn

…

 169

In what follows, we analyze our ACLs for their overlap properties. Table 12 and Figure 49 show the

distribution of the number of filters that may match a packet. Figure 49 illustrates that for all the ACLs, on

an average, about 4 filters match every packet. Although this is not a very large number, identifying these

filters imposes significant overhead. The navigation on the data structures that store two-dimensional filters

(e.g., hierarchical singe-bit or multi-bit tries) typically requires significantly more memory accesses than

the number of filters matching a packet. For instance, the Extended Grid of Tries (EGT) algorithm reported

in [10] requires 137 accesses to classify packets from a database of 2799 rules.

Table 12: Number of Filters that May Match a Packet

percentage of packets

0

10

20

30

40

50

60

1 2 3 4 5 6

number of matches

Figure 49: Distribution of the number of filters that may match a packet

An alternative architecture involves maintaining a filter that represents each overlap in the ACL. We

observe that overlaps between filters can be complete or partial. In the event that one filter is completely

 average standard deviation maximum

ACL1 4.00 0.36 5.00
ACL2 3.96 0.73 7.00
ACL3 3.75 0.84 7.00
ACL4 3.71 0.90 7.00

 170

contained in another, the overlap between the filters is represented exactly by the contained filter. In such a

case, no additional filter needs to be stored. On the other hand, if filters overlap partially, then the overlap

can be identified uniquely by a filter that represents the intersection region between the two filters; hence,

each partial overlap introduces a new filter in the ACL. If all such filters are maintained, then the classifier

can determine the most refined filter for each packet. In the worst case, if each filter overlaps with all the

other filters in the ACL, then maintaining all the intersection filters would incur an O(n2) overhead , where

n is the number of distinct IP prefix pairs in the ACL. The worst-case scenario is one where each filter in

the ACL overlaps with all the other filters. In such a case, the number of filters that represents the overlaps

can be bounded by (n-1) + (n-2) +…+ 1 = n(n-1)/2. However, as we have illustrated earlier, most ACLs

contain filters that can be represented as points, lines or small rectangles. Hence, we can expect the number

of additional filters required for real ACLs to be much smaller than the theoretical worst-case.

Table 13: Observed Filter Overlaps

To validate this hypothesis, we determine the number of such overlap observed in our ACLs. The results

are shown in Table 13. Table 13 indicates that the number of filters representing intersections that may

need to be stored is, in fact, several orders of magnitude smaller than the theoretical upper bound.

Our analyses of the ACLs show that the organization of filters in real-world ACLs is significantly

different from the worst-case structure shown in Figure 48. A more realistic structure of filters is shown in

Figure 50. The filters in the structure of Figure 5 are either-fully specified or partially- specified as

explained in the previous section. Some fully-specified filters form ‘clusters’ as shown in Figure 50. A

 number of
rules

number of
filters

observed number of
partial overlaps

upper bound on the
number of partial

overlaps

ACL1 754 426 4 90,525

ACL2 607 527 2,249 138,601

ACL3 2,399 1,588 6,138 1,260,078

ACL4 157 98 852 4,753

 171

cluster is a set of filters where every filter overlaps either partially or completely with at least one other

filter in the cluster. A closer analysis of the ACLs reveals that there are three cases that create partial

overlap between filters.

1. Overlaps between partially-specified filters. Each filter having the wildcard in the source IP address

dimension creates a unique partial overlap with all the filters having a wildcard in the destination IP

address dimension. Since IP addresses are specified as prefixes, filters with a wildcard in the same

dimension do not create partial overlaps between each other; such filters are either disjoint or

completely overlapping. The number of partial overlaps created only by partially-specified filters is

equal to the product of the number of partially-specified filters in each of the two dimensions.

2. Overlaps between fully-specified filters. Fully-specified filters may overlap with each other either fully

or partially.

3. Overlaps between fully- and partially-specified filters.

Figure 50: A realistic structure of filters in ACLs.

Table 14 shows the breakdown of the number of partial overlaps created in each of the four ACLs. It

shows that the overlaps created by partially-specified filters represent the majority in all ACLs, ranging

from 51% in ACL 2 up to 100% in ACL 1 and ACL 4. We also observe that the overlaps created between

partially and fully-specified filters represent a significant percentage (45%) of the total number of overlaps

in ACL 2. In all the ACLs, fully-specified filters create an insignificant number of overlaps (it turns out that

most clusters have size equal to one). These results indicate that partially-specified filters are the main

cluster #1

(*, X)

(Y, *)

cluster #2

cluster #mpartially
specified

filters

fully
specified

filters

 172

source of overlaps in all ACLs. Further, as we had demonstrated earlier, partially-specified filters generally

represent only a small percentage of the total number of filters in large databases. These two observations

together justify why the total number of partial overlaps is significantly less than the theoretical upper

bound. In Appendix A, we derive a tighter upper bound on the number of partial overlaps.

Table 14: Breakdown of Overlaps

6.4 Transport-Level Field Analysis

The Internet supports thousands of routes but relatively only a few, commonly used applications.

Hence, as indicated in Table 7, only a small number of unique transport-level fields (consisting of port

numbers and protocol types) are usually present in ACLs. Further, many source-destination pairs share the

same transport-level fields. In what follows, we first analyze the transport-level fields associated with

individual source-destination pairs (or IP address filters) and then expose the sharing of these transport-

level fields across multiple IP filters.

6.4.1 Analysis of Transport-Level Fields for Individual IP Filters

ACLs generally contain several rules with the same IP address filter (i.e., source-destination IP address

pair) but with different combination of transport-level fields. To understand this phenomenon carefully, we

analyzed the sets of such transport-level fields associated with the same IP filters.

 number of
overlaps

overlaps
formed by
partially
specified

filters only

overlaps
formed by

fully specified
filters only

overlaps
formed by

between fully
ad partially
specified

filters

ACL 1 4 100% 0% 0%

ACL 2 2249 51% 4% 45%

ACL 3 6138 88% 1% 11%

ACL 4 852 100% 0% 0%

 173

Figure 51 depicts the distribution of the set sizes observed in the four ACLs under consideration. It

shows that for all the ACLs, most (about 90%) transport-level field sets are small (1-4 entries); the

remaining 10% of the sets have sizes between 5 and 40. This is mainly because most ACLs contain rules

that identify explicitly only a small number of the most popular applications; in today’s Internet the number

of these applications is very small.

We observe that the highest percentage of transport-level fields in our ACLs specify TCP and UDP

protocols. This is because most data traffic in today’s Internet uses TCP and a smaller percentage of traffic

uses UDP. Further, most transport-level fields specify a destination port or port range. The source port field

is generally unspecified (i.e., a wildcard specification). This is because most classification rules apply to

packets that request the establishment of TCP connections. These packets are sent to servers that are

listening to well-known non-ephemeral or ephemeral ports. Table15 depicts the distributions of the source

and destination port numbers observed for the four ACLs.

Figure 51: Distribution of sizes of transport level field sets

size distribution of sets
of transport level fields (%100)

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

number of entries

ACL 1
ACL 2
ACL 3
ACL 4

 174

6.4.2 Sharing Transport-Level Fields Across Multiple IP Filters

To analyze the sharing of transport-level fields across multiple IP filters, we derive the total number of

transport-level field entries with and without any sharing across filters. Table 16 summarizes our findings.

