
Abstract— In this paper, we present the design,
implementation and evaluation of a utility-based network
adaptation system for the delivery of MPEG-4 video over
time-varying networks such as wireless networks. The system
comprises a number of algorithms that can be programmed to
support application-specific adaptation in the network or at its
edges.  By exploiting video content and user preferences, an
online utility generator can dynamically formulate bandwidth
utility functions and scaling profiles that capture application-
specific adaptation. The utility generator employs a video
content classification algorithm to speedup processing and an
adaptive prediction algorithm to keep dynamically generated
utility functions meaningful over network adaptation time-
scales. Network adaptation is based on a utility-fair bandwidth
renegotiation algorithm that realizes profile-based media
scaling. The signaling system efficiently delivers utility
functions and scaling profiles to network adaptation agents.

Keywords— utility functions, content-aware adaptation,
media scaling, MEPG-4

I. INTRODUCTION

The emerging MPEG-4 video-coding standard [5] is
suitable for a wide range of applications (e.g., storage and
communication applications). The most distinctive feature
of MPEG-4 is its ability to independently encode video
objects appearing in a scene. Object-based treatment of
video sequences enables exploration of a new type of media
scaling called content-based scalability. It is widely agreed
that the performance of distributed multimedia content
(e.g., video streams) can be improved by exploiting the
intrinsic scalability of content through rate control
techniques coupled with effective media scaling and
periodic bandwidth renegotiation. This can result in a
significant increase in the utilization of network capacity
[1]. These techniques are well suited toward transporting
and scaling video content in response to time-varying
bandwidth availability typically found in the Internet and
more characteristically in wireless and mobile networks.

Bandwidth utility functions [9] can be used to
characterize an application’s capability to adapt over a range
of available bandwidth. For video applications utility takes
the form of a video quality metric. Studies of video quality
measurement have placed emphasis on the design of
accurate perceptual metrics [15] [7]. However, little
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attention has been paid to the generation of these perceptual
quality metrics. In network economics research, utility
functions are used as a theoretical abstraction of application
demands for network pricing [14] and the optimization of
resource allocation in wireline [13] and wireless [8] [9]
networks. Recently, we have developed an approach for the
dynamic generation of utility functions [10] [2]. In this
paper, we build on this work and design a utility-based
network adaptation system enabling content-aware
adaptation for MEPG-4 video delivery.

The utility-based adaptation framework comprises three
modules as illustrated in Figure 1: a content scaler, a
bandwidth allocator and a utility generator. The content
scaler performs content-based rate control interacting with
the bandwidth allocator to realize utility-based bandwidth
allocation [10] [13] in the network. The utility generator
dynamically creates bandwidth utility functions on-demand
for the content scaler and bandwidth allocator modules. The
utility generator can be located at the video server to gain
access to MPEG-4 video object information without
additional transcoding overhead or at any server in the
network or at its edges. Typically, the content scaler would
be placed close to or at the network bottleneck. For
example, in the case of time-varying wireless networks the
content scaler could be installed at base station to
dynamically scale downlink media. Being able to program
and locate the components of the architecture has a number
of benefits. Base-to-mobile scaling can react to time-
varying bandwidth over faster time-scales and in a more
scalable in comparison to end-to-end adaptation approaches
[16].

The structure of the paper is as follows. In Section II we
present a system architecture that addresses a number of
technical barriers facing the design of utility-based
adaptation systems. In Section III we introduce the concept
of scaling profiles that characterize the scaling actions that
can be applied to the transmission of multiple MPEG-4
video objects in the same session. Following this, in Section
IV we discuss an approach to increase the speed of utility
generation using content classification techniques. In
Section V, we present an adaptive prediction technique that
keeps generated utility functions meaningful over network
adaptation time-scales. Next, in Section VI, we discuss our
experiment results and finally, in Section VII, we conclude
with some remarks.
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II. SYSTEM ARCHITECTURE

The design of utility-based network adaptation systems
is dependent on a number of systems issues including
encoding techniques, video content and user preferences.
Therefore, a single generic design solution to these issues is
unlikely. Rather, a solution capable of accommodating a
range of system considerations through programmability is
more likely to succeed.

