
 1

Abstract--To classify a packet as belonging to a flow often

requires network systems—such as routers and firewalls—to
maintain large data structures and perform several memory
accesses. Network processors, on the other hand, are generally
configured with only a small amount of memory with limited
access bandwidth. Hence, a key challenge is to design packet
classification algorithms that can be implemented efficiently on
network processor platforms. We conjecture that the design of
such algorithms will need to exploit the structure and
characteristics of packet classification rules. In this paper, we
analyze several databases of classification rules found in firewalls
and derive their statistical properties. Our analysis yields three
main conclusions. (1) The rules found in classification databases
contain two types of fields—source-destination IP address pairs
that identify network paths and transport-level fields that
characterize network applications; further, the databases contain
many more network paths than applications. (2) IP address pairs
identify regions in a two-dimensional space that overlap with each
other; however, the number of overlaps is significantly smaller
than the theoretical upper-bound. (3) Only a small number of
transport-level fields are sufficient to characterize databases of
different sizes. We justify our findings based on several standard
practices employed by network administrators, and thereby argue
that although our findings are for specific databases, the
properties are likely to hold for most databases. Based on these
findings, we suggest a classification architecture that a can be
implemented efficiently on network processors.

I. INTRODUCTION

ACKET classification involves identifying flows from
among a stream of packets that arrive at routers. It is a

fundamental building block that enables routers to support
access control, Quality of Service differentiation, virtual
private networks, and other value added services. To be
classified as belonging to a flow, each packet arriving at a
router is compared against a set of rules. Each rule contains
one or more fields and their associated values, a priority, and
an action. The fields generally correspond to specific portions
of the TCP/IP header—such as the source and destination IP
addresses, port numbers, and protocol identifier. A packet is
said to match a rule if it matches every field in that rule. On
identifying the matching rules, actions associated with the
rules are executed.

Michael E. Kounavis and Andrew T. Campbell ({mk,

campbell}@comet.columbia.edu) are affiliated with the COMET Group,
Columbia University. Harrick Vin (vin@cs.utexas.edu) is affiliated with the
University of Texas at Austin. Alok Kumar and Raj Yavatkar ({alok.kumar,
raj.yavatkar}@intel.com) are affiliated with Intel Corporation.

Packet classification is often the first packet processing step
in routers. It requires network systems to maintain and to
navigate through search data structures. Since flows can be
identified only after the classification step, to prevent
performance interference across flows, network systems must
ensure that classification operates at line speeds.
Unfortunately, the overhead of navigating through search data
structures can often exceed the time budget enforced by the
line-speed processing requirement. Thus, a key challenge is to
design packet classification algorithms that impose low
memory space and access overhead and hence can scale to
high bandwidth networks and large databases of classification
rules.

In this paper, we take a step in the direction of designing
such efficient classification algorithms. In particular, we study
the properties of packet classification rules; our intent is to
expose characteristics that can be exploited to design packet
classifiers that can scale well with link bandwidths and the
sizes of classification rule databases. Since access control is
the most common application of packet classification today,
we study four databases of classification rules collected from
firewalls supported by large ISPs and corporate intranets. Our
analysis yields the following key observations:

1. The fields contained in each rule in firewall databases can
be partitioned into two logical entities: (1) source and
destination IP address pairs that characterize distinct
network paths, and (2) a set of transport-level fields (e.g.,
port numbers, protocol identifier, etc.) that characterize
network applications. In most cases, the number of
distinct network paths far exceeds the number of network
applications.

2. The IP address pairs define regions in the two-
dimensional space that can overlap with each other.
However, the number of overlaps is significantly smaller
than the theoretical upper-bound.

3. Many source-destination IP address pairs share the same
set of transport-level fields. Hence, only a small number
of transport-level fields are sufficient to characterize
databases of different sizes.

We justify these observations based on standard network
administration practices; and thereby argue that these findings,
although derived from a small number of databases, are likely
to hold for most firewall databases. Based on these findings,
we provide the following guidelines for designing efficient

Directions in Packet Classification for Network
Processors

Michael E. Kounavis, Alok Kumar, Harrick Vin, Raj Yavatkar and Andrew T. Campbell

P

 2

classification algorithms.

1. The multi-dimensional classification problem should be
split into two sub-problems (or two stages): (1) finding a
2-dimensional match based on source and destination IP
addresses contained in the packet; and (2) finding a (n-2)
dimensional match based on transport-level fields.
Whereas the first stage only involves prefix matching, the
second stage involves the more general range matching.

2. Because of the overlap between IP address filters
maintained in a database, each packet may match multiple
filters. Identifying all the matching filters is complex.
Since the total number of overlaps observed in firewall
databases is significantly smaller than the theoretical
upper-bound, a design that maintains all of the
intersection filters and returns exactly a single filter is
both feasible an desirable.

3. Since each IP address filter is associated with multiple
transport-level fields, identifying the highest priority rule
that matches a packet requires searching through all the
transport-level fields associated with the matching IP
filter. Since the number of transport-level fields associated
with most databases is rather small, it is possible to rely
upon a small, special-purpose hardware unit (e.g., a
TCAM unit) to perform the (n-2) dimensional searches in
parallel.

The paper is structured as follows. In Section 2, we
formulate the classification problem and discuss our
methodology for studying ACLs. We discuss our findings in
Sections 3 and 4, and expose the implications of our findings
in Section 5. Finally, Section 6 summarizes our contributions.

