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Abstract--To classify a packet as belonging to a flow often 

requires network systems—such as routers and firewalls—to 
maintain large data structures and perform several memory 
accesses. Network processors, on the other hand, are generally 
configured with only a small amount of memory with limited 
access bandwidth. Hence, a key challenge is to design packet 
classification algorithms that can be implemented efficiently on 
network processor platforms. We conjecture that the design of 
such algorithms will need to exploit the structure and 
characteristics of packet classification rules. In this paper, we 
analyze several databases of classification rules found in firewalls 
and derive their statistical properties. Our analysis yields three 
main conclusions. (1) The rules found in classification databases 
contain two types of fields—source-destination IP address pairs 
that identify network paths and transport-level fields that 
characterize network applications; further, the databases contain 
many more network paths than applications. (2) IP address pairs 
identify regions in a two-dimensional space that overlap with each 
other; however, the number of overlaps is significantly smaller 
than the theoretical upper-bound. (3) Only a small number of 
transport-level fields are sufficient to characterize databases of 
different sizes. We justify our findings based on several standard 
practices employed by network administrators, and thereby argue 
that although our findings are for specific databases, the 
properties are likely to hold for most databases. Based on these 
findings, we suggest a classification architecture that a can be 
implemented efficiently on network processors.  

I. INTRODUCTION 

ACKET classification involves identifying flows from 
among a stream of packets that arrive at routers. It is a 

fundamental building block that enables routers to support 
access control, Quality of Service differentiation, virtual 
private networks, and other value added services. To be 
classified as belonging to a flow, each packet arriving at a 
router is compared against a set of rules. Each rule contains 
one or more fields and their associated values, a priority, and 
an action. The fields generally correspond to specific portions 
of the TCP/IP header—such as the source and destination IP 
addresses, port numbers, and protocol identifier. A packet is 
said to match a rule if it matches every field in that rule. On 
identifying the matching rules, actions associated with the 
rules are executed.  
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Packet classification is often the first packet processing step 
in routers. It requires network systems to maintain and to 
navigate through search data structures. Since flows can be 
identified only after the classification step, to prevent 
performance interference across flows, network systems must 
ensure that classification operates at line speeds. 
Unfortunately, the overhead of navigating through search data 
structures can often exceed the time budget enforced by the 
line-speed processing requirement. Thus, a key challenge is to 
design packet classification algorithms that impose low 
memory space and access overhead and hence can scale to 
high bandwidth networks and large databases of classification 
rules.  

In this paper, we take a step in the direction of designing 
such efficient classification algorithms. In particular, we study 
the properties of packet classification rules; our intent is to 
expose characteristics that can be exploited to design packet 
classifiers that can scale well with link bandwidths and the 
sizes of classification rule databases. Since access control is 
the most common application of packet classification today, 
we study four databases of classification rules collected from 
firewalls supported by large ISPs and corporate intranets. Our 
analysis yields the following key observations:   

1. The fields contained in each rule in firewall databases can 
be partitioned into two logical entities: (1) source and 
destination IP address pairs that characterize distinct 
network paths, and (2) a set of transport-level fields (e.g., 
port numbers, protocol identifier, etc.) that characterize 
network applications. In most cases, the number of 
distinct network paths far exceeds the number of network 
applications.  

2. The IP address pairs define regions in the two-
dimensional space that can overlap with each other. 
However, the number of overlaps is significantly smaller 
than the theoretical upper-bound. 

3. Many source-destination IP address pairs share the same 
set of transport-level fields. Hence, only a small number 
of transport-level fields are sufficient to characterize 
databases of different sizes.  

We justify these observations based on standard network 
administration practices; and thereby argue that these findings, 
although derived from a small number of databases, are likely 
to hold for most firewall databases. Based on these findings, 
we provide the following guidelines for designing efficient 
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classification algorithms. 

1. The multi-dimensional classification problem should be 
split into two sub-problems (or two stages): (1) finding a 
2-dimensional match based on source and destination IP 
addresses contained in the packet; and (2) finding a (n-2) 
dimensional match based on transport-level fields. 
Whereas the first stage only involves prefix matching, the 
second stage involves the more general range matching. 

2. Because of the overlap between IP address filters 
maintained in a database, each packet may match multiple 
filters. Identifying all the matching filters is complex. 
Since the total number of overlaps observed in firewall 
databases is significantly smaller than the theoretical 
upper-bound, a design that maintains all of the 
intersection filters and returns exactly a single filter is 
both feasible an desirable. 

3. Since each IP address filter is associated with multiple 
transport-level fields, identifying the highest priority rule 
that matches a packet requires searching through all the 
transport-level fields associated with the matching IP 
filter. Since the number of transport-level fields associated 
with most databases is rather small, it is possible to rely 
upon a small, special-purpose hardware unit (e.g., a 
TCAM unit) to perform the (n-2) dimensional searches in 
parallel. 

The paper is structured as follows. In Section 2, we 
formulate the classification problem and discuss our 
methodology for studying ACLs. We discuss our findings in 
Sections 3 and 4, and expose the implications of our findings 
in Section 5. Finally, Section 6 summarizes our contributions. 