A. Challenges

A number of technical challenges motivate the design of
our utility-based MPEG-4 system. First, with the
emergence of MPEG-4 technology, one single packet
stream can contain a number of elementary streams
corresponding to different media objects with distinct
adaptation needs. Scaling techniques applied to each
individual media object can vary with video content
changes. Therefore any model characterizing MPEG-4
media scalability should take into account at least two
“levels of multiplexing”; that is, within media objects and
across multiple media objects. Second, utility function
generation requires the measurement of video quality
distortion for some given video sample rate. This procedure
can be computationally intensive when on considers fine-
grain sampling. Care has to be taken to reduce the impact of
dynamic utility generation on the transport system. This can
be achieved in part by making sure that the utility generator
is architecturally separated from packet forwarding path
and possibly coupled with the video server avoiding any

additional transcoding where possible. Any excessive delay
introduced in the utility generation process can render the
generated utility functions obsolete. The architecture needs
to minimize any computationally intensive procedures so
that utility functions can be dynamically generated in real-
time. Third, utility functions generated for video may
dynamically change over fast time-scales (e.g., in the order
of tens of milliseconds) as content changes (e.g., due to
scene changes). We observe that network adaptation
operates over a longer time-scale, potentially in the order of
hundreds of milliseconds to tens of seconds. This is a
product of the signaling system efficiency, resulting
network load of dynamic resource management and the
round trip delay between a source encoder and receiving
decoder. Since the “content time-scale” may be several
orders of magnitude smaller than the “network adaptation
time-scale”, the utility generator needs to reconcile this
mismatch without sacrificing the accuracy of generated
utility functions or burdening the network with excessive
signaling.

B. System Architecture

The utility-based network adaptation system architecture
illustrated in Figure 2 addresses these technical challenges.
The system architecture represents a further decomposition
of the utility generator, content scaler and bandwidth
allocator components. The utility generator comprises a
scaling profile selector, content-based utility function
estimator and a long-range utility function predictor.  The
scaling profile selector generates “scaling profiles” that
captures MPEG-4 stream scalability. This takes into
account user preferences and includes aggregation of
multiple media objects and the selection of potentially
multiple scaling techniques for a single media object. A
content analyzer associated with the scaling profile selector
extracts content features from compressed video streams.
The scaling profile selector uses content features to select
an appropriate scaling profile. Signaling utilizes the MPEG-
4 object descriptor structure [5] to signal utility functions
and scaling profiles to the content scaler as illustrated in
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Figure 2.
By applying machine learning techniques to video

content classification [2] the utility estimator uses content
features to classify incoming video objects. Instead of
generating a new utility function for each video object, the
estimator reuses utility functions generated for a class
containing a particular video object thereby significantly
increasing the performance of the overall utility generator.

The long-range utility function predictor resolves any
potential mismatch between “content” and “network
adaptation” time-scales discussed above. An adaptive
filtering algorithm [10] keeps the generated utility functions
meaningful over longer network adaptation time-scales.
The algorithm adjusts to track the long-term variation in
utility functions to balance the tradeoff between increasing
the utility generation interval and maintaining the accuracy
of generated utility functions.

In the following, we discuss the formation of scaling
profiles and present the detail design of the content-based
utility function estimator and long-range utility function
predictor.  Following this, we present our system
evaluation.

III. FORMULATING SCALING PROFILES

The role of scaling profiles is to ensure that the content
scaler, which can be located inside or at the edges of the
network, scales media based on the selects scaling methods
used during the generation of utility functions. This results
in the effective scaling of video stream data rates keeping
the content scaler's operating point for a particular stream
on its associated utility curve. Media scaling techniques can
be broadly categorized as follows:

• spatial resolution scaling, which changes picture
size (e.g., from CIF to QCIF require transcoding);

• temporal domain scaling, which drops frames;
• quality scaling, which changes quantization levels,

chrominance dropping, Discrete Cosine Transform
(DCT) and Discrete Wavelet Transform (DWT)
coefficients dropping; and

• content-based scaling, which uses MPEG-4 video
object prioritization and dropping.

Typically, the majority of scaling actions generate
coarse-grained rate changes that can be estimated by the
amount of data dropped in terms of frames, layers or
objects. The resulting distortion function registers a discrete
drop in quality when the rate is scaled-down. In contrast,
dropping transform coefficients supports fine-granularity
rate changes (e.g., the dynamic rate shaping (DRS) [3]
method optimally drops luminance data DCT coefficients to
minimize distortion). The combination of scaling
techniques that can be applied to a video object is not static.
Rather, it  can dynamically change with user preference and
content type. For example, in the case of fast-motion
scenes, spatial resolution or quality scaling techniques are
more suitable than temporal-domain scaling techniques
(e.g., dropping frames) because the details within a picture
may not be as important under fast-motion conditions. In
contrast, slow-motion scenes favor the opposite approach.
In the system architecture, the scaling profile selector is co-

located with a content analyzer algorithm that can gain
access to video content features. In addition, the scaling
profile selector provides a user preference API that allows
end users to specify high-level rules that can be used to
generate scaling profiles (e.g., a mobile PDA user may
prefer high resolution to rich color). User preferences may
be specified, for example, as dropping chrominance,
dropping background objects and reducing the frame rate of
foreground objects. Scaling profiles accurately capture the
scalability of video streams at two distinct levels: (i) the
scaling pattern of single video objects (i.e., combination of
scaling techniques applied to a single object); and (ii) the
aggregation of multiple prioritized video objects associated
with the same video stream.