TABLE I

EXAMPLES OF CLASSIFICATION RULES
src. IP
address

dest. IP
address

src.
Port

dest
port action priority

128.59.67.100 128.* * 15 drop 2
128.* 128.2.3.1 * 24 DSCP 2 1

II. PROBLEM FORMULATION

Since access control is the most common application of
packet classification today, we focus on the problem of packet
classification in firewalls. In a firewall rule database, each rule
contains one or more fields and their associated values, a
priority, and an action. The fields generally correspond to
specific portions of the TCP/IP header—such as the source
and destination IP addresses, port numbers, and protocol
identifier. Because of the hierarchical nature of IP address
allocation, source and destination IP addresses are often
specified as prefixes. To accommodate a collection of user or
network management applications, port numbers are often
specified as ranges. Finally, other protocol attributes, such as
the protocol identifier, are specified as exact values. Table I
shows some examples of classification rules.

The first rule indicates that packets originating from the IP
address 128.59.67.100, and destined to any host within the IP

address domain beginning with 128 and port number 15 should
be dropped. The priority level for this rule is 2. The second
rule states that packets originating from any host in the domain
beginning with 128, and destined to the host 128.2.3.1 and
port number 24 should be forwarded with the Differentiated
Services Code Point (DSCP) set to 2. This rule has priority
level of 1.

In this context, the packet classification problem can be
stated as follows: Given a set—often referred to as an Access
Control List (ACL)—of access control rules, determine the
action A associated with the highest priority rule that matches
packet p. To reduce the overhead of identifying rules that may
match each packet, most packet classification algorithms
employ search data structures for organizing classification
rules. These data structures occupy memory space.
Furthermore, navigating on these data structures incurs several
memory accesses. In what follows, we first discuss several
existing packet classification algorithms and argue that they do
not scale well with increase in network bandwidth or ACL
sizes. We then argue that understanding the structure and
properties of ACLs is crucial in designing efficient, scalable
algorithms. Finally, we describe our methodology for studying
the properties of ACLs.

A. State-of-the-art
Existing packet classification algorithms can be grouped

into four classes: trie-based algorithms, hash-based algorithms,
parallel search algorithms, and heuristic algorithms.
Throughout this discussion, we use n to denote the number of
rules in a classification database, k to denote the number of
fields (i.e., dimensions), and w to denote the maximum length
of the fields (in bits).

1. Trie-based Algorithms: Trie-based algorithms [2, 3]
build hierarchical radix tree structures where once a match
is found in one dimension a search is performed in a
separate tree linked into the node representing the match.
Examples of such algorithms are the Grid-of-tries [3] and
Area-based Quad Tree (AQT) [5] algorithms. Trie-based
algorithms require, in worst case, as many memory
accesses as the number of bits in the fields used for
classification. Multi-bit trie data structures are more
efficient from the perspective of the number of memory
accesses required. However, these data structures incur
significantly higher memory space overhead. In general,
trie-based schemes work well for single-dimensional
searches. However, the memory requirement of these
schemes increases significantly with increase in the
number of search dimensions.

2. Hash-based Algorithms: Hash-based algorithms [9]
group rules according to the lengths of the prefixes
specified in different fields. The groups formed in this
manner are called ‘tuples’. Hash-based algorithms
perform a series of hash lookups one for each tuple to
identify the highest priority matching rule. Tuple space
search has O(n) storage and time complexity. Hash-based

 3

algorithms, in the worst case, require as many memory
accesses as the number of hash tables, and the number of
hash tables can be as large as the number of rules in a
database. As a result, hash-based techniques do not scale
well with the number of rules. An optimized hashing
technique, referred to as rectangle search [9], reduces the
lookup time complexity from O(n) to O(w) in two
dimensions. However, to support lookups in more than
two dimensions, the algorithm still requires a significant
number of memory accesses1.

3. Parallel Search Algorithms: These algorithms formulate
the classification problem as an n-dimensional matching
problem and search each dimension separately. In some
algorithms [4], when a match is found in a dimension, a
bit vector is returned identifying the matches. The logical
AND of the bit vectors returned from all dimensions
identifies the matching rules. Such bit-vector techniques
are associated with O(n) memory accesses in the lookup
process. Fetching a single bit vector or an aggregate bit
vector (as described in [13]) can be memory access
intensive, especially in cases where the ACL contains
more than a few thousand rules. Another parallel search
technique called Cross-Producting Table [3] reduces the
lookup time complexity to (O(kw)) where k is the number
of fields and w is maximum length of the fields. However,
this technique increases the worst case storage complexity
to (O(nk)) making it impractical.

4. Heuristic Algorithms: A fourth category of algorithms
includes heuristic algorithms that exploit the structure and
redundancy in the rule set [7, 8]. The algorithms proposed
to-date are associated with very low lookup time
complexity (O(k)); however, they impose significant
memory space requirements (O(nk)). Hence, these
algorithms are suitable for single- or two-dimensional
searches, but their space requirement makes them unsuited
for the more common five-dimensional searches.