It shows that for all ACLs, many source-destination IP prefix pairs share the same sets of transport-level

fields. The relative priority and corresponding actions of fields are the same in different occurrences of

each set. In addition the number of unique entries characterizing the shared sets of transport level fields is

also small. This number is much smaller than the total number of entries in the unique sets.

source port number destination port number

number of
unique

transport-
level
fields

wildcard range exact
value wildcard range exact

value

ACL1 146 146 0 0 4 74 68

ACL2 40 40 0 0 8 29 3

ACL3 202 200 2 0 5 157 40

ACL4 43 42 1 0 8 32 3

Table 15: Distribution of Source and Destination Port Number in Transport-Level Fields

 number of transport-
level fields

number of transport-
level fields in unique

sets

number of unique
transport-level fields

ACL1 754 316 146
ACL2 607 67 40
ACL3 2399 442 202
ACL4 157 48 43

Table 16: Sharing Transport-Level Fields Among IP Filters

 175

6.5 Implications

Our evaluation of ACLs leads us to the following main conclusions.

1. The fields contained in each rule in ACLs can be partitioned into two logical entities: (1) source and

destination IP address pairs that characterize distinct network paths represented in ACLs, and (2) a set

of transport level fields (e.g., port numbers, protocol identifier, etc.) that characterize network

applications. In most cases, the number of distinct network paths far exceeds the number of network

applications.

2. The IP address filters are either partially-specified or fully-specified. Partially-specified filters

represent a small percentage of the total number of filters in databases. Furthermore, most of the

overlap between filters is caused by partially-specified filters. Fully-specified filters create only a few

partial overlaps with each other. Thus, the total number of overlaps is significantly smaller than the

theoretical bound.

3. Many source-destination IP address pairs share the same set of transport-level fields. Hence, only a

small number of transport-level fields are sufficient to characterize databases of different sizes.

Figure 52: Two stage classification architecture

Based on these findings, we provide the following guidelines for designing efficient classification

algorithms.

classification based on
source-destination

pairs
(done in software)

classification based on
other fields

(may be done
in hardware)

merging of results

packet

+

stage 1 stage 2

classification based on
source-destination

pairs
(done in software)

classification based on
other fields

(may be done
in hardware)

merging of results

packet

+

stage 1 stage 2

 176

1. The multi-dimensional classification problem should be split into two sub-problems (or two stages):

(1) finding a 2-dimensional match based on source and destination IP addresses contained in the

packet, and (2) finding a (n-2) dimension match based on transport-level fields (see Figure 52).

Whereas the first stage only involves prefix matching, the second stage involves the more general

range matching.

2. Because of the overlap between IP address filters maintained in an ACL, each packet may match

multiple filters in stage 1. Identifying all the matching filters is complex. Since the total number of

overlaps observed for ACLs is significantly smaller than the theoretical upper-bound, a design that

maintains all of the intersection filters and returns exactly a single match from stage 1 is both feasible

an desirable. For example, we believe that a new two-dimensional scheme can be thought of that

searches the source and destination IP address dimensions in parallel, avoiding the memory explosion

problem associated with Cross Producting [131]. The memory explosion problem can be solved in this

case by taking into account the fact that IP address filters create an insignificant amount of filter

overlaps with each other.

3. Since each IP address filter is associated with multiple transport-level fields, identifying the highest

priority rule that matches a packet requires searching through all the transport-level fields associated

with the matching IP filter. Since the number of transport-level fields associated with most ACLs is

rather small, it is possible to rely upon a small, special-purpose hardware unit (e.g., a TCAM unit) to

perform the (n-2) dimensional search in parallel.

The combination of a fast software algorithm for finding a 2-dimensional match in stage 1 and a

specialized hardware acceleration unit for performing (n-2) dimensional match in stage 2 can result in a

classification system capable of meeting stringent space time constraints.

6.6 Summary

To classify a packet as belonging to a flow often requires network systems—such as routers and

firewalls—to maintain large data structures and perform several memory accesses. Network processor-

based programmable routers, on the other hand, are generally configured with only a small amount of

memory with limited access bandwidth. Hence, a key challenge is to design packet classification

 177

algorithms that can be implemented efficiently. We argue that the design of such algorithms will need to

exploit the structure and characteristics of packet classification rules.

In this chapter, we analyze several databases of classification rules found in firewalls and derive their

statistical properties. Our analysis yields three main conclusions: (1) the rules found in ACLs contain two

types of fields—source-destination IP address pairs that identify network paths and transport-level fields

that characterize network applications; further, these rules refer to many more network paths than

applications. (2) IP address pairs identify regions that overlap with each other; however, the number of

overlaps is significantly smaller than the theoretical upper-bound. (3) Only a small number of transport-

level fields are sufficient to characterize ACLs of different sizes. We justify our findings based on several

standard practices employed by network administrators, and thereby argue that although our findings are

for specific databases, the properties are likely to hold for most databases. Based on these findings, we

suggest that a hybrid, two-stage classification architecture that combines a software scheme for matching in

2-dimensions (IP address pairs) with a hardware unit that performs efficient (n-2) dimensional searches has

the potential of scaling well with link speeds and ACL sizes.

Appendix A: A Tighter Bound on the Number of Partial Filter Overlaps

From the analyses of ACLs, we have shown that the number of overlaps between IP filters is

significantly smaller than the theoretical upper-bound of n(n-1)/2. In this appendix, we derive a tighter

upper bound on the number of partial filter overlaps. The derivation of the upper bound is based on

properties that characterize medium size and large ISP ACLs. Therefore the analysis presented in this

appendix applies to the first three of our ACLs only.

There are three factors that produce intersections between IP filters in ACLs. First, partially-specified

filters create intersections with each other. The number of such overlaps O1 is exactly equal to S⋅D where S

is the number of partially-specified filters that specify the source IP address dimension and D is the number

of partially-specified filters that specify the destination IP address dimension. Since partially-specified

filters represent a small percentage of the total number of filters in all databases (1%- 13%) we expect their

overlaps to be bounded by the square of the number of filters divided by a large constant. In fact, the

majority of partial overlaps (51%-100%) are created by partially-specified filters in databases.

 178

Second, partial overlaps result from the intersections between fully-specified filters in the same cluster.

However, clusters with more than one element are only but a few in our ACLs. Fully specified filters form

an insignificant amount of overlaps between each other. This happens mainly because server and client

subnets are characterized by disjoint IP address domains in rules. As a result the number of partial overlaps

O2, created by fully-specified filters, is also much less than the theoretical upper bound.

Third, partial overlaps are created between fully and partially-specified filters. Each fully-specified

filter may create partial overlaps with one or more partially-specified filters. In most medium size and large

ACLs the total number of servers specified per IP address domain is bounded. These servers represent the

prefixes of partially specified filters. As a result the total number of overlaps formed between fully-and

partially-specified filters O3 is bounded by the product of the number of filters times a constant. The

detailed derivation of an upper bound is given below:

O = O1 + O2 + O3 [Eq. 4]

O1 = S⋅D [Eq. 5]

∑
=

−⋅
≤

q

i

ii CC
O

1
2 2

)1([Eq. 6]

∑
=

=
f

j
jFO

1
3

 [Eq. 7]

Equation 4-7 result in:

∑∑
=

+
−⋅

+⋅≤
f

j
j

q

i

ii FCCDSO
12

)1([Eq. 8]

S and D are the number of partially-specified filters that specify the source and destination IP address

dimensions respectively, q is the number of clusters that contain more than one filter, Ci is the number of

filters in cluster i, f is the number of fully-specified filters that create partial overlaps with partially-

specified filters, and Fj is the number of partially-specified filters that overlap with filter j. To complete the

derivation of an upper bound we need to understand the relation between the parameters S, D, q, f, Ci, Fj

and the number of filters in a database, n.