 
TABLE I 

EXAMPLES OF CLASSIFICATION RULES 
src. IP 
address 

dest. IP 
address 

src. 
Port 

dest 
port action priority 

128.59.67.100 128.* * 15 drop 2 
128.* 128.2.3.1 * 24 DSCP 2 1 

II. PROBLEM FORMULATION 

Since access control is the most common application of 
packet classification today, we focus on the problem of packet 
classification in firewalls. In a firewall rule database, each rule 
contains one or more fields and their associated values, a 
priority, and an action. The fields generally correspond to 
specific portions of the TCP/IP header—such as the source 
and destination IP addresses, port numbers, and protocol 
identifier. Because of the hierarchical nature of IP address 
allocation, source and destination IP addresses are often 
specified as prefixes. To accommodate a collection of user or 
network management applications, port numbers are often 
specified as ranges. Finally, other protocol attributes, such as 
the protocol identifier, are specified as exact values. Table I 
shows some examples of classification rules. 

The first rule indicates that packets originating from the IP 
address 128.59.67.100, and destined to any host within the IP 

address domain beginning with 128 and port number 15 should 
be dropped. The priority level for this rule is 2. The second 
rule states that packets originating from any host in the domain 
beginning with 128, and destined to the host 128.2.3.1 and 
port number 24 should be forwarded with the Differentiated 
Services Code Point (DSCP) set to 2. This rule has priority 
level of 1.  

In this context, the packet classification problem can be 
stated as follows: Given a set—often referred to as an Access 
Control List (ACL)—of access control rules, determine the 
action A associated with the highest priority rule that matches 
packet p. To reduce the overhead of identifying rules that may 
match each packet, most packet classification algorithms 
employ search data structures for organizing classification 
rules. These data structures occupy memory space. 
Furthermore, navigating on these data structures incurs several 
memory accesses. In what follows, we first discuss several 
existing packet classification algorithms and argue that they do 
not scale well with increase in network bandwidth or ACL 
sizes. We then argue that understanding the structure and 
properties of ACLs is crucial in designing efficient, scalable 
algorithms. Finally, we describe our methodology for studying 
the properties of ACLs. 

A. State-of-the-art 
Existing packet classification algorithms can be grouped 

into four classes: trie-based algorithms, hash-based algorithms, 
parallel search algorithms, and heuristic algorithms. 
Throughout this discussion, we use n to denote the number of 
rules in a classification database, k to denote the number of 
fields (i.e., dimensions), and w to denote the maximum length 
of the fields (in bits).    

1. Trie-based Algorithms: Trie-based algorithms [2, 3] 
build hierarchical radix tree structures where once a match 
is found in one dimension a search is performed in a 
separate tree linked into the node representing the match. 
Examples of such algorithms are the Grid-of-tries [3] and 
Area-based Quad Tree (AQT) [5] algorithms. Trie-based 
algorithms require, in worst case, as many memory 
accesses as the number of bits in the fields used for 
classification. Multi-bit trie data structures are more 
efficient from the perspective of the number of memory 
accesses required. However, these data structures incur 
significantly higher memory space overhead. In general, 
trie-based schemes work well for single-dimensional 
searches. However, the memory requirement of these 
schemes increases significantly with increase in the 
number of search dimensions. 

2. Hash-based Algorithms: Hash-based algorithms [9] 
group rules according to the lengths of the prefixes 
specified in different fields. The groups formed in this 
manner are called ‘tuples’. Hash-based algorithms 
perform a series of hash lookups one for each tuple to 
identify the highest priority matching rule. Tuple space 
search has O(n) storage and time complexity. Hash-based 
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algorithms, in the worst case, require as many memory 
accesses as the number of hash tables, and the number of 
hash tables can be as large as the number of rules in a 
database. As a result, hash-based techniques do not scale 
well with the number of rules. An optimized hashing 
technique, referred to as rectangle search [9], reduces the 
lookup time complexity from O(n) to O(w) in two 
dimensions. However, to support lookups in more than 
two dimensions, the algorithm still requires a significant 
number of memory accesses1. 

3. Parallel Search Algorithms: These algorithms formulate 
the classification problem as an n-dimensional matching 
problem and search each dimension separately. In some 
algorithms [4], when a match is found in a dimension, a 
bit vector is returned identifying the matches.  The logical 
AND of the bit vectors returned from all dimensions 
identifies the matching rules. Such bit-vector techniques 
are associated with O(n) memory accesses in the lookup 
process. Fetching a single bit vector or an aggregate bit 
vector (as described in [13]) can be memory access 
intensive, especially in cases where the ACL contains 
more than a few thousand rules. Another parallel search 
technique called Cross-Producting Table [3] reduces the 
lookup time complexity to (O(kw)) where k is the number 
of fields and w is maximum length of the fields. However, 
this technique increases the worst case storage complexity 
to (O(nk)) making it impractical.  