A. Single Video Objects

In our current implementation, the scaling pattern of a
single video object is specified as a sequence of scaling
actions. As illustrated in Figure 3, the derived utility
function results in a concatenation of curves with discrete
steps and piecewise-linear shapes. Each discontinuity point
(ui , Ri) on the utility function is associated with one set of
scaling techniques Si, that is used to scale down video to
rate Ri with the corresponding utility value ui. The scaling
pattern is the set of Si , denoted by {Si}, structured as an
array containing pointers to the corresponding scaling
actions Si. The scaling action pointers represent uniform
resource locators (URL) pointing to the method
implementations in media scaling toolkits located at
servers. The content scaler uses the URL information to
download scaling toolkits [18] at service creation time if
they are not already resident at the content scaler.

Figure 3 illustrates an example of a scaling pattern in
relation to a utility function. The scaling actions are A3

(drop chrominance); A2(30) (drop up to 30% of the DCT
coefficients using DRS); A1 (dropping B frames); and
A2(100) (drop up to 100% of DCT coefficients  using DRS).
The utility function comprises a concatenation of four parts
each corresponding to a different scaling patterns. For
example, between utility values 5 and 4 the utility function
is a step function as a result of the scaling pattern S4, which
consists of one scaling action A3, that is dropping
chrominance. Between utility values 4 and 3, the utility
function has a continuous concave shape as a result of the
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scaling pattern S3, which comprises two scaling actions:
drop chrominance (A3) and drop up to 30% of DCT
coefficients using DRS (A2(30)).

B. Aggregated Objects

In MPEG-4, a number of elementary streams
corresponding to different video objects can be multiplexed
into the same network session at the FlexMux and
TransMux layers [5]. Utility functions constructed for
single video objects therefore need to be aggregated
together into a form suitable for network-wide utility-based
bandwidth allocation. By associating a priority with a video
object we can define a scaling order for different video
objects in the case of aggregation. A lower priority video
object could be dropped before a higher priority object is
scaled down. In this respect an aggregated utility curve will
have a shape representing a concatenation of two utility
curves for video objects with high and low priority objects.
The resulting curve is normalized over a 5-level mean-
opinion-score (MOS) scale [6]. Objects that have the same
priority are scaled proportionally according to a utility-fair
algorithm [9]. In this case, the aggregated utility curve is
calculated based on the utility-fair algorithm.

Utility functions and scaling profiles are dynamically
created by the utility generator and dispatched to the
content scaler as illustrated in Figure 2. The content scaler
forwards utility functions to the bandwidth allocator to
make resource reservations. Since the generation of utility
curves and scaling profiles can occur frequently, an
efficient signaling scheme is required to ensure the timely
delivery of scaling information to distributed algorithms
(e.g., the content scaler). We use the MPEG-4 Object
Extension Descriptor component [5] for signaling this
information across the network. We define a Scaling
Extension Descriptor that contains (i) a utility function for
each elementary stream; (ii) an aggregated utility function;
and (iii) a scaling profile comprising the scaling pattern and
the aggregation priority associated with all active video
objects. The utility function is represented by a vector of
discontinuity points (ui , Ri). The scaling pattern takes the
form of an array of URLs that point to the location of a

specific media scaling implementation. The structure of the
Scaling Extension Descriptor is similar to the Elementary
Stream Descriptor that carries URLs and stream priority
[5].

IV. THE CONTENT-BASED UTILITY FUNCTION ESTIMATOR

The dynamic generation of bandwidth utility functions
requires large amount of processing power. Given the
current state-of-the-art, generation of utility functions on a
frame-by-frame basis is difficult to achieve in real-time
[10]. In what follows, we describe a technique for content-
based utility function estimation that accelerates the
generation of utility functions.

A. Model

The proposed technique does not rely on the explicit
generation of utility functions for each video object. Rather,
it uses video content and machine learning techniques to
determine the utility class of an object. Because video
content can be dynamically extracted from compressed
video streams, this technique is suitable for real-time
applications. Note that we use the term “video object” (VO)
to refer to either a video frame in the case of frame-based
encoding (e.g., MPEG-1, MPEG-2, H.263) or a video
object plane (VOP) as in the case of MPEG-4 [5]. Figure 4
illustrates the architecture of a content-based utility
function estimator [2] that can support a variety of
compression schemes. The sub-system architecture
comprises two main components: an adaptive content
classification loop and a real-time estimation path. The
adaptive content classification loop comprises the per-frame
utility generator, training pool, utility clustering module and
decision-tree generator. The real-time estimation path
comprises content analyzer and utility selector. The
adaptive content classification loop (also referred to as an
adaptation loop) and the real-time estimation path operate
asynchronously. Based on content features extracted online
by the content analyzer, the utility selector dynamically
determines the utility class and the corresponding
characteristic utility function for each video object. An
adaptation loop is activated to periodically re-compute
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decision tree parameters used by the utility selector.
Explicit computation of the utility function is performed at
this point for the selected video objects. In this manner, the
architectural model decouples the adaptation loop
processing that is computationally intensive from the real-
time estimation path. The system operate in real-time by
avoiding explicit per-object generation of utility functions.