Let r1, be the ratio of the total number of filters in a database over the number of partially-specified

filters. Then S+D = n/r1. The ration r1 is expected to be greater than one with very high probability in many

 179

different databases. The number of overlaps formed by partially-specified filters O1, is equal to the product

S⋅D. This product is maximized when S = D = n/(2⋅r1). Therefore:

2
1

2

1 4 r
nO
⋅

≤ [Eq. 9]

Let r2, be the ratio between the number of fully-specified filters in a database and the number of fully-

specified filters that create partial overlaps with each other. Such filters participate in clusters having more

than one element. The ratio r2 is also expected to be greater than one with very high probability. The

number of fully-specified filters that create partial overlaps with each other is equal to (r1- 1)⋅n/(r1⋅r2).

As a result:









−

⋅
⋅−

⋅⋅
⋅−

≤ 1)1(
2

)1(

21

1

21

1
2 rr

nr
rr

nrO [Eq. 10]

The values of Fj refer to overlaps between partially and fully-specified filters. The number of such

overlaps per fully-specified filter is independent of n as a property of a pair of IP address domains. As a

result we can consider that each Fj is bounded by some value F. Therefore:

FnO ⋅≤3 [Eq. 11]

Eq. 4, 9-11 result in:

Fn
rr

nr
rr

nr
r

nO ⋅+







−

⋅
⋅−

⋅⋅
⋅−

+
⋅

≤ 1)1(
2

)1(
4 21

1

21

1
2

1

2
 [Eq. 12]

 Even though the result of Eq. 12 is also O (n2) this bound is much tighter than the worst case. This

happens because the number of filters n is divided by the parameters r1 and r2 in Eq. 12. The parameters r1

and r2 are expected to be greater than one. Another difference is that the worst case bound is a deterministic

bound whereas the bound of Eq. 12 is a stochastic bound, since the parameters r1, r2 and F are random

variables.

The random variables r1, r2 and F have unknown distributions. However, we expect with very high

probability that r1 and r2 are greater than one and F is a small number. Estimations on the upper bound of

Eq. 12 can be derived by selecting the values with the highest frequency from the limited number of

 180

databases we experimented with, for r1, r2 and F. The values for r1, r2 and F used in our calculations are r1

= 8.75, r2 = 4.3 and F = 15. More accurate results would require the parameters to be estimated from a

greater number of samples. Our results are shown in Table 17. The worst case estimations derived from Eq.

12 are compared against the worst case estimations in this table.

database
number

number of
filters

observed
number of

partial
overlaps

upper bound
from Eq. 9

worst case
upper bound

1 426 4 10,790 90,525

2 527 2,249 14,651 138,601

3 1,588 6,138 85,393 1,260,078

Table 17: Upper Bounds on the Number of Partial Filter Overlaps

 181

Chapter 7

Conclusion

In the thesis we address the problem of programming network architectures. Programming Network

Architectures is not a trivial problem. The difficulty stems from the fact that it is hard to define a unifying

programmable networking model and a set of programming interfaces that encompass services as diverse

as routing, signaling, and access control/forwarding. Another challenging issue is related to the

computational efficiency and performance of programmable network architectures. Programmable

networks require more computational resources than existing networks in order to support the introduction

of new services in software. In addition, today’s router systems are generally configured with only a small

amount of memory with limited access bandwidth. Hence, a key challenge is to design programming

systems and network algorithms that can operate efficiently under stringent space-time constraints.

This thesis makes several contributions. First, we propose a programmable networking model that

provides a common framework for understanding the state-of-the-art in programmable networks. A number

of projects are reviewed and discussed against a set of programmable network characteristics. We present a

simple qualitative comparison of the surveyed work and make a number of observations about the direction

of the field.

 182

Next, we present the design, implementation and evaluation of a programming system that automates

the life cycle process for the creation, deployment, management, and architecting of network architectures.

We discuss our experiences in building a “spawning” network testbed that is capable of creating distinct

network architectures on-demand. Network architectures are created as programmable virtual networks.

Our programming system is based on a methodology that allows a “child” network to operate on top of a

subset of its “parent’s” network resources and in isolation from other spawned virtual networks. We show

through experimentation how a number of diverse network architectures can be spawned and

architecturally refined.

Third, we discuss how we can support end-system connectivity with programmable network

architectures. We focus on wireless cellular network architectures, where the connectivity problem is more

challenging due to host mobility. We describe a ‘reflective handoff’ service that allows access networks to

dynamically inject signaling systems into mobile devices before handoff. Thus, mobile devices can

seamlessly roam between wireless access networks that support different mobility management systems.

We also show how a ‘multi-handoff’ access network service can be introduced that simultaneously

supports different styles of handoff control over the same wireless access network. This programmable

approach can benefit service providers who need to be able to satisfy the mobility management needs of a

range of mobile devices from cellular phones to palmtop and laptop computers.

Next, we study the performance of network programming systems. In particular, we focus on problem

of efficiently programming the data path. Programming the data path is challenging because data path

algorithms operate on the fastest time scale and are associated with the small time budgets. We focus on an

implementation of a network programming system in network processor-based routers. Network processors

comprise multiple processing units for parallel packet processing and constitute suitable building blocks for

software-base routers. We propose the design of a binding tool that balances the flexibility of network

programmability against the need to process and forward packets at line speeds. To support dynamic

binding of components with minimum addition of instructions in the critical path, our tool modifies the

machine language code of components at run time. To support fast data path composition, our tool reduces

the number of binding operations required for constructing data paths to a minimum set so that binding

latencies are comparable to packet forwarding times.

 183

Finally, we study the realization of performance critical algorithms such as packet classification in

programmable networks. Performance critical algorithms include classification, forwarding and traffic

management. While forwarding and traffic management are problems that have been investigated in the

past we still lack a good solution for the packet classification problem. We conjecture that the design of

classification algorithms will need to exploit the structure and characteristics of packet classification rules.

We study the properties of several classification data bases and, based on these findings, we suggest a

classification architecture that can be implemented efficiently in programmable networks.

We believe that the Genesis Kernel programming system can be used for solving many interesting

networking problems, which were not addressed as part of this thesis. The first problem, which we aim to

solve as part of future work is the problem of network architecture analysis. This problem can be stated as

follows: Given a network architecture defined as a set of protocols for transport, control and management, a

network topology and a set of network resources (i.e., link and processing capacities), what is the cost and

performance of the architecture when deployed over the given topology and set of resources? To address

this problem we plan to develop an analytical model for network architectures and use the Genesis Kernel

to visualize spawned network architectures. We plan to define and visualize parameters capturing the cost

and performance of network architectures and investigate how these parameters change when the

distributed algorithms of network architectures are modified.

A second problem we plan to investigate is the problem of network architecture synthesis. The

synthesis problem can be stated as follows: Given the cost and performance requirements of a network

architecture, a network topology, and a set of network resources what is the minimum cost network

architecture that can meet the specified cost and performance requirements, when operating over the given

topology and resources. To solve this problem we plan to develop a methodology for network synthesis

based on experimentation with the Genesis Kernel. We plan to spawn different network architectures,

observe their cost and performance and discover ways to build better networks. Our goal is to develop a

methodology for finding optimal network architectures for given network topologies, resources and input

traffic.

We would like to investigate whether an optimal network architecture exists or if it can be found for a

given communications infrastructure. The design of the optimal network architecture may depend on

 184

properties of the input traffic, topology and network resources. Knowing the input traffic before an

architecture is deployed is not possible. To ensure that a running architecture operates as optimally as

possible, a network architect may need to monitor changes in the input traffic and topology periodically.