4. Heuristic Algorithms: A fourth category of algorithms 
includes heuristic algorithms that exploit the structure and 
redundancy in the rule set [7, 8]. The algorithms proposed 
to-date are associated with very low lookup time 
complexity (O(k)); however, they impose significant 
memory space requirements (O(nk)). Hence, these 
algorithms are suitable for single- or two-dimensional 
searches, but their space requirement makes them unsuited 
for the more common five-dimensional searches. 

From the above discussion, it is apparent that exploiting the 
structure and properties of ACLs is a promising direction for 
designing packet classification algorithms that can scale well 
with link bandwidth and ACL sizes. Unfortunately, the 
literature contains no detailed studies of ACL properties. This 
is in-part because ISPs and enterprises, for privacy and 
security reasons, protect access to their rule databases. 
Recently, we have obtained access to four firewall databases 
from ISPs and corporate intranets. Hence, in this paper, we 
conduct a careful study to expose the structure and properties 
of these ACLs, and postulate how these properties can be used 
to design efficient classification algorithms. The design of 
specific packet classification algorithms, however, is beyond 
the scope of this paper. 

 
1 A lower bound on the complexity of rectangle search is discussed in [9]. 

It is proven than tuple probes can be at least w(k-1)/k! 

B. Experimental Methodology 
We analyze four firewall databases; three of these databases 

are from large ISPs, whereas one is from a corporate intranet. 
Table II summarizes the basic statistics of these ACLs. 

As Table II indicates, the ISP ACLs are generally much 
larger than those of the enterprise intranets. Further, it shows 
that the fields specified in ACLs can be partitioned into two 
logical entities: (1) source and destination IP address pairs that 
characterize distinct network paths represented in ACLs, and 
(2) a set of transport level fields (e.g., port numbers, protocol 
identifier, etc.) that characterize network applications. In most 
cases, the number of distinct network paths far exceeds the 
number of network applications represented in the ACLs. 

In what follows, we first analyze IP address pairs and then 
study the characteristics of transport-level fields. We justify 
our findings based on standard practices for creating ACLs 
used by network administrators. Hence, we argue that although 
our observations are derived from a small number of rule 
databases, our conclusions are likely to be valid across a large 
number of such rule databases. 

 
TABLE II 

SUMMARY OF ACLS 

 type number 
of rules 

number of unique 
source/destination 
IP address fields 

protocol 
types 

unique 
port 

number 
fields 

ACL1 ISP 754 426 4 140 
ACL2 ISP 607 527 5 30 
ACL3 ISP 2399 1588 5 192 
ACL4 Intranet 157 98 4 36 

III. IP PREFIX PAIR ANALYSIS 

Each rule in an ACL contains a specification of source and 
destination IP address pairs (also referred to as IP address 
filters). These addresses are specified as wildcards, prefixes, or 
exact values. Based on these specifications, the filters 
represent rectangles, lines or points in the two-dimensional IP 
address space. Further, the filters may overlap with each other. 
In what follows, we first conduct a structural analysis of the 
filters; this allows us to characterize ACLs as a composition of 
different types of filters (i.e., filters that represent a different 
shape in the two-dimensional space). We find that only a small 
number of filters contain wildcards in the source or the 
destination dimensions in the ISP ACLs. Further, for most 
filters that do not contain any wildcards, the destination field 
contains complete IP addresses (representing individual hosts), 
while the source field contains prefixes (representing IP 
address domains). Second, we analyze the overlaps among the 
filters. This allows us to characterize the number of filters that 
may match a packet, as well as the overhead of maintaining in 
the ACL a unique filter representing each of the overlaps such 
that the maximally matching filter can be uniquely identified 
for each packet. We find that overlaps are created mostly by 
filters that contain a wildcard in their source or destination 
fields. Since only a small number of filters contain wildcards, 
the actual number of overlaps observed in ACLs is 
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significantly smaller than the theoretical upper bound. 

A. Structural Analysis 
The source-destination IP address pairs can be classified 

into two types: Partially-specified filters and fully-specified 
filters. Partially-specified filters contain at least one wildcard 
(*) in the source or in the destination IP address dimension; 
these filters capture traffic sent to/from designated servers or 
subnets of ISP networks.  Fully-specified filters, on the other 
hand, contain an IP address prefix in both the source and 
destination IP address dimensions. These filters identify the 
traffic exchanged between specific IP address domains of ISP 
networks. In most cases, the traffic handled by fully-specified 
filters is exchanged between important servers (e.g., web, e-
mail, NTP, or streaming servers) and clients.  

Each IP address filter can be represented geometrically as a 
point, a line, or a rectangle in a two dimensional IP address 
space. Whereas partially-specified filters of the form (*,*) 
cover the entire two dimensional address space, filters of the 
form (x, *) and (*, y) can be represented either as a line or a 
rectangle in the 2-D space depending on the values of x and y. 
If x and y represent IP address domains (i.e., IP prefixes of 
length smaller than 32), then these filters are represented as 
rectangles; on the other hand, if x and y denote hosts (i.e., full 
32-bit IP addresses), then the corresponding filters are 
represented as lines. Similarly, depending the lengths of x and 
y, fully-specified IP address filters of the form (x, y) represent 
lines, points, or rectangles in the two dimensional space.  