From the above discussion, it is apparent that exploiting the
structure and properties of ACLs is a promising direction for
designing packet classification algorithms that can scale well
with link bandwidth and ACL sizes. Unfortunately, the
literature contains no detailed studies of ACL properties. This
is in-part because ISPs and enterprises, for privacy and
security reasons, protect access to their rule databases.
Recently, we have obtained access to four firewall databases
from ISPs and corporate intranets. Hence, in this paper, we
conduct a careful study to expose the structure and properties
of these ACLs, and postulate how these properties can be used
to design efficient classification algorithms. The design of
specific packet classification algorithms, however, is beyond
the scope of this paper.

1 A lower bound on the complexity of rectangle search is discussed in [9].

It is proven than tuple probes can be at least w(k-1)/k!

B. Experimental Methodology
We analyze four firewall databases; three of these databases

are from large ISPs, whereas one is from a corporate intranet.
Table II summarizes the basic statistics of these ACLs.

As Table II indicates, the ISP ACLs are generally much
larger than those of the enterprise intranets. Further, it shows
that the fields specified in ACLs can be partitioned into two
logical entities: (1) source and destination IP address pairs that
characterize distinct network paths represented in ACLs, and
(2) a set of transport level fields (e.g., port numbers, protocol
identifier, etc.) that characterize network applications. In most
cases, the number of distinct network paths far exceeds the
number of network applications represented in the ACLs.

In what follows, we first analyze IP address pairs and then
study the characteristics of transport-level fields. We justify
our findings based on standard practices for creating ACLs
used by network administrators. Hence, we argue that although
our observations are derived from a small number of rule
databases, our conclusions are likely to be valid across a large
number of such rule databases.

TABLE II

SUMMARY OF ACLS

 type number
of rules

number of unique
source/destination
IP address fields

protocol
types

unique
port

number
fields

ACL1 ISP 754 426 4 140
ACL2 ISP 607 527 5 30
ACL3 ISP 2399 1588 5 192
ACL4 Intranet 157 98 4 36

III. IP PREFIX PAIR ANALYSIS

Each rule in an ACL contains a specification of source and
destination IP address pairs (also referred to as IP address
filters). These addresses are specified as wildcards, prefixes, or
exact values. Based on these specifications, the filters
represent rectangles, lines or points in the two-dimensional IP
address space. Further, the filters may overlap with each other.
In what follows, we first conduct a structural analysis of the
filters; this allows us to characterize ACLs as a composition of
different types of filters (i.e., filters that represent a different
shape in the two-dimensional space). We find that only a small
number of filters contain wildcards in the source or the
destination dimensions in the ISP ACLs. Further, for most
filters that do not contain any wildcards, the destination field
contains complete IP addresses (representing individual hosts),
while the source field contains prefixes (representing IP
address domains). Second, we analyze the overlaps among the
filters. This allows us to characterize the number of filters that
may match a packet, as well as the overhead of maintaining in
the ACL a unique filter representing each of the overlaps such
that the maximally matching filter can be uniquely identified
for each packet. We find that overlaps are created mostly by
filters that contain a wildcard in their source or destination
fields. Since only a small number of filters contain wildcards,
the actual number of overlaps observed in ACLs is

 4

significantly smaller than the theoretical upper bound.

A. Structural Analysis
The source-destination IP address pairs can be classified

into two types: Partially-specified filters and fully-specified
filters. Partially-specified filters contain at least one wildcard
(*) in the source or in the destination IP address dimension;
these filters capture traffic sent to/from designated servers or
subnets of ISP networks. Fully-specified filters, on the other
hand, contain an IP address prefix in both the source and
destination IP address dimensions. These filters identify the
traffic exchanged between specific IP address domains of ISP
networks. In most cases, the traffic handled by fully-specified
filters is exchanged between important servers (e.g., web, e-
mail, NTP, or streaming servers) and clients.

Each IP address filter can be represented geometrically as a
point, a line, or a rectangle in a two dimensional IP address
space. Whereas partially-specified filters of the form (*,*)
cover the entire two dimensional address space, filters of the
form (x, *) and (*, y) can be represented either as a line or a
rectangle in the 2-D space depending on the values of x and y.
If x and y represent IP address domains (i.e., IP prefixes of
length smaller than 32), then these filters are represented as
rectangles; on the other hand, if x and y denote hosts (i.e., full
32-bit IP addresses), then the corresponding filters are
represented as lines. Similarly, depending the lengths of x and
y, fully-specified IP address filters of the form (x, y) represent
lines, points, or rectangles in the two dimensional space.

TABLE III

PARTIALLY- AND FULLY- SPECIFIED FILTERS

 partially-
specified filters

fully-specified
filters

total number of
filters

ACL1 4 (1%) 421 (99%) 426
ACL2 68 (13%) 458 (87%) 527
ACL3 160 (10%) 1427 (90%) 1588
ACL4 83 (86%) 14 (14%) 98

TABLE IV

BREAKDOWN OF PARTIALLY-SPECIFIED FILTERS

 wildcard in source
address

wildcard in
destination address

ACL1 2 2
ACL2 36 32
ACL3 112 48
ACL4 12 71

Table III shows the breakdown of partially- and fully-

specified filters in our firewall ACLs. It illustrates that,
whereas partially-specified filters represent a small percentage
of the total number of filters in large ISP databases; they
constitute a significant percentage of the relatively small-size
enterprise intranet firewall ACL. This is because large ISPs
often describe administrative policies between specific IP
address domains within their network. Examples of such
policies include the admission of all HTTP traffic between a
server and a client subnet, or the blocking of all RTSP traffic
between two specific IP address domains. In intranets, on the
other hand, administrators do not specify cross-domain traffic

management policies, since such policies are often enforced by
their ISP. Instead, most of the rules in intranet firewalls refer
to specific sources or destinations, but not both.