Once the input traffic is estimated and current topology discovered a minimum cost architecture that

satisfies the estimated network operating conditions could be determined. Then, the currently executing

network architecture could be modified so that it becomes more optimal. We call this periodic cycle of

estimating the network operating conditions and modifying a network architecture so that it satisfies its

input traffic demands 'architecting'.

We believe that architecting represents an important challenge in networking. For example the problem

of designing more resilient networks that respond to sudden changes in the traffic demand or topology (e.g.,

after disasters occur) can be consider as a special case of the more generic architecting problem as

described above. To solve the architecting problem we need to have a good understanding of how network

algorithms affect the performance and cost of network architectures. We lack such understanding today.

Our research aims to fill this gap. Currently, we have completed the implementation and evaluation of

Genesis Kernel v1.0. Our Genesis Kernel prototype runs on top of a programmable infrastructure of PC-

based and IXP1200 network processor-based routers. We plan to develop an analytical model for network

architectures and use the Genesis Kernel to investigate the impact of network algorithms on the cost and

performance of network architectures.

 185

Chapter 8

My Publications as a Ph.D Candidate

My Publications as a Ph.D Candidate (1998-2003) are listed below. This list also includes research that

is indirectly related to the work presented in this thesis including, the design and implementation of QOS-

aware and event-driven middleware platforms, and the specification of network programming interfaces for

programming QOS in the internet.

8.1 Patents

• M. E. Kounavis, A. Kumar, H. Vin, and R. Yavatkar, "Method and Apparatus for Two Stage Packet

Classification using Most Specific Filter Matching Transport Level Sharing”, United States Patent

Application, filed.

8.2 Journal Publications

• M. E. Kounavis, A. Kumar, H. Vin, R. Yavatkar, and A. T. Campbell, "Directions in Packet

Classification for Network Processors”, Network Processor Design: Issues and Practices, Volume 2,

to appear, 2003.

 186

• M. E. Kounavis, A. T. Campbell, S. Chou, and J. Vicente "Programming the Data Path in Network

Processor-based Routers", Software Practice and Experience, to appear 2003.

• M. E. Kounavis, A. T. Campbell, S. Chou, F. Modoux, J. Vicente and H. Zhuang "The Genesis Kernel,

A Programming System for Spawning Network Architectures", IEEE Journal on Selected Areas in

Communications, Vol. 19, No. 3, pg. 511-526, March 2001.

• M. E. Kounavis, A. T. Campbell, G. Ito, and G. Bianchi, "Design, Implementation and Evaluation of

Programmable Handoff in Mobile Networks", ACM/Kluwer Journal on Mobile Networks and

Applications, September 2001.

• A. T. Campbell, M. E. Kounavis, and R. R.-F. Liao, "Programmable Mobile Networks", Computer

Networks, Vol. 31, No. 7, pg. 741-765, April 1999.

• A. T. Campbell, H. G. De Meer, M. E. Kounavis, K. Miki, J. Vicente, and D. Villela, "A Survey of

Programmable Networks", ACM SIGCOMM Computer Communications Review, Vol. 29, No 2, pg. 7-

23, April 1999.

• A. T. Campbell, M. E. Kounavis, D. Villela, J. Vicente, H. G. De Meer, K. Miki, and K. S.

Kalaichelvan, "Spawning Networks", IEEE Network, Vol. 13, No. 4, pg. 16-29, July/August 1999.

• O. Angin, A. T. Campbell, M. E. Kounavis, and R. R.-F. Liao, "The Mobiware Toolkit: Programmable

Support for Adaptive Mobile Networking", IEEE Personal Communications, Special Issue on

Adapting to Network and Client Variability, Vol. 5, No. 4, pg. 32-43, August 1998.

• A. T. Campbell, G. Coulson, and M. E. Kounavis "Managing Complexity: Middleware Explained", IT

Professional Magazine, Vol.1, No. 5, pg. 22-28, September/October 1999.

• A. T. Campbell, M. E. Kounavis and J. Vicente, "Programmable Networks", Reinhard Wilhelm (ed.),

Dagstuhl 10 Year Anniversary Proceedings, Springer-Verlag, Lecture Notes in Computer Science

2000, pp. 34-49, 2001.

 187

8.3 Conference Publications

• M. E. Kounavis, A. Kumar, H. Vin, R. Yavatkar, and A. T. Campbell, "Directions in Packet

Classification for Network Processors”, Second Workshop on Network Processors (NP2), Anaheim,

CA, February 2003.

• M. E. Kounavis, A. T. Campbell, S. Chou, and J. Vicente "A Programming Environment for Network

Processors”, Network Processors Conference West, San Jose, CA, October 2002.

• A. T. Campbell, S. Chou, M. E. Kounavis, V. D. Stachtos and J. Vicente, "Netbind: A Binding Tool

for Constructing Data Paths in Network Processor-based Routers", Fifth International Conference on

Open Architectures and Network Programming (OPENARCH' 02), New York, June 2002.

• V. D. Stachtos, M. E. Kounavis, and A. T. Campbell, "Sphere: A Binding Model and Middleware for

Routing Protocols", Fourth International Conference on Open Architectures and Network

Programming (OPENARCH' 01), Anchorage, Alaska, April 2001.

• M. E. Kounavis, A. T. Campbell, G. Ito, and G. Bianchi, "Accelerating Service Creation and

Deployment in Mobile Networks", Third International Conference on Open Architectures and

Network Programming (OPENARCH' 00), Tel-Aviv, Israel, March 2000.

• A. T. Campbell, H. G. De Meer, M. E. Kounavis, K. Miki, J. Vicente, and D. Villela, "The Genesis

Kernel: A Virtual Network Operating System for Spawning Network Architectures", Second

International Conference on Open Architectures and Network Programming (OPENARCH' 99), New

York, March 1999.

• K. Tanaka, M. E. Kounavis, and A. T. Campbell, "Automating the Creation of Personalized Mobile

Multimedia Services Using Cellware", Tenth International Workshop on Network and Operating

System Support for Digital Audio and Video (NOSSDAV' 00), Chapel Hill, North Carolina, USA, June

2000.

• O. Angin, A. T. Campbell, M. E. Kounavis, and R. R.-F. Liao, "Open Programmable Mobile

Networks", Eighth International Workshop on Network and Operating System Support for Digital

Audio and Video (NOSSDAV' 98), Cambridge, U.K., July, 1998.

 188

• A. Balachandran, A. T. Campbell, and M. E. Kounavis, "Active Filters: Delivering Scaled Media to

Mobile Devices", Seventh International Workshop on Network and Operating System Support for

Digital Audio and Video (NOSSDAV' 97), Saint Louis, May, 1997.

• J. Vicente, M. E. Kounavis, D. Villela, M. Lerner, and A. T. Campbell, "Programming Internet Quality

of Service", Third International Conference on Trends toward a Universal Service Market (USM'

2000), Munich, Germany, September, 2000.

• A. T. Campbell, and M. E. Kounavis, "Toward Reflective Network Architectures", Workshop on

Reflective Middleware, New York, NY, April 2000.

• M. E. Kounavis, A. T. Campbell, G. Ito, and G. Bianchi, "Supporting Programmable Handoff in

Mobile Networks", Sixth International Workshop on Mobile Multimedia Communications (MoMuC'

99), San Diego, CA, November 1999.

• R. R.-F. Liao, M. E. Kounavis, and A. T. Campbell, "The Design Implementation and Evaluation of

the Mobiware Toolkit", Fifth Internation Workshop on Mobile Multimedia Communications

(MoMuC'98), Berlin, Germany, October, 1998.

• S. Chou, M. E. Kounavis, A. T. Campbell, and J. Vicente, “Genesis Kernel on the IXP1200”, Concepts

and Applications of Programmable and Active Networking Technologies, Dagstuhl Seminar Series,

February 2002.