 
TABLE III 

PARTIALLY- AND FULLY- SPECIFIED FILTERS 

 partially-
specified filters 

fully-specified 
filters 

total number of 
filters 

ACL1 4 (1%) 421 (99%) 426 
ACL2 68 (13%) 458 (87%) 527 
ACL3 160 (10%) 1427 (90%) 1588 
ACL4 83 (86%) 14 (14%) 98 

 
TABLE IV 

BREAKDOWN OF PARTIALLY-SPECIFIED FILTERS 

 wildcard in source 
address 

wildcard in 
destination address 

ACL1 2 2 
ACL2 36 32 
ACL3 112 48 
ACL4 12 71 

 
Table III shows the breakdown of partially- and fully-

specified filters in our firewall ACLs. It illustrates that, 
whereas partially-specified filters represent a small percentage 
of the total number of filters in large ISP databases; they 
constitute a significant percentage of the relatively small-size 
enterprise intranet firewall ACL. This is because large ISPs 
often describe administrative policies between specific IP 
address domains within their network. Examples of such 
policies include the admission of all HTTP traffic between a 
server and a client subnet, or the blocking of all RTSP traffic 
between two specific IP address domains. In intranets, on the 
other hand, administrators do not specify cross-domain traffic 

management policies, since such policies are often enforced by 
their ISP. Instead, most of the rules in intranet firewalls refer 
to specific sources or destinations, but not both.   

We further analyze the partially-specified filters to 
determine the relative occurrence of the wildcard in the source 
or the destination IP address fields, as well as the lengths of 
specified IP addresses. We find that in the intranet ACL, 
which is the smallest in size, filters with the wildcard in the 
destination address are the majority. In the first two ACLs, 
which are of medium size, there is a balance between the 
filters that have the wildcard in the source and destination 
address fields. In the third ACL, which has the largest size, 
most filters have the wildcard in the source address field.  
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Fig. 1. Distribution of prefix lengths for partially-specified filters 
 
From the results of table IV it appears as if there is a 

dependency between the size of an ACL and the numbers of 
filters that have the wildcard in the source or destination IP 
address fields. Typically, the smaller an ACL is the closer to 
client networks the firewall is located. The intranet ACL in our 
example describes policies that block the traffic form many 
specific client subnets of the intranet and thus contains many 
rules having the wildcard in the destination dimension. Larger 
ACLs on the other hand are closer to the Internet core and 
describe higher-level policies for connecting to important 
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servers or networks. Such policies are typically expressed as 
rules having the wildcard in the source dimension.  

Figure 1 shows the distribution of prefix lengths for 
partially-specified filters. It shows that the source and 
destination IP address specifications are spread across the 
entire range of prefix lengths, with 8-bit, 16-bit, 24-bit and 32-
bit prefixes constituting the majority. Geometrically, this 
indicates that most partially-specified filters represent lines or 
rectangles characterized by a few standard width values in the 
two-dimensional space.  

 
TABLE V 

BREAKDOWN OF FULLY-SPECIFIED FILTERS 

 domain-
domain filters 

host-domain 
filters 

domain-host 
filters 

host-host 
filters 

ACL1 30 31 37 323 
ACL2 124 99 154 81 
ACL3 165 18 755 489 
ACL4 9 0 2 3 
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Fig. 2. Distribution of source and destination prefix lengths for fully-

specified filters 
 
There are four types of fully-specified filters: (1) filters that 

characterize traffic exchanged between two domains, (2) filters 
that characterize traffic originating within a domain but 
destined to a host, (3) filters that characterize traffic 
originating a host destined for an IP domain, and (4) filters that 

characterize traffic exchanged between a specific pair of hosts. 
In these filters, a host is represented using a 32 bit address 
(IPv4 address) while a domain is represented by a shorter 
prefix. Table V shows the breakdown of these four types of 
filters in our ACLs. It shows that majority of the fully-
specified filters represent communication where either the 
sender or the receiver is a host. In many cases these hosts are 
servers representing important resources of large networks. On 
the other hand, in the intranet ACL the majority of fully-
specified filters represent Domain-Domain filters.  

 
TABLE VI 

TRIE BLOCK ANALYSIS 

 
number of 

unique source 
prefixes 

observed 
number of 
source trie 

blocks 

theoretical bound 
on the number of 
source trie blocks 

ACL1 97 29 759 

ACL2 182 231 1439 

ACL3 431 496 3256 

ACL4 79 127 615 

 

number of 
unique 

destination 
prefixes 

observed 
number of 
destination 
trie blocks 

theoretical bound 
on the number of 
destination trie 

blocks 

ACL1 205 383 1623 

ACL2 207 243 1639 

ACL3 516 620 3855 

ACL4 20 60 155 

 
Figure 2 shows the distribution of source and destination 

prefix lengths for fully-specified filters. Geometrically, this 
indicates that most fully-specified filters represent lines or 
points in the two-dimensional space. The spatial distribution of 
IP prefixes is a very important property, especially to analyze 
requirements to store the IP prefixes. We have created a 4-bit 
trie data structure for both source and destination IP addresses, 
measured the number of trie blocks required to store IP 
prefixes, and compared this number with theoretical maximum 
for number of trie blocks. The results are shown in Table VI. 
We find that the total number of trie blocks needed to 
represent source and destination prefixes is much less than the 
theoretical upper bound in real world data bases. 