We further analyze the partially-specified filters to
determine the relative occurrence of the wildcard in the source
or the destination IP address fields, as well as the lengths of
specified IP addresses. We find that in the intranet ACL,
which is the smallest in size, filters with the wildcard in the
destination address are the majority. In the first two ACLs,
which are of medium size, there is a balance between the
filters that have the wildcard in the source and destination
address fields. In the third ACL, which has the largest size,
most filters have the wildcard in the source address field.

source prefix length distribution
 for partially specified filters (%100)

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ACL 1

ACL 2

ACL 3

ACL 4

destination prefix length distribution
for partially specified filters (%100)

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ACL 1

ACL 2

ACL 3

ACL 4

Fig. 1. Distribution of prefix lengths for partially-specified filters

From the results of table IV it appears as if there is a

dependency between the size of an ACL and the numbers of
filters that have the wildcard in the source or destination IP
address fields. Typically, the smaller an ACL is the closer to
client networks the firewall is located. The intranet ACL in our
example describes policies that block the traffic form many
specific client subnets of the intranet and thus contains many
rules having the wildcard in the destination dimension. Larger
ACLs on the other hand are closer to the Internet core and
describe higher-level policies for connecting to important

 5

servers or networks. Such policies are typically expressed as
rules having the wildcard in the source dimension.

Figure 1 shows the distribution of prefix lengths for
partially-specified filters. It shows that the source and
destination IP address specifications are spread across the
entire range of prefix lengths, with 8-bit, 16-bit, 24-bit and 32-
bit prefixes constituting the majority. Geometrically, this
indicates that most partially-specified filters represent lines or
rectangles characterized by a few standard width values in the
two-dimensional space.

TABLE V

BREAKDOWN OF FULLY-SPECIFIED FILTERS

 domain-
domain filters

host-domain
filters

domain-host
filters

host-host
filters

ACL1 30 31 37 323
ACL2 124 99 154 81
ACL3 165 18 755 489
ACL4 9 0 2 3

source prefix length distribution
for fully specified filters (%100)

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ACL 1

ACL 2

ACL 3

ACL 4

destination prefix length distribution
for partially specified filters (%100)

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ACL 1

ACL 2

ACL 3

ACL 4

Fig. 2. Distribution of source and destination prefix lengths for fully-

specified filters

There are four types of fully-specified filters: (1) filters that

characterize traffic exchanged between two domains, (2) filters
that characterize traffic originating within a domain but
destined to a host, (3) filters that characterize traffic
originating a host destined for an IP domain, and (4) filters that

characterize traffic exchanged between a specific pair of hosts.
In these filters, a host is represented using a 32 bit address
(IPv4 address) while a domain is represented by a shorter
prefix. Table V shows the breakdown of these four types of
filters in our ACLs. It shows that majority of the fully-
specified filters represent communication where either the
sender or the receiver is a host. In many cases these hosts are
servers representing important resources of large networks. On
the other hand, in the intranet ACL the majority of fully-
specified filters represent Domain-Domain filters.

TABLE VI

TRIE BLOCK ANALYSIS

number of

unique source
prefixes

observed
number of
source trie

blocks

theoretical bound
on the number of
source trie blocks

ACL1 97 29 759

ACL2 182 231 1439

ACL3 431 496 3256

ACL4 79 127 615

number of
unique

destination
prefixes

observed
number of
destination
trie blocks

theoretical bound
on the number of
destination trie

blocks

ACL1 205 383 1623

ACL2 207 243 1639

ACL3 516 620 3855

ACL4 20 60 155

Figure 2 shows the distribution of source and destination

prefix lengths for fully-specified filters. Geometrically, this
indicates that most fully-specified filters represent lines or
points in the two-dimensional space. The spatial distribution of
IP prefixes is a very important property, especially to analyze
requirements to store the IP prefixes. We have created a 4-bit
trie data structure for both source and destination IP addresses,
measured the number of trie blocks required to store IP
prefixes, and compared this number with theoretical maximum
for number of trie blocks. The results are shown in Table VI.
We find that the total number of trie blocks needed to
represent source and destination prefixes is much less than the
theoretical upper bound in real world data bases.

From the above analyses, we derive the following general
conclusions:

1. Filters in real world ACLs are either fully-specified or
partially-specified. Partially-specified filters represent a
small percentage of the total number of filters in medium
and large size ACLs.

2. The breakdown of partially-specified filters between
filters having the wildcard in source and destination IP
addresses may depend on the size of the ACL. Careful
study of more ACLs would help investigating the
existence of such dependency.

3. Most fully specified filters are segments of straight lines

 6

or points in medium and large size ACLs.

4. Trie data structures representing source and destination
prefixes require much fewer blocks than the theoretical
upper bound.

Fig. 3. Worst-case filter structure

B. Overlap Analysis
The geometrical objects representing filters may overlay in

the two dimensional space. Since each packet represents a
point in the two dimensional space, it may be contained within
the geometrical space defined by one or more filters in the
ACL. In such an event, a packet may match multiple filters
within the ACL; hence, identifying the highest priority rule
requires comparing transport-level fields associated with all
the matching filters with the appropriate fields contained in the
packet. Clearly, the larger the number of filters that a packet
may match with, the greater is the complexity of identifying
the highest priority rule that matches the packet. In the worst-
case, if all filters within an ACL overlap with each other (as
shown in Figure 3), then identifying the highest priority rule
for a packet that represents a point in the intersection of these
filters may require a search on all filters. Thus, the complexity
of packet classification depends on the amount of overlap
between filters (which in turn determines the number of filters
that may match a packet).