• M. E. Kounavis, S. Chou, V. D. Stachtos and A. T. Campbell, "Routelets and Network Processors",

Next Generation Network Programming (OPENSIG' 01), London, UK, September 2001.

• A. T. Campbell, S. Chou, M. E. Kounavis and V. D. Stachtos, "Implementing Routelets: Virtual

Router Support for the IXP1200 Network Processor", IXA Univeristy Program Workshop, Portland,

Oregon, June 2001.

• M. E. Kounavis, "Implementing Spawning Networks", Programming the Internet (OPENSIG' 00),

Napa, CA, October 2000.

• M. E. Kounavis, and A. T. Campbell, "Reflective Handoff", Open Signaling for ATM, Internet, and

Mobile Networks (OPENSIG' 99), Pittsburg, PA, October 1999.

 189

8.4 Documents in Preparation and Technical Reports

• M. E. Kounavis, A. Kumar, H. Vin, R. Yavatkar, and A. T. Campbell, "Packet Classification under

Stringent Space-Time Constraints”, Technical Report Submitted for Publication, February 2003.

• M. E. Kounavis, and A. T. Campbell "Programming the Ether”, Technical Report, October 2000.

 190

References

[1] ABONE, Active network Backbone, http://www.isi.edu/abone/

[2] C. M. Adam, A. A. Lazar, K-S. Lim, and F. Marconcini, “The Binding Interface Base

Specification Revision 2.0”, OPENSIG Workshop on Open Signalling for ATM, Internet and

Mobile Networks, Cambridge, UK, April 1997.

[3] D. S. Alexander, B. Braden, C. A. Gunter, W. A. Jackson, A. D. Keromytis, G. A. Milden, and D.

A. Wetherall, “Active Network Encapsulation Protocol (ANEP)”, Active Networks Group Draft,

July 1997

[4] D. S. Alexander, W. A. Arbaugh, M. A. Hicks, P. Kakkar, A. Keromytis, J. T. Moore, S. M.

Nettles, and J. M. Smith, “The SwitchWare Active Network Architecture”, IEEE Network Special

Issue on Active and Programmable Networks, vol. 12 no. 3, 1998.

[5] E. Amir, S. McCanne, and R. Katz, “An Active Service Framework and its Application to real-

time Multimedia Transcoding”, Proceedings ACM SIGCOMM’ 98, Vancouver, Canada

[6] N.G. Aneroussis, and , A.A Lazar., "Virtual Path Control for ATM Networks with Call Level

Quality of Service Guarantees", IEEE Transactions on Networking, Vol. 6, No. 2, April 1998, pp.

222-236.

[7] O. Angin, A. T. Campbell, M. E. Kounavis, and R. R.-F. Liao, “The Mobiware Toolkit:

Programmable Support for Adaptive Mobile Networking”, IEEE Personal Communications

Magazine, Special Issue on Adaptive Mobile Systems, August 1998.

[8] The ARRCANE Project, http://www.docs.uu.se/arrcane/

[9] F. Baboescu, G. Varghese, “Scalable Packet Classification”, Proceedings of ACM Sigcomm, pages

199-210, August, 2001.

[10] F. Baboescu, S. Singh, and G. Varghese, “Packet Classification for Core Routers: Is there an

alternative to CAMs?”, Technical Report, University of California, San Diego, 2003.

[11] P. Bagwat, C. Perkins, and S. Tripathi, “Network Layer Mobility: an Architecture, and Survey”,

IEEE Personal Communications Magazine, June 1996.

 191

[12] A. Balachandran, A. T. Campbell, and M. E. Kounavis, “Active Filters: Delivering Scalable

Media to Mobile Devices” , Proc. Seventh International Workshop on Network and Operating

System Support for Digital Audio and Video, St Louis, May, 1997.

[13] A. Barabasi, R. Albert, "Emergence of Scaling in Random Networks", Science, Vol. 286, pp. 509-

512, 1999.

[14] J. C. R. Bennett, and H. Zhang, “Hierarchical Packet Fair Queueing Algorithms”, IEEE/ACM

Transactions on Networking, 5(5):675-689, Oct 1997.

[15] B. N. Bershad, et al., “Extensibility, Safety and Performance in the SPIN Operating System”, Fifth

ACM Symposium on Operating Systems Principles, Copper Mountain, December 1995.

[16] G. Bianchi, and A. T. Campbell, "A Programmable Medium Access Controller for Adaptive

Quality of Service Control", IEEE Journal of Selected Areas in Communications (JSAC), Special

Issue on Intelligent Techniques in High Speed Networks, March 2000.

[17] J. Biswas, et al., " The IEEE P1520 Standards Initiative for Programmable Network Interfaces”

IEEE Communications Magazine, Special Issue on Programmable Networks, October, 1998.

[18] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An Architecture for

Differentiated Services” Request for Comments 2475.

[19] S. Borst, O. Boxma and P. R. Jelenkovic, "Generalized Processor Sharing with Long-Tailed

Traffic Sources", In Teletraffic Engineering in a Competitive World, Proc. ITC-16, Edinburgh,

UK, eds. P. Key, D. Smith (North-Holland, Amsterdam), pp. 345-354, 1999.

[20] V. Bose, M. Ismert, W. Wellborn, and J. Guttag, “Virtual Radios”, IEEE Journal on Selected

Areas in Communications, Special Issue on Software Radios, 1998.

[21] V. Bose, D. Wetherall, and J. Guttag, “Next Century Challenges: Radioactive Networks”, Fifth

ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM’99),

Seattle, Washington, 1999.

[22] R. Braden, “Active Signaling Protocols”, Active Networks Workshop, Tucson AZ, March 1998.

[23] R. Braden, D. Clark, and S. Shenker, "Integrated services in the internet architecture: an

overview," Request for Comments (Informational) 1633, Internet Engineering Task Force, June

1994.

 192

[24] K. Buchanan, R. Fudge, D. McFarlane, T. Phillips, A. Sasaki, and H. Xia, “IMT-2000: Service

Provider’s Perspective”, IEEE Personal Communications Magazine, August 1997

[25] M. M. Buddhikot, S. Suri, and M. Waldvogel. “Space decomposition techniques for fast layer-4

switching,” Proceedings of Conference on Protocols for High Speed Networks, pages 25-41,

August 1999.

[26] R. Caceres, and V. Padmanabhan, “Fast and scalable wireless handoffs, in support of mobile

Internet audio”, Mobile Networks and Applications, 1998.

[27] K. Calvert, et. al, “Directions in Active networks”, IEEE Communications Magazine, Special

Issue on Programmable Networks, October 1998.

[28] A.T. Campbell, J. Vicente and D. A. M. Villela, "Virtuosity: Performing Virtual Network

Resource Management", International Workshop on Quality of Service (IWQOS'99), London, June

1999.

[29] A. T. Campbell, M. E. Kounavis, J. Vicente, D. A. M. Villela, K. Miki and H. G. De Meer, “A

Survey of Programmable Networks”, ACM SIGCOMM Computer Communication Review, Vol.

29, No. 2, pp. 7-24, April 1999.

[30] A. T. Campbell, J. Gormez, J., S. Kim, A. Valko, C. Wan, Z. Turanyi, “Design Implementation,

and Evaluation of Cellular IP”, IEEE Personal Communications, vol. 7 No. 4, pg. 42-49, Aug

2000

[31] A. T. Campbell, S. Chou, M. E. Kounavis, V. D. Stachtos, and J. Vicente, "NetBind: A Binding

Tool for Constructing Data Paths in Network Processor-based Routers", IEEE OPENARCH 2002,

to be presented.