From the above analyses, we derive the following general 
conclusions: 

1. Filters in real world ACLs are either fully-specified or 
partially-specified. Partially-specified filters represent a 
small percentage of the total number of filters in medium 
and large size ACLs. 

2. The breakdown of partially-specified filters between 
filters having the wildcard in source and destination IP 
addresses may depend on the size of the ACL. Careful 
study of more ACLs would help investigating the 
existence of such dependency. 

3. Most fully specified filters are segments of straight lines 
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or points in medium and large size ACLs. 

4. Trie data structures representing source and destination 
prefixes require much fewer blocks than the theoretical 
upper bound.        

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Worst-case filter structure 

 

B. Overlap Analysis 
The geometrical objects representing filters may overlay in 

the two dimensional space. Since each packet represents a 
point in the two dimensional space, it may be contained within 
the geometrical space defined by one or more filters in the 
ACL. In such an event, a packet may match multiple filters 
within the ACL; hence, identifying the highest priority rule 
requires comparing transport-level fields associated with all 
the matching filters with the appropriate fields contained in the 
packet. Clearly, the larger the number of filters that a packet 
may match with, the greater is the complexity of identifying 
the highest priority rule that matches the packet. In the worst-
case, if all filters within an ACL overlap with each other (as 
shown in Figure 3), then identifying the highest priority rule 
for a packet that represents a point in the intersection of these 
filters may require a search on all filters. Thus, the complexity 
of packet classification depends on the amount of overlap 
between filters (which in turn determines the number of filters 
that may match a packet).  

 
TABLE VII 

NUMBER OF FILTERS THAT MAY MATCH A PACKET 

 average standard 
deviation maximum 

ACL1 4.00 0.36 5.00 
ACL2 3.96 0.73 7.00 
ACL3 3.75 0.84 7.00 
ACL4 3.71 0.90 7.00 

 
In what follows, we analyze our ACLs for their overlap 

properties. Table VII and Figure 4 show the distribution of the 
number of filters that may match a packet. Figure 4 illustrates 
that for all the ACLs, on an average, about 4 filters match 
every packet. Although this is not a very large number, 
identifying these filters imposes significant overhead. The 
navigation on the data structures that store two-dimensional 

filters (e.g., hierarchical singe-bit or multi-bit tries) typically 
requires significantly more memory accesses than the number 
of filters matching a packet. For instance, the Extended Grid of 
Tries (EGT) algorithm reported in [12] requires 137 accesses 
to classify packets from a database of 2799 rules.  
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Fig. 4. Distribution of the number of filters that may match a packet 
 

TABLE VIII 
OBSERVED FILTER OVERLAPS  

 number 
of rules 

number 
of filters 

observed 
number of 

partial overlaps 

upper bound on 
the number of 

partial overlaps 
ACL1 754 426 4 90,525 
ACL2 607 527 2,249 138,601 
ACL3 2,399 1,588 6,138 1,260,078 
ACL4 157 98 852 4,753 

 
An alternative architecture involves maintaining a filter that 

represents each overlap in the ACL. We observe that overlaps 
between filters can be complete or partial. In the event that one 
filter is completely contained in another, the overlap between 
the filters is represented exactly by the contained filter. In such 
a case, no additional filter needs to be stored. On the other 
hand, if filters overlap partially, then the overlap can be 
identified uniquely by a filter that represents the intersection 
region between the two filters; hence, each partial overlap 
introduces a new filter in the ACL. If all such filters are 
maintained, then the classifier can determine the most refined 
filter for each packet. In the worst case, if each filter overlaps 
with all the other filters in the ACL, then maintaining all the 
intersection filters would incur an O(n2) overhead2, where n is 
the number of distinct IP prefix pairs in the ACL. However, as 
we have illustrated earlier, most ACLs contain filters that can 
be represented as points, lines or small rectangles. Hence, we 
can expect the number of additional filters required for real 
ACLs to be much smaller than the theoretical worst-case.  

To validate this hypothesis, we determine the number of 
such overlap observed in our ACLs. The results are shown in 

 
2 The worst-case scenario is one where each filter in the ACL overlaps 

with all the other filters. In such a case, the number of filters that represents 
the overlaps can be bounded by (n-1) + (n-2) +…+ 1 = n(n-1)/2.   
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Table VIII. Table VIII indicates that the number of filters 
representing intersections that may need to be stored is, in fact, 
several orders of magnitude smaller than the theoretical upper 
bound. 

 

Fig. 5. A realistic structure of filters in ACLs. 
 