B. Real-time Estimation Path

The real-time estimation path illustrated in Figure 4
supports the estimation of utility functions on a frame-by-
frame basis where estimation is based on the content
features extracted by the content analyzer. Incoming
MPEG-4 video streams are demultiplexed and individual
video object streams dynamically extracted by the content
analyzer. The analyzer processes individual video object
streams extracting video content information in real-time
[11]. Content information comprises visual features and
encoder-specific features. Visual features describe video
object characteristics (e.g., video object size, speed, etc.)
that do not change if an alternative encoding technique is
applied.  In contrast, encoder-related features are sensitive
to specific encoding technique and encoder parameters
(e.g., frame type, DCT values, number of bits for various
encoder-specific stream components, etc.). Most content
features can be extracted directly from compressed video
streams (e.g., object size, picture type). However, some
encoder-related features can be only obtained from the
encoder itself (e.g., PSNR). Therefore, the extraction of
content features is somewhat dependent on the location of
the content analyzer in the system (e.g., at the video server
or base station). When content analyzer is not co-located
with at the video server additional information not readily
available in the network can be carried in the extension
fields of the MPEG-4 Object Descriptor. In this case, the
content analyzer will be able to extract this information
directly from the stream’s Object Descriptor and can be
placed at any point in the system.

Accurate estimation of video object features is complex
and requires substantial processing power. It typically
requires evaluation of the original video sequence in the
spatial domain. Typically, high estimation accuracy of
features is not crucial for networking applications discussed
in this paper. Content features can be estimated with a good
level of accuracy directly from compressed video streams
minimizing the need for computationally intensive
resources needed to power such algorithms. In addition, the
content analyzer selects some video objects for further
evaluation in the adaptation loop. The selected video
objects can be (i) directly evaluated to speed the future
computing of utility functions and (ii) stored with their
associated content feature information in the training pool.
The algorithm that selects which video object to use during
the adaptation loop is out of the scope of this paper.
However, the video object indicating “substantial change”
in its visual content will be likely selected.

Assuming that the system has been initialized and the
adaptation loop has estimated the decision tree parameters
[2] (discussed later) then the real-time estimation of utility

functions is realized in the following manner. First, content
features are extracted in real-time from the compressed
video stream by the content analyzer. Second, the utility
selector uses these features to determine the utility class of
the current video object. This selection is based on the
decision tree [2] that is periodically updated during the
adaptation loop. Finally, once a utility class has been
determined, a characteristic utility function for that class
(which is determined initially during the training period) is
selected for the video object. The long-term prediction of
utility functions is realized using a long-range utility
function predictor discussed in Section V.

C. Adaptive Content Classification Loop

The operation of the adaptation loop is computationally
intensive and difficult to apply on a per-video object basis.
Therefore, the adaptation loop is only invoked
intermittently and is functionally independent of the real-
time estimation path. The adaptation loop uses a subset of
the previously evaluated video objects for the computation
of the decision tree. The set of previously selected and
evaluated video objects is stored in the training pool. The
selection of these objects is based on heuristics. Video
objects are selected periodically or when their content
features have substantially changed. For example, video
objects that are selected from different scenes tend to have
content features substantially different from each other. The
selection of video objects included in the training pool is
managed by the content analyzer. The selected video object
is evaluated and its utility function and content features
placed in the training pool. The per-frame utility function
generator estimates bandwidth utility functions based on the
encoding method and scaling profile used by each video
object. Object selection supports smooth adaptability to the
various video content. Smooth adaptation is assured by
continuously replacing and re-clustering new video objects
in the training pool [2] as they appear.

A utility clustering module performs automated
clustering of objects using unsupervised classification
algorithms [4] operating on selected features of the utility
function [2]. The module clusters utility functions of
different video objects stored in the training pool into a
small set of utility classes. When clustering is complete, all
the video objects in training pool are marked according to
the class they belong to. The decision-tree generation
algorithm then uses the marked video object's to form the
decision tree used by the utility selector. The characteristic
utility function is estimated from utility functions within the
same utility class and is used as a utility function estimator
for its class. The decision-tree generator starts its operation
after re-clustering is complete. The operation is based on
machine learning techniques; in particular, supervised
classification algorithms [12]. The decision-tree generator
determines the decision tree by using utility classes derived
by the utility clustering module and content features are
extracted by the content analyzer. Note that decision-tree
generator does not use parameters describing utility
functions. Once a decision tree is formed, the utility class of
a particular video object can be determined by using the



video object’s content feature. This operation is performed
by the utility selector, which uses the decision tree to
estimate the utility function.