[32] A. T. Campbell, M. E. Kounavis, and R. R.-F. Liao, "Programmable Mobile Networks", Computer

Networks, Vol. 31, No. 7, pg. 741-765, April 1999.

[33] A. T. Campbell, H. G. De Meer, M. E. Kounavis, K. Miki, J. B. Vicente, and D. Villela, “The

Genesis Kernel: A Virtual Network Operating System for Spawning Network Architectures”,

Second International Conference on Open Architectures and Network Programming

(OPENARCH), New York, 1999.

 193

[34] A.T. Campbell and G. Bianchi "A Programmable MAC Framework for Utility-based Adaptive

Quality of Service Support", IEEE Journal of Selected Areas in Communications (JSAC), Special

Issue on Intelligent Techniques in High Speed Networks, Vol. 18, No. 2, pp. 244-256, February

2000.

[35] CANEs: Composable Active Network Elements", http://www.cc.gatech.edu/ projects/canes/

[36] The Cellular IP Project Home Page and Source Code Distribution, comet.columbia.edu/cellularip.

[37] M. C. Chan, A. A. Lazar and R. Stadler, “Customer Management and Control of Broadband VPN

Services”, Proc. Fifth IFIP/IEEE International Symposium on Integrated Network Management,

San Diego, CA, May 1997.

[38] M. C. Chan, J.-F. Huard, A. A. Lazar, and K.-S. Lim, “On Realizing a Broadband Kernel for

Multimedia Networks”, 3rd COST 237 Workshop on Multimedia Telecommunications and

Applications, Barcelona, Spain, November 25-27, 1996.

[39] M. C. Chan, and A. A. Lazar, “Designing a CORBA-based High Performance Open

Programmable Signaling System for ATM Switching Platforms”, IEEE Journal on Selected Areas

in Communications, September 1999.

[40] P. Chandra, et al., “Darwin: Customizable Resource Management for Value-added Network

Services”, Sixth IEEE International Conference on Network Protocols (ICNP'98), Austin, October

1998.

[41] K. G. Coffman and A. M. Odlyzko "Growth of the Internet", In Optical Fiber

Telecommunications IV, I. P. Kaminow and T. Li, eds. Academic Press, 2001.

[42] G. Coulson, et al., “The Design of a QOS-Controlled ATM-Based Communications System in

Chorus”, IEEE Journal of Selected Areas in Communications, vol.13, no.4, May 1995.

[43] DARPA Active Network Program, http://www.sds.lcs.mit.edu/darpa-activenet/

[44] S. Da Silva, Y. Yemini, and D. Florissi, “The NetScript Active Network System”, IEEE Journal

on Selected Areas in Communications, Vol. 19, No 3, March 2001.

[45] D. Decasper, G. Parulkar, B. Plattner, “A Scalable, High Performance Active Network Node”,

IEEE Network, January 1999.

 194

[46] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner, “Router Plugins: A Software Architecture for

Next Generation Routers”, Proc. ACM SIGCOMM’98 Vancouver Canada, 1998.

[47] M. Degermark, A. Brodnik, S. Carlsson, and St. Pink, "Small forwarding tables for fast routing

lookups," in Proc. ACM SIGCOMM, September 1997, pp. 3—14

[48] L. Delgrossi. and D. Ferrari, “A Virtual Network Service for Integrated-Services Internetworks”,

7th International Workshop on Network and Operating System Support for Digital Audio and

Video, St. Louis, May 1997.

[49] N. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan, K. Van der Merwe, “A

Flexible Model for Resource Management in Virtual Private Networks”, Proc. ACM

SIGCOMM'99, Cambridge MA, 1999.

[50] D. R. Engler, M. F. Kaashoek and J. O’Toole, “Exokernel: An Operating System Architecture for

Application-Level Resource Management”, Fifth ACM Symposium on Operating Systems

Principles, Copper Mountain, December 1995.

[51] The Expat XML Parser Toolkit, expat.sourceforge.net

[52] M. Faloutsos, P. Faloutsos, and C. Faloutsos, "On Power-Law Relationships of the Internet

Topology", Computer Communication Review, Volume 29, Number 4, October 1999.

[53] A. Feldman and S. Muthukrishnan. “Tradeoffs for packet classification,” Proceedings of Infocom,

vol. 3, pages 1193-202, March 2000.

[54] D. C. Feldmeier, at al. “Protocol Boosters”, IEEE Journal on Selected Areas in Communications,

Special Issue on Protocol Architectures for the 21st Century, 1998The Genesis Project Home

Page. Available at http://www.comet.columbia.edu/ genesis

[55] P. Ferguson, and G. Huston, “What is a VPN?”, OPENSIG'98 Workshop on Open Signalling for

ATM, Internet and Mobile Networks, Toronto, October 1998.

[56] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns: Elements of Reusable

Object-Oriented Software”, Addison-Wesley Professional Computing Series, 1995.

[57] The Genesis Project Home Page, http://www.comet.columbia.edu/genesis/

[58] B. Gleeson, A. Lin, J. Heinanen, “A Framework for IP Based Virtual Private Networks”, draft-

gleeson-vpn-framework-00.txt, internet-draft, work in progress, February 1999.

 195

[59] D. J. Goodman, “Wireless Personal Communications Systems”, Addison-Wesley Wireless

Communications Series, 1997.

[60] P. Goyal, P., H. Vin, and H. Cheng, “Start-time Fair Queuing: A Scheduling Algorithm for

Integrated Services Packet Switching Networks”, IEEE/ACM Transactions on Networking, Vol. 5,

No. 5, pp. 690-704, October 1997.

[61] P. Gupta and N. McKeown, “Packet Classification on Multiple Fields”, Proc. Sigcomm, Computer

Communication Review, vol. 29, no. 4, pp 147-60, September 1999, Harvard University.

[62] P. Gupta and N. McKeown, “Packet Classification using Hierarchical Intelligent Cuttings”, Proc.

Hot Interconnects VII, August 99, Stanford. This paper is also available in IEEE Micro, pp 34-41,

vol. 20, no. 1, January/February 2000.

[63] P. Gupta and N. McKeown “Algorithms for Packet Classification”, IEEE Network Magazine,

2001

[64] J. Hartman, et al., “Liquid Software: A New Paradigm for Networked Systems”, Technical Report

96-11, Dept. of Computer Science, Univ. of Arizona, 1996.

[65] M. Hicks, et al., “PLAN: A Programming Language for Active Networks”, Proc ICFP'98, 1998.

[66] N.-F. Huang, S.-M. Zhao, and J.-Y.Pan, “A Fast IP Routing Lookup Scheme for Gigabit

Switching Routers”, Infocom, 1999.

[67] X. W. Huang, R. Sharma, and S. Keshav, “The ENTRAPID Protocol Development Environment”,

Proc. Eighteenth IEEE International Conference on Computer Communications (INFOCOM’99),

New York, 1999.

[68] IBM Corporation, IBM PowerNP NP4GS3 Network Processor Datasheet, May 2001.

[69] Intel IXP1200, http://www.intel.com/IXA

[70] Intel Corporation, IXP1200 Network Processor Datasheet, Dec 2000.

[71] Intel Corporation, Intel IXA SDK ACE Programming Framework Developer's Guide, June 2001

[72] Intel Corporation, IXP1200 Network Processor Development Tools User's Guide, Dec 2000.

[73] E. J. Johnson, and A. R. Kunze, “IXP1200 Programming”, Chapter 13, Intel Press, 2002.