Our analyses of the ACLs show that the organization of 
filters in real-world ACLs is significantly different from the 
worst-case structure shown in Figure 3. A more realistic 
structure of filters is shown in Figure 5. The filters in the 
structure of Figure 5 are either-fully specified or partially- 
specified as explained in the previous section. Some fully-
specified filters form ‘clusters’ as shown in Figure 5. A cluster 
is a set of filters where every filter overlaps either partially or 
completely with at least one other filter in the cluster. A closer 
analysis of the ACLs reveals that there are three cases that 
create partial overlap between filters.  

1. Overlaps between partially-specified filters. Each filter 
having the wildcard in the source IP address dimension 
creates a unique partial overlap with all the filters having a 
wildcard in the destination IP address dimension. Since IP 
addresses are specified as prefixes, filters with a wildcard 
in the same dimension do not create partial overlaps 
between each other; such filters are either disjoint or 
completely overlapping. The number of partial overlaps 
created only by partially-specified filters is equal to the 
product of the number of partially-specified filters in each 
of the two dimensions.  

2. Overlaps between fully-specified filters. Fully-specified 
filters may overlap with each other either fully or partially.  

3. Overlaps between fully- and partially-specified filters. 

Table IX shows the breakdown of the number of partial 
overlaps created in each of the four ACLs. It shows that the 
overlaps created by partially-specified filters represent the 
majority in all ACLs, ranging from 51% in ACL 2 up to 100% 
in ACL 1 and ACL 4. We also observe that the overlaps 
created between partially and fully-specified filters represent a 
significant percentage (45%) of the total number of overlaps in 
ACL 2. In all the ACLs, fully-specified filters create an 
insignificant number of overlaps (it turns out that most clusters 
have size equal to one). These results indicate that partially-

specified filters are the main source of overlaps in all ACLs. 
Further, as we had demonstrated earlier, partially-specified 
filters generally represent only a small percentage of the total 
number of filters in large databases. These two observations 
together justify why the total number of partial overlaps is 
significantly less than the theoretical upper bound. In 
Appendix A, we derive a tighter upper bound on the number of 
partial overlaps. 

TABLE IX 
BREAKDOWN OF OVERLAPS 

 
number of 
overlaps 

overlaps 
formed by 
partially 
specified 

filters only 

overlaps 
formed by 

fully 
specified 

filters only 

overlaps 
formed by 
between 
fully ad 
partially 
specified 

filters 

ACL 1 4 100% 0% 0% 
ACL 2 2249 45% 4% 51% 
ACL 3 6138 88% 1% 11% 
ACL 4 852 100% 0% 0% 

IV. TRANSPORT LEVEL FIELD ANALYSIS  

The Internet supports thousands of routes but relatively only 
a few, commonly used applications. Hence, as indicated in 
Table II, only a small number of unique transport-level fields 
(consisting of port numbers and protocol types) are usually 
present in ACLs. Further, many source-destination pairs share 
the same transport-level fields. In what follows, we first 
analyze the transport-level fields associated with individual 
source-destination pairs (or IP address filters) and then expose 
the sharing of these transport-level fields across multiple IP 
filters. 

A. Analysis of Transport-level Fields for Individual IP 
Filters 
ACLs generally contain several rules with the same IP 

address filter (i.e., source-destination IP address pair) but with 
different combination of transport-level fields. To understand 
this phenomenon carefully, we analyzed the sets of such 
transport-level fields associated with the same IP filters.  

Figure 7 depicts the distribution of the set sizes observed in 
the four ACLs under consideration. It shows that for all the 
ACLs, most (about 90%) transport-level field sets are small (1-
4 entries); the remaining 10% of the sets have sizes between 5 
and 40. This is mainly because most ACLs contain rules that 
identify explicitly only a small number of the most popular 
applications; in today’s Internet the number of these 
applications is very small. 

We observe that the highest percentage of transport-level 
fields in our ACLs specify TCP and UDP protocols. This is 
because most data traffic in today’s Internet uses TCP and a 
smaller percentage of traffic uses UDP. Further, most 
transport-level fields specify a destination port or port range. 
The source port field is generally unspecified (i.e., a wildcard 
specification). This is because most classification rules apply 
to packets that request the establishment of TCP connections. 
These packets are sent to servers that are listening to well-
known non-ephemeral or ephemeral ports. Table X depicts the 

cluster #1

(*, X)

(Y, *)

cluster #2

cluster #mpartially 
specified 

filters

fully 
specified 

filters
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distributions of the source and destination port numbers 
observed for the four ACLs. 

size distribution of sets 
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Fig. 6. Distribution of sizes of transport level field sets 
 

TABLE X 
DISTRIBUTION OF SOURCE AND DESTINATION PORT NUMBERS IN TRANSPORT-

LEVEL FIELDS  
source port number destination port number  number of 

unique 
transport-

level 
fields 

wildcard range exact 
value 

wildcard range exact 
value 

ACL1 146 146 0 0 4 74 68 
ACL2 40 40 0 0 8 29 3 
ACL3 202 200 2 0 5 157 40 
ACL4 43 42 1 0 8 32 3 

 

B. Sharing Transport-level Fields Across Multiple IP 
Filters 
To analyze the sharing of transport-level fields across 

multiple IP filters, we derive the total number of transport-
level field entries with and without any sharing across filters. 
Table XI summarizes our findings. It shows that for all ACLs, 
many source-destination IP prefix pairs share the same sets of 
transport-level fields. The relative priority and corresponding 
actions of fields are the same in different occurrences of each 
set. In addition the number of unique entries characterizing the 
shared sets of transport level fields is also small. This number 
is much smaller than the total number of entries in the unique 
sets. 