V. THE LONG-RANGE UTILITY FUNCTION PREDICTOR

Utility functions are not generated once and expected to
remain valid over the lifetime of a video stream. Rather,
they are time varying due to their sensitivity to changes in
the stream. Typically, network adaptation operates over
much longer time-scale, potentially in the order of hundreds
of milliseconds to tens of seconds and is conditioned by the
signaling/control system capacity, traffic load and the round
trip delay between a source encoder and receiving decoder.
There is a need to reconcile the mismatch between these
two distinct time-scales. We propose to push the utility
function generation interval as close to the network
adaptation time-scale thereby attempting to keep the
generated utility function “accurate” over longer time-
scales. The long-range utility function predictor is designed
to address this challenge. The predictor operates at the last
stage of the utility function generator process as illustrated
in Figure 2.   The predictor applies an adaptive filtering
algorithm [10] based on instantaneously generated utility
curves provided by the utility estimator as discussed in the
previous section. The adaptive filtering algorithm
dynamically adjusts the degree of relaxation for the utility
function (i.e., it over-estimates a stream's bandwidth
requirement thereby reducing the need for updating existing
utility functions). A drawback of this approach is that over-
estimation of a utility function can lead to over-allocation
of bandwidth which should be avoided.

In what follows, we outline the operation of the
prediction algorithm. As utility functions are constructed
from sample points, a utility curve is represented by its
corresponding sample rate vector R. The prediction
algorithm uses an expanding factor e that “inflates” the
bandwidth demand hedging that a predicted utility function
will remain at the upper bound of the bandwidth demand of
its instantaneous utility function over the next utility
duration T. The prediction algorithm aims to dynamically
adjust this expanding factor by closely tracking the
dynamics of instantaneously generated utility functions.
The prediction algorithm operates in normal and exception
modes. In the normal mode, the prediction algorithm
generates one predicted utility function every T interval. In
this case, the duration T is defined as the utility duration
and should ideally be in the order of the network adaptation
time-scale. During this interval, the prediction algorithm
continuously uses instantaneous utility functions Rk to
update its internal measurement Ravg, following a moving
average formula: Ravg = α  * Ravg + (1-α ) Rk, where α   is a
control parameter. When the T interval expires, the
algorithm multiplies the Ravg with an expanding factor e to
generate a new predicted utility function for the next T
interval. The expanding factor e is decreased by a small
decrement edec until e reaches 1.

In the exception mode, the prediction algorithm manages
violations. A violation is defined when the currently
predicted utility function has to be changed to

accommodate a newly generated instantaneous utility
function that exceeds the bandwidth demand of the
currently predicted utility function. When violations occur
the utility predictor moves to exception mode processing.
The algorithm then increases Ravg corresponding to the
utility curve that registered the violation. The expanding
factor is increased by an increment einc. The prediction
algorithm then generates a new predicted utility function
using the updated values and interacts with the bandwidth
allocator (as illustrated in Figure 1) to re-negotiate
bandwidth on an end-to-end basis. The pseudo-code for the
prediction algorithm can be found in [10].

The network adaptation time-scale may also change over
time. For example, if the network adaptation time-scale is
coupled to the round trip delay for networks with time-
varying end-to-end delay. Therefore the utility duration T
needs to be programmable. The utility predictor provides a
utility generation trigger interface for this purpose as
illustrated in Figure 2. This interface activates the
asynchronous generation of instantaneous utility functions
on-demand complementing the periodic generation based
on the content adaptation time-scale. This interface can be
programmed by the network to force a refresh of the current
utility functions.

VI. EVALUATION

In this section, we present experimental results from the
implementation of the proposed framework focusing on the
performance of the content-based utility estimator and long-
range utility predictor components of the framework. The
experimental results demonstrate the viability of our
approach.  The integration of these mechanisms into the
MPEG-4 transport and content scaler is for future work.