TABLE VII

NUMBER OF FILTERS THAT MAY MATCH A PACKET

 average standard
deviation maximum

ACL1 4.00 0.36 5.00
ACL2 3.96 0.73 7.00
ACL3 3.75 0.84 7.00
ACL4 3.71 0.90 7.00

In what follows, we analyze our ACLs for their overlap

properties. Table VII and Figure 4 show the distribution of the
number of filters that may match a packet. Figure 4 illustrates
that for all the ACLs, on an average, about 4 filters match
every packet. Although this is not a very large number,
identifying these filters imposes significant overhead. The
navigation on the data structures that store two-dimensional

filters (e.g., hierarchical singe-bit or multi-bit tries) typically
requires significantly more memory accesses than the number
of filters matching a packet. For instance, the Extended Grid of
Tries (EGT) algorithm reported in [12] requires 137 accesses
to classify packets from a database of 2799 rules.

percentage of packets

0

10

20

30

40

50

60

1 2 3 4 5 6

number of matches

Fig. 4. Distribution of the number of filters that may match a packet

TABLE VIII
OBSERVED FILTER OVERLAPS

 number
of rules

number
of filters

observed
number of

partial overlaps

upper bound on
the number of

partial overlaps
ACL1 754 426 4 90,525
ACL2 607 527 2,249 138,601
ACL3 2,399 1,588 6,138 1,260,078
ACL4 157 98 852 4,753

An alternative architecture involves maintaining a filter that

represents each overlap in the ACL. We observe that overlaps
between filters can be complete or partial. In the event that one
filter is completely contained in another, the overlap between
the filters is represented exactly by the contained filter. In such
a case, no additional filter needs to be stored. On the other
hand, if filters overlap partially, then the overlap can be
identified uniquely by a filter that represents the intersection
region between the two filters; hence, each partial overlap
introduces a new filter in the ACL. If all such filters are
maintained, then the classifier can determine the most refined
filter for each packet. In the worst case, if each filter overlaps
with all the other filters in the ACL, then maintaining all the
intersection filters would incur an O(n2) overhead2, where n is
the number of distinct IP prefix pairs in the ACL. However, as
we have illustrated earlier, most ACLs contain filters that can
be represented as points, lines or small rectangles. Hence, we
can expect the number of additional filters required for real
ACLs to be much smaller than the theoretical worst-case.

To validate this hypothesis, we determine the number of
such overlap observed in our ACLs. The results are shown in

2 The worst-case scenario is one where each filter in the ACL overlaps

with all the other filters. In such a case, the number of filters that represents
the overlaps can be bounded by (n-1) + (n-2) +…+ 1 = n(n-1)/2.

F1

F2

F3

Fn-1

Fn

…

F1

F2

F3

Fn-1

Fn

…

 7

Table VIII. Table VIII indicates that the number of filters
representing intersections that may need to be stored is, in fact,
several orders of magnitude smaller than the theoretical upper
bound.

Fig. 5. A realistic structure of filters in ACLs.

Our analyses of the ACLs show that the organization of
filters in real-world ACLs is significantly different from the
worst-case structure shown in Figure 3. A more realistic
structure of filters is shown in Figure 5. The filters in the
structure of Figure 5 are either-fully specified or partially-
specified as explained in the previous section. Some fully-
specified filters form ‘clusters’ as shown in Figure 5. A cluster
is a set of filters where every filter overlaps either partially or
completely with at least one other filter in the cluster. A closer
analysis of the ACLs reveals that there are three cases that
create partial overlap between filters.

1. Overlaps between partially-specified filters. Each filter
having the wildcard in the source IP address dimension
creates a unique partial overlap with all the filters having a
wildcard in the destination IP address dimension. Since IP
addresses are specified as prefixes, filters with a wildcard
in the same dimension do not create partial overlaps
between each other; such filters are either disjoint or
completely overlapping. The number of partial overlaps
created only by partially-specified filters is equal to the
product of the number of partially-specified filters in each
of the two dimensions.

2. Overlaps between fully-specified filters. Fully-specified
filters may overlap with each other either fully or partially.

3. Overlaps between fully- and partially-specified filters.

Table IX shows the breakdown of the number of partial
overlaps created in each of the four ACLs. It shows that the
overlaps created by partially-specified filters represent the
majority in all ACLs, ranging from 51% in ACL 2 up to 100%
in ACL 1 and ACL 4. We also observe that the overlaps
created between partially and fully-specified filters represent a
significant percentage (45%) of the total number of overlaps in
ACL 2. In all the ACLs, fully-specified filters create an
insignificant number of overlaps (it turns out that most clusters
have size equal to one). These results indicate that partially-

specified filters are the main source of overlaps in all ACLs.
Further, as we had demonstrated earlier, partially-specified
filters generally represent only a small percentage of the total
number of filters in large databases. These two observations
together justify why the total number of partial overlaps is
significantly less than the theoretical upper bound. In
Appendix A, we derive a tighter upper bound on the number of
partial overlaps.