 
TABLE XI 

SHARING TRANSPORT-LEVEL FIELDS AMONG IP FILTERS  

 
number of 

transport-level 
fields 

number of 
transport-level 

fields in unique sets 

number of unique 
transport-level fields 

ACL1 754 316 146 
ACL2 607 67 40 
ACL3 2399 442 202 
ACL4 157 48 43 

 

V. IMPLICATIONS 

Our evaluation of ACLs leads us to the following main 
conclusions. 

1. The fields contained in each rule in ACLs can be 
partitioned into two logical entities: (1) source and 
destination IP address pairs that characterize distinct 
network paths represented in ACLs, and (2) a set of 
transport level fields (e.g., port numbers, protocol 
identifier, etc.) that characterize network applications. In 
most cases, the number of distinct network paths far 
exceeds the number of network applications.  

2. The IP address filters are either partially-specified or 
fully-specified. Partially-specified filters represent a small 
percentage of the total number of filters in databases. 
Furthermore, most of the overlap between filters is caused 
by partially-specified filters. Fully-specified filters create 
only a few partial overlaps with each other. Thus, the total 
number of overlaps is significantly smaller than the 
theoretical bound. 

3. Many source-destination IP address pairs share the same 
set of transport-level fields. Hence, only a small number 
of transport-level fields are sufficient to characterize 
databases of different sizes.  

 

Fig. 7. Two stage classification architecture 
 

Based on these findings, we provide the following 
guidelines for designing efficient classification algorithms. 

1. The multi-dimensional classification problem should be 
split into two sub-problems (or two stages): (1) finding a 
2-dimensional match based on source and destination IP 
addresses contained in the packet, and (2) finding a (n-2) 
dimension match based on transport-level fields (see 
Figure 8). Whereas the first stage only involves prefix 
matching, the second stage involves the more general 
range matching. 

2. Because of the overlap between IP address filters 
maintained in an ACL, each packet may match multiple 
filters in stage 1. Identifying all the matching filters is 
complex. Since the total number of overlaps observed for 
ACLs is significantly smaller than the theoretical upper-
bound, a design that maintains all of the intersection filters 
and returns exactly a single match from stage 1 is both 
feasible an desirable. 

classification based on
source-destination
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(may be done 
in hardware)
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classification based on
source-destination
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+
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3. Since each IP address filter is associated with multiple 
transport-level fields, identifying the highest priority rule 
that matches a packet requires searching through all the 
transport-level fields associated with the matching IP 
filter. Since the number of transport-level fields associated 
with most ACLs is rather small, it is possible to rely upon 
a small, special-purpose hardware unit (e.g., a TCAM 
unit) to perform the (n-2) dimensional search in parallel. 

The combination of a fast software algorithm for finding a 
2-dimensional match in stage 1 and a specialized hardware 
acceleration unit for performing (n-2) dimensional match in 
stage 2 can result in a classification system capable of meeting 
the stringent space time constraints of network processors.   

VI. CONCLUSION 

To classify a packet as belonging to a flow often requires 
network systems—such as routers and firewalls—to maintain 
large data structures and perform several memory accesses. 
Network processors, on the other hand, are generally 
configured with only a small amount of memory with limited 
access bandwidth. Hence, a key challenge is to design packet 
classification algorithms that can be implemented efficiently 
on network processor platforms. We argue that the design of 
such algorithms will need to exploit the structure and 
characteristics of packet classification rules.  

In this paper, we analyze several databases of classification 
rules found in firewalls and derive their statistical properties. 
Our analysis yields three main conclusions: (1) the rules found 
in ACLs contain two types of fields—source-destination IP 
address pairs that identify network paths and transport-level 
fields that characterize network applications; further, these 
rules refer to many more network paths than applications. (2) 
IP address pairs identify regions that overlap with each other; 
however, the number of overlaps is significantly smaller than 
the theoretical upper-bound. (3) Only a small number of 
transport-level fields are sufficient to characterize ACLs of 
different sizes. We justify our findings based on several 
standard practices employed by network administrators, and 
thereby argue that although our findings are for specific 
databases, the properties are likely to hold for most databases. 
Based on these findings, we suggest that a hybrid, two-stage 
classification architecture that combines a software scheme for 
matching in 2-dimensions (IP address pairs) with a hardware 
unit that performs efficient (n-2) dimensional searches has the 
potential of scaling well with link speeds and ACL sizes.  
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APPENDIX A: A TIGHTER BOUND ON THE NUMBER OF PARTIAL 
OVERLAPS 

From the analyses of ACLs, we have shown that the number 
of overlaps between IP filters is significantly smaller than the 
theoretical upper-bound of n⋅(n-1)/2. In this appendix, we 
derive a tighter upper bound on the number of partial filter 
overlaps. The derivation of the upper bound is based on 
properties that characterize medium size and large ISP ACLs. 
Therefore the analysis presented in this appendix applies to the 
first three of our ACLs only.   