[74] S. Karlin, and L. Peterson, “VERA: An Extensive Router Architecture”, In Proceeding of the 4th

International Conference on Open Architectures and Network Programming, pg 3-14, April 2001

 196

[75] S. Keshav “An Engineering Approach to Computer Networking”, Addison Wesley, 1997

[76] S. Keshav and R. Sharma, “Issues and Trends in Router Design”, IEEE Communications

Magazine, May 1998

[77] J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, A. S. Tomkins, "The Web as a Graph:

Measurements, Models, and Methods", Proceedings of the 5th Annual International Conference

on Computing and Combinatorics, 1999.

[78] Korilis, Y. A., Lazar, A.A. and Orda, A., "Achieving Network Optima Using Stackelberg Routing

Games", IEEE Transactions on Networking, Vol. 5, No. 1, February 1997, pp. 161-173.

[79] E. Kohler, R. Morris, B. Chen, J. Jannotti, M. Kaashoek, “The Click Modular Router”, ACM

Transactions on Computer Systems 18(3), Aug 2000, pg 263-297.

[80] M. E. Kounavis, A. T. Campbell, S. Chou, F. Modoux, J. Vicente and H. Zhuang, "The Genesis

Kernel: A Programming System For Spawning Network Architectures", IEEE Journal on Selected

Areas in Communications, Vol. 19, No 3, pg. 511-526, March 2001.

[81] M. E. Kounavis, A. T. Campbell, G. Ito, and G. Bianchi, “Accelerating Service Creation and

Deployment in Mobile Networks”, Third International Conference on Open Architectures and

Network Programming, (OPENARCH’00), Tel-Aviv, Israel, March 2000.

[82] M. E. Kounavis, A. T. Campbell, G. Ito, and G. Bianchi, “Supporting Programmable Handoff in

Mobile Networks”, Sixth International Workshop on Mobile Multimedia Communications

(MoMuC’99), San Diego, CA, November 1999.

[83] M. E. Kounavis, A. Kumar, H. Vin, R. Yavatkar, and A. T. Campbell, “Directions in Packet

Classification for Network Processors”, Second, Workshop on Network Processors (NP2),

Anaheim, California, 2003.

[84] A. B. Kulkarni, G. J. Minden, R. Hill, Y. Wijata, A. Gopinath, S. Sheth, F. Wahhab, H. Pindi, and

A. Nagarajan, “Implementation of a Prototype Active Network”, First International Conference

on Open Architectures and Network Programming (OPENARCH), San Francisco, 1998.

[85] A. B. Kulkarni, and G. J. Minden, “Active Networking Services for Wired/Wireless Networks”,

Eighteenth Annual Joint Conference of the IEEE Computer and Communication Societies

(INFOCOM’99), New York, March 1999.

 197

[86] T.V. Lakshman and D. Stiliadis. “High-Speed Policy-based Packet Forwarding Using Efficient

Multi-dimensional Range Matching”, Proceedings of ACM Sigcomm, pages 191-202, September

1998.

[87] A. A. Lazar, S. Bhonsle, and K. S. Lim, "A Binding Architecture for Multimedia Networks",

Journal of Parallel and Distributed Computing, Vol. 30, No. 2, November 1995, pp. 204-216.

[88] A. A. Lazar and A. T. Campbell, “Spawning Network Architectures”, White Paper, Center for

Telecommunications Research, Columbia University, comet.columbia.edu/genesis, January 1998.

[89] A.A. Lazar, "Scaling in Networks", available at http://comet.columbia.edu/courses/

ee_e9701/2001/overview.html

[90] A.A. Lazar, K.S Lim, and F. Marconcini, "Realizing a Foundation for Programmability of ATM

Networks with the Binding Architecture", Journal of Selected Areas in Communications, Vol.14,

No.7, September 1996, pp. 1214-1227.

[91] A. A. Lazar, “Programming Telecommunication Networks”, IEEE Network, vol.11, no.5,

September/October 1997. .

[92] W. E. Leland, M. S. Taqqu, W. Willinger and D. V. Wilson, "On the self-similar nature of

Ethernet traffic", IEEE/ACM Trans. Networking 2 (1994), 1--15.

[93] R.R.-F. Liao, and A.T Campbell,. "Dynamic Core Provisioning for Quantitative Differentiated

Service", 9th International Workshop on Quality of Service (IEEE/ACM/IFIP IWQOS 2001),

Karlsruhe, Germany, June 2001.

[94] R. R.-F. Liao, and A.T. Campbell, "On Programmable Universal Mobile Channels in a Cellular

Internet", Fourth ACM/IEEE International Conference on Mobile Computing and Networking

(MOBICOM'98), Dallas, October 1998.

[95] R. R.-F. Liao, P. Bocheck, A. T. Campbell, and S.-F. Chang, “Utility-based network adaptation in

MPEG-4 systems”, Ninth International Workshop on Network and Operating System Support for

Digital Audio and Video (NOSSDAV’99), Basking Ridge, New Jersey, 1999.

[96] L. K. Lim, J. Gao, T. S. E. Ng, P. Chandra, P. Steenkiste, H. Zhang “Customizable Virtual Private

Network Service with QoS“, Computer Networks, 1999

 198

[97] S- L Lo, and D. Riddoch, “The OmniORB2 version 2.7.1 User’s Guide”, Technical Report, AT&T

Laboratories Cambridge, 1999.

[98] J. Mitola, “Technical Challenges in the Globalization of Software Radio”, IEEE Communications

Magazine, February 1999.

[99] J. Mitola, “Cognitive Radio for Flexible Mobile Multimedia Communications”, Sixth

International Workshop on Mobile Multimedia Communications (MoMuC’99), San Diego, CA,

November 1999.

[100] A. Montz, D. Mosberger, S. O’Malley, L. Peterson, and T. Proebsting, “Scout, A Communication

Oriented Operating System”, Operating System Design and Implementation, 1994.

[101] Mobiware Toolkit v1.0 source code distribution http://www.comet.columbia.edu/ mobiware

[102] M. Nandikesan, “On the Foundations of Network Programmability”, Ph.D Thesis, Comet Group,

2001.

[103] Network Processing Forum,http://www.npforum.org

[104] P. Newman, W. Edwards, R. Hinden, E. Hoffman, C. F. Liaw, T. Lyon, and G. Minshall,

"Ipsilon's General Switch Management Protocol Specification," Request For Comments 1987,

Aug. 1996

[105] The NetBind Project home page, available at: http://www.comet.columbia.edu/genesis/ netbind

[106] The Object Management Group, www.omg.org.

[107] Object Management Group, “Minimum CORBA”, Joint Revised Submission, OMG Document,

orbos/98-08-04 ed., August 1998.

[108] Open Signaling Working Group comet.columbia.edu/opensig/

[109] P. Pappu P. and T. Wolf. “Scheduling processing resources in programmable routers”,

Proceedings of the Twenty-First IEEE Conference on Computer Communications (INFOCOM),

New York, NY, June 2002.

[110] A. K. Parekh and R. G. Gallager. "A Generalized Processor Sharing Approach to Flow Control in

Integrated Services Networks: The Single-Node Case", IEEE/ACM Transactions on Networking,

1(3):344--357, June 1993.

 199

[111] V. Paxson, and S. Floyd, "Wide-Area Traffic: The Failure of Poisson Modeling", IEEE/ACM

Transactions on Networking, Vol. 3 No. 3, pp. 226-244, June 1995.

[112] V. Paxson and S. Floyd, "Difficulties in Simulating the Internet", IEEE/ACM Transactions on

Networking, February, 2001.

[113] D. Pendarakis, “On the Tradeoff between Signaling and Transport in Broadband Networks”, Ph.D

Thesis COMET Group, Columbia University, 1996.