TABLE IX
BREAKDOWN OF OVERLAPS

number of
overlaps

overlaps
formed by
partially
specified

filters only

overlaps
formed by

fully
specified

filters only

overlaps
formed by
between
fully ad
partially
specified

filters

ACL 1 4 100% 0% 0%
ACL 2 2249 45% 4% 51%
ACL 3 6138 88% 1% 11%
ACL 4 852 100% 0% 0%

IV. TRANSPORT LEVEL FIELD ANALYSIS

The Internet supports thousands of routes but relatively only
a few, commonly used applications. Hence, as indicated in
Table II, only a small number of unique transport-level fields
(consisting of port numbers and protocol types) are usually
present in ACLs. Further, many source-destination pairs share
the same transport-level fields. In what follows, we first
analyze the transport-level fields associated with individual
source-destination pairs (or IP address filters) and then expose
the sharing of these transport-level fields across multiple IP
filters.

A. Analysis of Transport-level Fields for Individual IP
Filters
ACLs generally contain several rules with the same IP

address filter (i.e., source-destination IP address pair) but with
different combination of transport-level fields. To understand
this phenomenon carefully, we analyzed the sets of such
transport-level fields associated with the same IP filters.

Figure 7 depicts the distribution of the set sizes observed in
the four ACLs under consideration. It shows that for all the
ACLs, most (about 90%) transport-level field sets are small (1-
4 entries); the remaining 10% of the sets have sizes between 5
and 40. This is mainly because most ACLs contain rules that
identify explicitly only a small number of the most popular
applications; in today’s Internet the number of these
applications is very small.

We observe that the highest percentage of transport-level
fields in our ACLs specify TCP and UDP protocols. This is
because most data traffic in today’s Internet uses TCP and a
smaller percentage of traffic uses UDP. Further, most
transport-level fields specify a destination port or port range.
The source port field is generally unspecified (i.e., a wildcard
specification). This is because most classification rules apply
to packets that request the establishment of TCP connections.
These packets are sent to servers that are listening to well-
known non-ephemeral or ephemeral ports. Table X depicts the

cluster #1

(*, X)

(Y, *)

cluster #2

cluster #mpartially
specified

filters

fully
specified

filters

 8

distributions of the source and destination port numbers
observed for the four ACLs.

size distribution of sets
of transport level fields (%100)

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

number of entries

ACL 1
ACL 2
ACL 3
ACL 4

Fig. 6. Distribution of sizes of transport level field sets

TABLE X
DISTRIBUTION OF SOURCE AND DESTINATION PORT NUMBERS IN TRANSPORT-

LEVEL FIELDS
source port number destination port number number of

unique
transport-

level
fields

wildcard range exact
value

wildcard range exact
value

ACL1 146 146 0 0 4 74 68
ACL2 40 40 0 0 8 29 3
ACL3 202 200 2 0 5 157 40
ACL4 43 42 1 0 8 32 3

B. Sharing Transport-level Fields Across Multiple IP
Filters
To analyze the sharing of transport-level fields across

multiple IP filters, we derive the total number of transport-
level field entries with and without any sharing across filters.
Table XI summarizes our findings. It shows that for all ACLs,
many source-destination IP prefix pairs share the same sets of
transport-level fields. The relative priority and corresponding
actions of fields are the same in different occurrences of each
set. In addition the number of unique entries characterizing the
shared sets of transport level fields is also small. This number
is much smaller than the total number of entries in the unique
sets.

TABLE XI

SHARING TRANSPORT-LEVEL FIELDS AMONG IP FILTERS

number of

transport-level
fields

number of
transport-level

fields in unique sets

number of unique
transport-level fields

ACL1 754 316 146
ACL2 607 67 40
ACL3 2399 442 202
ACL4 157 48 43

V. IMPLICATIONS

Our evaluation of ACLs leads us to the following main
conclusions.

1. The fields contained in each rule in ACLs can be
partitioned into two logical entities: (1) source and
destination IP address pairs that characterize distinct
network paths represented in ACLs, and (2) a set of
transport level fields (e.g., port numbers, protocol
identifier, etc.) that characterize network applications. In
most cases, the number of distinct network paths far
exceeds the number of network applications.

2. The IP address filters are either partially-specified or
fully-specified. Partially-specified filters represent a small
percentage of the total number of filters in databases.
Furthermore, most of the overlap between filters is caused
by partially-specified filters. Fully-specified filters create
only a few partial overlaps with each other. Thus, the total
number of overlaps is significantly smaller than the
theoretical bound.

3. Many source-destination IP address pairs share the same
set of transport-level fields. Hence, only a small number
of transport-level fields are sufficient to characterize
databases of different sizes.

Fig. 7. Two stage classification architecture

Based on these findings, we provide the following
guidelines for designing efficient classification algorithms.

1. The multi-dimensional classification problem should be
split into two sub-problems (or two stages): (1) finding a
2-dimensional match based on source and destination IP
addresses contained in the packet, and (2) finding a (n-2)
dimension match based on transport-level fields (see
Figure 8). Whereas the first stage only involves prefix
matching, the second stage involves the more general
range matching.