A. Experiment Setup

In comparison to continuous-rate scaling methods, discrete-
rate scaling methods are straightforward to model (e.g., by
measuring the rate of the dropped components and the
associated drop in utility value based on the scaling profile).
In the following experiments we are primarily concerned
with how to stabilize utility functions and without loss of
generality we focus on continuous-rate scaling methods
(e.g., dropping DCT coefficients). We have selected the
dynamic rate shaping algorithm as a means of
implementing the dropping of DCT coefficients because it
minimizes distortion under any given rate. For evaluation
purposes, the scaling profile is statically configured  during
experimentation to contain only dynamic rate shaping
scaling methods. In this case, the profile selector simply
defines the maximum (Rmax) and minimum (Rmin) scalable
rate. The selector generates 50 scaling rate samples that are
evenly spaced in the range (Rmin , Rmax ).  The per-frame
utility generator is implemented using the dynamic rate
shaping source code [3]. For simplicity, the utility metric is
defined based on the Signal-to-Noise Ratio (SNR)1. The

                                                          
1 

The bandwidth utility function u(r) is defined as: u(r) = 1 - err2(r) /
sig2, where sig2 = Σi=1, N Xi

2 / N  and  err2(r) = Σi=1, N (Xi - Yi (r) )2 / N.   The
sig2 component is the mean energy each pixel has in the original picture



investigation of more sophisticated objective utility metrics
incorporating human vision systems is the subject of on-
going research.

B. Content-based Utility Estimation Experiment

In what follows, we discuss the implementation issues
associated with the content-based utility function estimator.
In our experiments, we have used an MPEG-2 video stream
consisting of 3000 frames created from the movie “Forrest
Gump” using the Columbia University MPEG-2 software
encoder. Our classification experiment is based on a subset
of this trace, namely 734 frames consisting of P-frames
only.

1) Implementation
We have simulated the operation of all the functional

modules within the content-based utility estimator as
illustrated in Figure 4. In our simulation experiments, one
set of video objects was used for training the utility
clustering module and the generation of a decision-tree. A
second set of video objects was used to obtain the
classification results used by the utility selector. We
randomly select half of the video objects and placed them in
the training pool thus bypassing the video object selection
algorithm discussed in Section V. We have implemented an
MPEG-2 content analyzer that extracts content features in
the compressed domain. The content analyzer was
implemented using the Columbia University MPEG-2
software decoder and broadly operates as follows. First the
content analyzer conducts video scene detection then video
object detection and finally, content feature extraction.
Because the analyzer operates in the compressed domain,
the original MPEG-2 decoder was simplified to contain
only parts necessary for scene detection, video object
detection and visual feature estimation. In particular, the
computationally intensive inverse DCT function was fully
omitted. This simplification results in real-time
performance on a general-purpose workstation. For
example, on SUN SPARCstation 5 it is possible to analyze
the content of each video frame in less than 10 ms (i.e.,
before the next frame needs to be processed).

The following content features are extracted directly
from the encoded MPEG-2 video stream: current frame
size, number of objects, object size (in macroblocks),
average and variance of motion vectors, number of
forward-predicted macroblocks, number of DCT-encoded
macroblocks, camera operation parameters (viz. translation,
zoom and divergence speed), and average energy of AC
DCT coefficients. We have found that classification
accuracy can be greatly increased by including the PSNR in
the content information where the PSNR is obtained
directly from the encoder.

Functions associated with the utility clustering module
and decision-tree generator were simulated using publicly
available machine learning tools. In particular, the utility

                                                                                                
and err2 the mean square error between the distorted image and the original
image. N represents the number of pixels in the picture, Xi and Yi are the
ith DCT coefficients in the original and distorted images, respectively. The
metric is then normalized into the range of 1 to 5 to correspond to the
MOS 5-level quality index.

clustering module was realized using the Autoclass III [4]
and decision-tree generator was based on the OC1 software
[12]. Autoclass III is Bayesian unsupervised classifier that
predicts class membership given unlabeled test cases.
Autoclass III was configured to automatically select a fixed
number of 17 classes used during classification. OC1 is a
supervised machine learning system based on oblique
decision trees. Decision trees of this form consists of linear
combination of the attributes at each internal node and can
be viewed as simply a more general form of axis-parallel
univariate decision trees. Detailed description of these tools
can be found in [4] [12].

2) Results
Each per-frame utility function was constructed from 21

rate samples. These samples were evenly distributed in the
range 0% to 100% of the original stream bit-rate. Individual
sampling points were obtained using the dynamic rate
shaping (DRS) system [3]. Utility functions were then
processed by the utility clustering module. Figure 5
illustrates one snapshot of the classification results. In this
example, 17 classes are formed out of total 734 per-frame
utility functions. Each sub-graph illustrates all the
individual utility functions within a single class. These are
shown as shaded curves in Figure 5. The single dark curve
represents the characteristic utility function of the class,
which is obtained, in this case, as 10 percentile of the utility
curves belonging to each class.

The classes are numbered from 0 to 16. The number in
parenthesis indicates the number of utility functions in each
class. In this case, the number of utility functions in a single
class ranges from 16 to 67. The figure shows the good
classification performance of the Autoclass III software, as
the utility functions of similar shapes are clustered into the
same utility class.