There are three factors that produce intersections between IP 
filters in ACLs. First, partially-specified filters create 
intersections with each other. The number of such overlaps O1 
is exactly equal to S⋅D where S is the number of partially-
specified filters that specify the source IP address dimension 
and D is the number of partially-specified filters that specify 
the destination IP address dimension. Since partially-specified 
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filters represent a small percentage of the total number of 
filters in all databases (1%- 13%) we expect their overlaps to 
be bounded by the square of the number of filters divided by a 
large constant. In fact, the majority of partial overlaps (51%-
100%) are created by partially-specified filters in databases.  

Second, partial overlaps result from the intersections 
between fully-specified filters in the same cluster cluster. 
However, clusters with more than one element are only but a 
few in our ACLs. Fully specified filters form an insignificant 
amount of overlaps between each other. This happens in part 
because server and client subnets are characterized by disjoint 
IP address domains in rules. As a result the number of partial 
overlaps O2, created by fully-specified filters, is also much less 
than the theoretical upper bound.  

Third, partial overlaps are created between fully and 
partially-specified filters. Each fully-specified filter may create 
partial overlaps with one or more partially-specified filters. In 
most medium size and large ACLs the total number of servers 
representing the prefixes of partially specified filters is 
bounded per IP address domain. As a result the total number 
of overlaps formed between fully-and partially-specified filters 
O3 is bounded by the product of the number of filters times a 
constant. The detailed derivation of an upper bound is given 
below: 

O = O1 + O2 + O3 Eq. 2 
O1 = S⋅D Eq. 3 
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S and D are the number of partially-specified filters that 
specify the source and destination IP address dimensions 
respectively, q is the number of clusters that contain more than 
one filter, Ci is the number of filters in cluster i, f is the number 
of fully-specified filters that create partial overlaps with 
partially-specified filters, and Fj is the number of partially-
specified filters that overlap with filter j. To complete the 
derivation of an upper bound we need to understand the 
relation between the parameters S, D, q, f, Ci, Fj and the 
number of filters in a database, n. 

Let r1, be the ratio of the total number of filters in a database 
over the number of partially-specified filters. Then S+D = n/r1. 
The ration r1 is expected to be greater than one with very high 
probability in many different databases. The number of 
overlaps formed by partially-specified filters O1, is equal to the 
product S⋅D. This product is maximized when S = D = n/(2⋅r1). 
Therefore: 
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≤  Eq. 7 

Let r2, be the ratio between the number of fully-specified 
filters in a database and the number of fully-specified filters 
that create partial overlaps with each other. Such filters 

participate in clusters having more than one element. The ratio 
r2 is also expected to be greater than one with very high 
probability. The number of fully-specified filters that create 
partial overlaps with each other is equal to (r1- 1)⋅n/(r1⋅r2).  

As a result:   
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The values of Fj refer to overlaps between partially and 
fully-specified filters. The number of such overlaps per fully-
specified filter is independent of n as a property of a pair of IP 
address domains. As a result we can consider that each Fj is 
bounded by some value F. Therefore: 

FnO ⋅≤3  Eq. 9 

Eq. 2, 7-9 result in: 
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Even though the result of Eq. 10 is also O (n2) this bound is 
much tighter than the worst case. This happens because the 
number of filters n is divided by the parameters r1 and r2 in Eq. 
10. The parameters r1 and r2 are expected to be greater than 
one. Another difference is that the worst case bound is a 
deterministic bound whereas the bound of Eq. 10 is a 
stochastic bound, since the parameters r1, r2 and F are random 
variables.  

The random variables r1, r2 and F have unknown 
distributions. However, we expect with very high probability 
that r1 and r2 are greater than one and F is a small number. 
Estimations on the upper bound of Eq. 10 can be derived by 
selecting the values with the highest frequency from the 
limited number of databases we experimented with, for r1, r2 
and F. The values for r1, r2 and F used in our calculations are 
r1 = 8.75, r2 = 4.3 and F = 15. More accurate results would 
require the parameters to be estimated from a greater number 
of samples. Our results are shown in Table XII. The worst case 
estimations derived from Eq. 10 are compared against the 
worst case estimations in this table. 

TABLE XII 
UPPER BOUNDS ON THE NUMBER OF PARTIAL FILTER OVERLAPS 

database 
number 

number of 
filters 

observed 
number of 

partial 
overlaps 

upper bound 
from Eq. 10  

worst case 
upper bound 

1 426 4 10,790 90,525 
2 527 2,249 14,651 138,601 
3 1,588 6,138 85,393 1,260,078 

 

  