2. Because of the overlap between IP address filters
maintained in an ACL, each packet may match multiple
filters in stage 1. Identifying all the matching filters is
complex. Since the total number of overlaps observed for
ACLs is significantly smaller than the theoretical upper-
bound, a design that maintains all of the intersection filters
and returns exactly a single match from stage 1 is both
feasible an desirable.

classification based on
source-destination

pairs
(done in software)

classification based on
other fields

(may be done
in hardware)

merging of results

packet

+

stage 1 stage 2

classification based on
source-destination

pairs
(done in software)

classification based on
other fields

(may be done
in hardware)

merging of results

packet

+

stage 1 stage 2

 9

3. Since each IP address filter is associated with multiple
transport-level fields, identifying the highest priority rule
that matches a packet requires searching through all the
transport-level fields associated with the matching IP
filter. Since the number of transport-level fields associated
with most ACLs is rather small, it is possible to rely upon
a small, special-purpose hardware unit (e.g., a TCAM
unit) to perform the (n-2) dimensional search in parallel.

The combination of a fast software algorithm for finding a
2-dimensional match in stage 1 and a specialized hardware
acceleration unit for performing (n-2) dimensional match in
stage 2 can result in a classification system capable of meeting
the stringent space time constraints of network processors.

VI. CONCLUSION

To classify a packet as belonging to a flow often requires
network systems—such as routers and firewalls—to maintain
large data structures and perform several memory accesses.
Network processors, on the other hand, are generally
configured with only a small amount of memory with limited
access bandwidth. Hence, a key challenge is to design packet
classification algorithms that can be implemented efficiently
on network processor platforms. We argue that the design of
such algorithms will need to exploit the structure and
characteristics of packet classification rules.

In this paper, we analyze several databases of classification
rules found in firewalls and derive their statistical properties.
Our analysis yields three main conclusions: (1) the rules found
in ACLs contain two types of fields—source-destination IP
address pairs that identify network paths and transport-level
fields that characterize network applications; further, these
rules refer to many more network paths than applications. (2)
IP address pairs identify regions that overlap with each other;
however, the number of overlaps is significantly smaller than
the theoretical upper-bound. (3) Only a small number of
transport-level fields are sufficient to characterize ACLs of
different sizes. We justify our findings based on several
standard practices employed by network administrators, and
thereby argue that although our findings are for specific
databases, the properties are likely to hold for most databases.
Based on these findings, we suggest that a hybrid, two-stage
classification architecture that combines a software scheme for
matching in 2-dimensions (IP address pairs) with a hardware
unit that performs efficient (n-2) dimensional searches has the
potential of scaling well with link speeds and ACL sizes.

. REFERENCES

[1] P. Gupta and N. McKeown “Algorithms for Packet
Classification”, IEEE Network Magazine, 2001

[2] P. Tsuchiya. “A search algorithm for table entries with
non-contiguous wildcarding,” unpublished report,
Bellcore.

[3] V. Srinivasan, S. Suri, G. Varghese, and M. Waldvogel.
“Fast and Scalable Layer four Switching,” Proceedings of
ACM Sigcomm, pages 203-14, September 1998.

[4] T.V. Lakshman and D. Stiliadis. “High-Speed Policy-
based Packet Forwarding Using Efficient Multi-
dimensional Range Matching”, Proceedings of ACM
Sigcomm, pages 191-202, September 1998.

[5] M.M. Buddhikot, S. Suri, and M. Waldvogel. “Space
decomposition techniques for fast layer-4 switching,”
Proceedings of Conference on Protocols for High Speed
Networks, pages 25-41, August 1999.

[6] A. Feldman and S. Muthukrishnan. “Tradeoffs for packet
classification,” Proceedings of Infocom, vol. 3, pages
1193-202, March 2000.

[7] P. Gupta and N. McKeown, Packet Classification on
Multiple Fields, Proc. Sigcomm, Computer
Communication Review, vol. 29, no. 4, pp 147-60,
September 1999, Harvard University.

[8] P. Gupta and N. McKeown, Packet Classification using
Hierarchical Intelligent Cuttings , Proc. Hot Interconnects
VII, August 99, Stanford. This paper is also available in
IEEE Micro, pp 34-41, vol. 20, no. 1, January/February
2000.

[9] V. Srinivasan, S. Suri, and G. Varghese. “Packet
Classification using Tuple Space Search”, Proceedings of
ACM Sigcomm, pages 135-46, September 1999.

[10] F. Shafai, K.J. Schultz, G.F. R. Gibson, A.G. Bluschke
and D.E. Somppi. “Fully parallel 30-Mhz, 2.5 Mb CAM,”
IEEE Journal of Solid-State Circuits, vol. 33, no. 11,
November 1998.

[11] A. Prakash, and A. Aziz, “OC-3072 Packet Classification
Using BDDs and Pipelined SRAMs”, Hot Interconnects,
2001

[12] F. Baboescu, S. Singh, and G. Varghese, “Packet
Classification for Core Routers: Is there an alternative to
CAMs?”, Technical Report, University of California, San
Diego, 2003.

[13] F. Baboescu, G. Varghese, “Scalable Packet
Classification”, Proceedings of ACM Sigcomm, pages
199-210, August, 2001.

[14] M. Degermark, A. Brodnik, S. Carlsson, and St. Pink,
"Small forwarding tables for fast routing lookups," in
Proc. ACM SIGCOMM, September 1997, pp. 3—14

APPENDIX A: A TIGHTER BOUND ON THE NUMBER OF PARTIAL
OVERLAPS

From the analyses of ACLs, we have shown that the number
of overlaps between IP filters is significantly smaller than the
theoretical upper-bound of n⋅(n-1)/2. In this appendix, we
derive a tighter upper bound on the number of partial filter
overlaps. The derivation of the upper bound is based on
properties that characterize medium size and large ISP ACLs.
Therefore the analysis presented in this appendix applies to the
first three of our ACLs only.