After utility classification is complete, the decision tree
generator forms the decision tree from the extracted content
features serving as feature points in supervised
classification. The decision tree represents a hierarchical
mapping between content feature vectors and utility classes.
Figure 6 illustrates the classification results based on
decision tree using the same presentation as Figure 5. The
decision tree accuracy is crucial to the real-time
performance of the system. The decision tree enables
estimation of the utility function given a set of content
features that are easy to obtain from compressed video
streams. However, since content features do not contain
direct information regarding utility functions, mismatches
between content features and utility classes can occur. In
other words, at some instances, a decision tree is not able to
correctly identify a utility class based on analyzed content
features alone. This effect can be observed in Figure 6. For
example, comparing classes 9 in Figures 5 and 6, one can
find several utility curves that are incorrectly classified into
class 9 by decision tree. In practice, this will lead to the
utility selector selecting the wrong characteristic utility
function. Table 1 summarizes the accuracy of the decision
tree for each of the 17 utility classes obtained during the
simulation experiments. The overall classification accuracy
of the whole set of utility functions was found to be 91 %;



that is to say, among the total 734 video objects, 91 % of
them were classified correctly using content features. This
high level of classification accuracy demonstrates the
viability of the approach.

C. Long-range Utility Predictor Experiment

In what follows, we present the evaluation of the utility
predictor that keeps generated utility functions meaningful
over longer time-scales. The experiments used two MPEG-
2 video traces notably the Chef (1 minute TV interview)
and TrueLies (3.5 minutes action movie excerpt) video
clips, where the Chef video sequence has relatively slow
scene changes and TrueLies relatively fast changes. The
prediction algorithm is designed to operate over the
quantized instantaneous utility functions. We quantize the
instantaneous utility functions easing the processing and
reducing the number of states required since quantization
reduces the number of rate samples representing a utility
function.

In this experiment, we use the 5-level MOS quantization
scale [6]. Utility levels 0, 1, . . ., 4 are mapped into discrete
utility values 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. Let rk

denote the rate value corresponding to the kth utility level.
rk is calculated via linear interpolation to locate the rate that
causes u(R) to cross the kth discrete utility value. The
resulting 5 sample points (r0 , 0), (r1 , 1), (r2 , 2), (r3 , 3),

and (r4 , 4), together with two end points (Rmin , 0) and (Rmax

, 4), support the construction of a piecewise-linear utility
function whose utility range is [0, 4].

1) Adaptive Prediction Algorithm
We apply the prediction algorithm to both traces, with an

α  = 0.8 and an initial expanding factor e0 = 1.2. In addition,
we set einc = 0.1 and edec = 0.01 so that the expanding factor
slowly decreases when there is no violation and quickly
increased when violations occur. Figure 7 illustrates the
generated utility functions for T = 30 seconds. Once
generated, each curve is used to represent the stream’s
adaptation capability to bandwidth variation for the next 30
seconds. In Figure 7(a) and 7(b), we observe that half of the
curves do not have shapes like step functions at the
maximum scalable rate. Rather, they span the range of
scalable rates. This demonstrates that the derived utility
functions track the scalability of the video streams rather
well. The number of step shaped utility functions in Figure
7(b) result from a single violation at time equal to 19
seconds. When an increment is added to the expanding
factor, the next three curves generated follow step functions
simply because of the large expanding factor. However, the
prediction algorithm corrects its operation by continuously
reducing the expanding factor until no violations are
observed during the utility duration. Observe that at time
141 seconds into the operation, the generated curve takes on

0

0.5

1
0 (68)

0

0.5

1
1 (66)

0

0.5

1
2 (63)

0

0.5

1
3 (60)

0

0.5

1
4 (58)

0

0.5

1
5 (57)

0

0.5

1
6 (52)

0

0.5

1
7 (49)

0

0.5

1
8 (41)

0

0.5

1
9 (38)

0

0.5

1
10 (31)

0

0.5

1
11 (28)

0

0.5

1
12 (28)

0

0.5

1
13 (27)

0

0.5

1
14 (26)

0

0.5

1
15 (26)

0

0.5

1
16 (16)

Figure 5: Utility Classification Result

Table 1: Decision Tree Accuracy

Class 1 2 3 4 5 6 7 8 9
Accuracy 100% 100% 93.88% 90.00% 93.10% 100% 100% 98.08% 92.65%
Class 10 11 12 13 14 15 16 17
Accuracy 93.65% 92.59% 92.42% 90.32% 81.58% 53.57% 76.92% 78.57%



a non-step function once again.
The total number of violations observed during the

experiment is shown in Table 2. The data was collected for
experiments with e set at 1.1 to 1.3 with a timeout interval T
ranging from 10 to 50 seconds. The algorithm generally
performs well because the number of violations remains
small. This is due to adaptive nature of the prediction
algorithm, which dynamically increase or decrease the
expanding factor according to the degree of “relaxation” on
measurement and the occurrence of violations. Since the
observed number of violations does not change
significantly when T varies, it indicates that the violations
may occur in bursts, which could be caused by a sequence
of fast scene changes. In addition, we observe that the
number of violations do not increase as T increases. One
reason for this is that when the timeout interval is large, the
chance of reducing the expanding factor is smaller because
the expanding factor is only adjusted after a timeout has
occurred. This result implies that the algorithm will perform
as well for large and small T.