[114] L. Peterson, “NodeOS Interface Specification”, Technical Report, Active Networks NodeOS

Working Group, February 2, 1999

[115] J. Postel, Editor, “Internet Protocol”, Request For Comments 791, September 1981.

[116] A. Prakash, and A. Aziz, “OC-3072 Packet Classification Using BDDs and Pipelined SRAMs”,

Hot Interconnects, 2001

[117] C. Pu, C., H. Massalin and J. Ioannidis, “The Synthesis Kernel”, Springer Verlag, 1988.

[118] R. Ramjee, T. La Porta, S. Thuel, K. Varadhan, “HAWAII: A Domain-based Approach for

Supporting Mobility in Wide-area Wireless Networks”, Seventh International Conference on

Network Protocols, Toronto, Canada, 1999.

[119] J. Rexford, A. Greenberg and F. Bonomi, “Hardware Efficient Fair Queuing Architectures for

High-Speed Networks” In Proceedings, IEEE INFOCOM, March 1996.

[120] J. P. Redlich, M. Suzuki, and S. Weinstein, “Virtual Networks in the Internet”, In Proceedings,

Second International Conference on Open Architectures and Network Programming

(OPENARCH), New York, 1999.

[121] D. Schmidt, and C. Cleeland, “Applying Patterns to Develop Extensible ORB Middleware”, IEEE

Communications Magazine, Special Issue on Design Patterns, April, 1999.

[122] B. Schwartz, W. A. Jackson, W. T. Strayer, W. Zhou, R. D. Rockwell, and C. Partridge, "Smart

Packets for Active Networks”, Second International Conference on Open Architectures and

Network Programming (OPENARCH), New York, 1999.

[123] S. Seshan, H. Balakrishnan, and R. H. Katz, “Handoffs in Cellular Networks: The Daedalus

Implementation and Experience", Kluwer International Journal on Wireless Communication

Systems, 1996.

 200

[124] N. Semret, R. Liao, A.T. Campbell, and A.A. Lazar, "Pricing, Provisioning and Peering: Dynamic

Markets for Differentiated Internet Services and Implications for Network Interconnections",

IEEE Journal on Selected Areas in Communications, Vol. 18, Number 12, December 2000, pp.

2499-2513.

[125] F. Shafai, K.J. Schultz, G.F. R. Gibson, A.G. Bluschke and D.E. Somppi. “Fully parallel 30-Mhz,

2.5 Mb CAM,” IEEE Journal of Solid-State Circuits, vol. 33, no. 11, November 1998.

[126] Signal Engines Project, comet.columbia.edu/signalingengines

[127] B. C. Smith, “Procedural Reflection in Programming Languages”, PhD Thesis, Massachusetts

Institute of Technology, 1982.

[128] T. Spalink, S. Karlin and L. Peterson, “Evaluating Network Processors in IP Forwarding”,

Technical Report TR-626-00, Nov 15, 2000

[129] T. Spalink, S. Karlin, L. Peterson and Y. Gottlieb, “Building a Robust Software-Based Router

Using Network Processors”, In Proceedings of the 18th ACM Symposium on Operating Systems

Principles, pg. 216-229, Oct 2001

[130] V. Srinivasan, S. Suri, and G. Varghese. “Packet Classification using Tuple Space Search”,

Proceedings of ACM Sigcomm, pages 135-46, September 1999.

[131] V. Srinivasan, S. Suri, G. Varghese, and M. Waldvogel. “Fast and Scalable Layer four Switching,”

Proceedings of ACM Sigcomm, pages 203-14, September 1998.

[132] I. Stoica, H. Zhang, and T. S. E. Ng, “A Hierarchical Fair Service Curve Algorithm for Link-

Sharing, Real-Time and Priority Service, in Proceedings of SIGCOMM'97, Cannes, France, 1997,

pp. 249-262.

[133] D. Taylor, J. Turner and J. Lockwood “Dynamic Hardware Plugins (DHP): Exploiting

Reconfigurable Hardware for High-Performance Programmable Routers”, IEEE Open

Architectures and Network Programming, April 2001.

[134] D. Tennenhouse, and D. Wetherall, “Towards an Active Network Architecture”, Proceedings,

Multimedia Computing and Networking, San Jose, CA, 1996.

[135] D. Tennenhouse, et al., “A Survey of Active Network Research”, IEEE Communications

Magazine, January 1997.

 201

[136] C. A. Thekkath, T. D. Nguyen, E. Moy, and E. D. Lazowska, “Implementing Network Protocols at

User Level”, IEEE/ACM Transactions on Networking, October 1993.

[137] J. Touch, J. and S. Hotz, "The X-Bone", Third Global Internet Mini-Conference in conjunction

with Globecom '98 Sydney, Australia, November 1998.

[138] N. D. Tripathi, J. H. Reed, and H. F. Vanlandingham, “Handoff in Cellular Systems”, IEEE

Personal Communications Magazine, December 1998.

[139] P. Tsuchiya. “A search algorithm for table entries with non-contiguous wildcarding,” unpublished

report, Bellcore

[140] A. G. Valko, J. Gomez, S. Kim, and A. T. Campbell, "On the Analysis of Cellular IP Access

Networks", Sixth IFIP International Workshop on Protocols for High Speed Networks , Salem, 25-

27 August 1999.

[141] K. Van der Merwe, and I. M. Leslie, “Switchlets and Dynamic Virtual ATM Networks”, Proc

Integrated Network Management V, May 1997.

[142] K. Van der Merwe, S. Rooney, I. M. Leslie and S. A. Crosby, “The Tempest - A Practical

Framework for Network Programmability”, IEEE Network, November 1997

[143] A. Veres, Z. Kenesi, S. Molnar, G. Vattay, "On the Propagation of Long-Range Dependence in the

Internet", Proc. ACM SIGCOMM 2000, Stockholm, Sweden, Sep. 2000.

[144] S. Vinoski,“CORBA: Integrating Diverse Applications Within Distributed Heterogeneous

Environments”, IEEE Communications Magazine, Vol. 14, No. 2, February, 1997.

[145] H. J. Wang, R. H. Katz, and J. Giese, "Policy-Enabled Handoffs Across Heterogeneous Wireless

Networks," Second IEEE Workshop on Mobile Computing Systems and Applications (WMCSA

'99), New Orleans, LA, February 1999.

[146] D. J. Watts and S. H. Strogatz, "Collective Dynamics of Small-World Networks", Nature, Vol.

393, pp. 440-442, 1998.

[147] D. Wetherall, J. Guttag and D. Tennenhouse, “ANTS: A Toolkit for Building and Dynamically

Deploying Network Protocols”, Proc. IEEE OPENARCH'98, San Francisco, CA, April 1998.

[148] T. Wolf and J. Turner, “Design Issues for High- Performance Active Routers”, IEEE Journal on

Selected Areas in Communications, March 2001.

 202

[149] xbind code http://comet.columbia.edu/xbind

[150] Xbind Inc., www.xbind.com

[151] Y. Yemini, and S. Da Silva "Towards Programmable Networks", IFIP/IEEE International

Workshop on Distributed Systems: Operations and Management, L'Aquila, Italy, October, 1996.

[152] A. Yun, A. Leon-Garcia, and M. Jaseemuddin, “Virtual Networks: A Divide-and-Conquer

Approach to Network Resource Management”, Proc. Open Signaling for ATM, Internet and

Mobile Networks (OPENSIG) Workshop, New York, October 1997.

[153] L. Zhang, "Virtual clock: A new traffic control algorithm for packet switched networks," Proc.

ACM Trans. on Comp. Systems, May 1991, pp. 101-125.