There are three factors that produce intersections between IP
filters in ACLs. First, partially-specified filters create
intersections with each other. The number of such overlaps O1
is exactly equal to S⋅D where S is the number of partially-
specified filters that specify the source IP address dimension
and D is the number of partially-specified filters that specify
the destination IP address dimension. Since partially-specified

 10

filters represent a small percentage of the total number of
filters in all databases (1%- 13%) we expect their overlaps to
be bounded by the square of the number of filters divided by a
large constant. In fact, the majority of partial overlaps (51%-
100%) are created by partially-specified filters in databases.

Second, partial overlaps result from the intersections
between fully-specified filters in the same cluster cluster.
However, clusters with more than one element are only but a
few in our ACLs. Fully specified filters form an insignificant
amount of overlaps between each other. This happens in part
because server and client subnets are characterized by disjoint
IP address domains in rules. As a result the number of partial
overlaps O2, created by fully-specified filters, is also much less
than the theoretical upper bound.

Third, partial overlaps are created between fully and
partially-specified filters. Each fully-specified filter may create
partial overlaps with one or more partially-specified filters. In
most medium size and large ACLs the total number of servers
representing the prefixes of partially specified filters is
bounded per IP address domain. As a result the total number
of overlaps formed between fully-and partially-specified filters
O3 is bounded by the product of the number of filters times a
constant. The detailed derivation of an upper bound is given
below:

O = O1 + O2 + O3 Eq. 2
O1 = S⋅D Eq. 3

∑
=

−⋅
≤

q

i

ii CC
O

1
2 2

)1(Eq. 4

∑
=

=
f

j
jFO

1
3

 Eq. 5

Equation 5-8 result in:

∑∑
=

+
−⋅

+⋅≤
f

j
j

q

i

ii F
CC

DSO
12

)1(Eq. 6

S and D are the number of partially-specified filters that
specify the source and destination IP address dimensions
respectively, q is the number of clusters that contain more than
one filter, Ci is the number of filters in cluster i, f is the number
of fully-specified filters that create partial overlaps with
partially-specified filters, and Fj is the number of partially-
specified filters that overlap with filter j. To complete the
derivation of an upper bound we need to understand the
relation between the parameters S, D, q, f, Ci, Fj and the
number of filters in a database, n.

Let r1, be the ratio of the total number of filters in a database
over the number of partially-specified filters. Then S+D = n/r1.
The ration r1 is expected to be greater than one with very high
probability in many different databases. The number of
overlaps formed by partially-specified filters O1, is equal to the
product S⋅D. This product is maximized when S = D = n/(2⋅r1).
Therefore:

2
1

2

1 4 r
n

O
⋅

≤ Eq. 7

Let r2, be the ratio between the number of fully-specified
filters in a database and the number of fully-specified filters
that create partial overlaps with each other. Such filters

participate in clusters having more than one element. The ratio
r2 is also expected to be greater than one with very high
probability. The number of fully-specified filters that create
partial overlaps with each other is equal to (r1- 1)⋅n/(r1⋅r2).

As a result:









−

⋅
⋅−

⋅⋅
⋅−

≤ 1
)1(

2
)1(

21

1

21

1
2 rr

nr
rr

nr
O Eq. 8

The values of Fj refer to overlaps between partially and
fully-specified filters. The number of such overlaps per fully-
specified filter is independent of n as a property of a pair of IP
address domains. As a result we can consider that each Fj is
bounded by some value F. Therefore:

FnO ⋅≤3 Eq. 9

Eq. 2, 7-9 result in:

Fn
rr

nr
rr

nr
r

n
O ⋅+








−

⋅
⋅−

⋅⋅
⋅−

+
⋅

≤ 1
)1(

2
)1(

4 21

1

21

1
2

1

2
 Eq. 10

Even though the result of Eq. 10 is also O (n2) this bound is
much tighter than the worst case. This happens because the
number of filters n is divided by the parameters r1 and r2 in Eq.
10. The parameters r1 and r2 are expected to be greater than
one. Another difference is that the worst case bound is a
deterministic bound whereas the bound of Eq. 10 is a
stochastic bound, since the parameters r1, r2 and F are random
variables.

The random variables r1, r2 and F have unknown
distributions. However, we expect with very high probability
that r1 and r2 are greater than one and F is a small number.
Estimations on the upper bound of Eq. 10 can be derived by
selecting the values with the highest frequency from the
limited number of databases we experimented with, for r1, r2
and F. The values for r1, r2 and F used in our calculations are
r1 = 8.75, r2 = 4.3 and F = 15. More accurate results would
require the parameters to be estimated from a greater number
of samples. Our results are shown in Table XII. The worst case
estimations derived from Eq. 10 are compared against the
worst case estimations in this table.

TABLE XII
UPPER BOUNDS ON THE NUMBER OF PARTIAL FILTER OVERLAPS

database
number

number of
filters

observed
number of

partial
overlaps

upper bound
from Eq. 10

worst case
upper bound

1 426 4 10,790 90,525
2 527 2,249 14,651 138,601
3 1,588 6,138 85,393 1,260,078