2) Prediction Error Analysis
To quantitatively analyze the measurement error

introduced by the prediction algorithm, we define two error
metrics that measure the maximum distance between a

predicted utility function u*(R) and an instantaneous utility
function uj(R) generated over the subsequent utility duration
for a predicted curve: (i) the over-estimation error err+,
which tracks the maximum amount of bandwidth over-
estimation between a predicted utility function and an
instantaneous curve; and (ii) the under-estimation error err-,
which captures the maximum amount of bandwidth under-
estimation. In mathematical definition, u*(R) 's error of
over-estimation on uj(R) is given by

err+ = maxi = 0, ... , 4 {  u*-1(i) - uj
-1(i) , 0 } / Rmax

and u*(R) 's error of under-estimation on uj(R) is given by
err- = mini = 0, ... , 4 {  u*-1(i) - uj

-1(i) , 0 } / Rmax

Note that u*-1(.) denotes the inverse function of u*(.).
Both metrics are defined as the percentage of over or under
allocation relative to the maximum rate Rmax. In Figure 8,
we illustrate the measured errors after applying our
prediction algorithm to the TrueLies video clip, with an
initial value of 1.2 for the adaptive expanding factor. The
utility duration T is set to 10 seconds in Figure 8(a) and 50
seconds in 8(b). The top curve in both figures represents the
over-estimation error that oscillates frequently within the
range of 5% and 20% over-estimation. The 20% over-
estimation results from an expanding factor of 1.2, which
essentially inflates the rate estimation by 20%. The under-
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Figure 6: Content Classification Result

Table 2: Number of Violations in Adaptive Prediction Algorithm

Chef Clip TrueLies Clip
T=10 T=20 T=30 T=40 T=50 T=10 T=20 T=30 T=40 T=50

e=1.1 4 2 2 2 2 4 5 5 5 5
e=1.2 2 3 0 2 0 2 1 1 1 1
e=1.3 0 0 0 0 0 1 0 0 0 0



estimation error mostly remains zero and generates a
negative spike of less than -3% only when there are
violations.

We performed utility prediction offline to determine the
best possible performance achievable. The offline utility
predictor stores all the instantaneous utility functions
generated during a target utility duration to accurately
derive the predicted utility function. The resulting system
becomes noncausal as it uses posteriori data to generate
predicted utility functions. Figure 9 illustrates the best
estimation error achieved by the offline algorithm for the
TrueLies video clip with a utility duration of 50 seconds.
The under-estimation error is constantly zero. The over-
estimation error has a similar shape to Figure 8 but is
shifted to the range of 0% and 15%. In this case the over-
estimation error is predominantly caused by the intrinsic
scene changes of the video content and not by the utility
generation procedure.

    After comparing the over-estimation errors in both
Figure 9 and 8, we observe that: (i) the two over-estimation
curves in Figure 8 are of similar shape indicating that the
proposed prediction algorithm is not sensitive to the length
of the utility duration; and (ii) the over-estimation error in
Figure 9 is of the similar shape to Figure 8 but is smaller by
an amount of 5%. This 5% is caused by the difference
between the 20% expanding factor and the 15% peak error
shown in Figure 9. We argue that the proposed prediction

algorithm performs well in tracking the intrinsic scalability
of video streams. The extra degree of over-estimation (e.g.,
5% in Figure 8) is necessary for a causal system and
represents a tradeoff between the tightness of utility
estimation and stability of utility duration.

VII. CONCLUSION

In this paper, we have proposed a utility-based network
adaptation framework that enables content-aware adaptive
MPEG-4 video delivery over time-varying networks. The
design of the scaling profile exploits MPEG-4 object-level
scalability and is closely coupled with the media scaling
techniques employed by network adaptation mechanisms.
The utility generator employs a video content classification
algorithm to speedup processing and an adaptive prediction
algorithm to keep dynamically generated utility functions
meaningful over network adaptation time-scales.  Our
experimental results demonstrate that the proposed
framework represents a viable approach to delivering
scalable MPEG-4 media over time-varying networks.

For future work, we plan to complete the integration of
the utility generation, content scaling and bandwidth
renegotiation mechanisms into the MPEG-4 system and its
DMIF transport.  Once we are satisfied with the broader
performance of the system we plan to port it to our
programmable mobile networking environment [17] to
manage scaling of media from the base-to-mobile. Also, we
plan to investigate the introduction of more sophisticated
utility metrics that consider human vision systems capturing
perceptual visual.
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