
he phenomenal growth in cel-
lular telephony over the past several years has demonstrated
the value people place on mobile voice communications. The
goal of next-generation wireless systems is to enable mobile
users to access, manipulate, and distribute voice, video, and
data anywhere, anytime. As the demand for mobile multime-
dia services grows, high-speed wireless extensions to existing
broadband and Internet technologies will be required to sup-
port the seamless delivery of voice, video, and data to mobile
devices with sustained high quality. New wireless services will
include Internet access to interactive multimedia, video con-
ferencing, and real-time data, as well as traditional services
such as voice, e-mail, and Web access.

The wireless and mobile environment presents a number of
technical challenges to this vision. First, physical-layer impair-
ments contribute toward time-varying error characteristics and
time-varying channel capacity as observed by mobile devices. We
describe the quality index maintained across the wireless
channel as wireless quality of service (QoS). Second, user
mobility can trigger rapid degradation in the quality of the
delivered signal. This can lead to transient service outages
resulting in handoff dropping in broadband cellular networks
when a new access point is unable to accommodate a new
mobile device at its current level of service. As a result, mobile
applications can experience unwarranted delays, packet losses,
or loss of service. We describe the quality index maintained
during handoff between access points as mobile QoS.

There is growing consensus that adaptive techniques [1]
present a viable approach to countering time-varying QoS
impairments found in wireless and mobile networking envi-
ronments. However, providing systemwide (i.e., end-system
and network) adaptive QoS support for mobile multimedia
communications is complex to realize in practice and not well
understood by the community [2]. Recently, a number of
adaptive mobile systems [3–8] have been proposed in the liter-
ature; however, few experimental systems exist today to assess
the viability of the adaptive approach. We believe that there is

a need to build adaptive mobile networking testbeds, study
their behavior, and learn from these experiments in building
more scalable adaptive mobile systems. We believe that there
is a need to take a hands-on systems approach coupled with
the analysis of well-founded adaptive QoS models to investi-
gate the viability of the approach and utility of adaptive
mobile networking to mobile users.

To address these challenges, we have built an open [9] and
active [10] programmable mobile network [11, 12] that is con-
trolled by a software middleware toolkit called mobiware [13].
Mobiware extends earlier work by the COMET Group on
programmable broadband networks [14] to the mobile and
wireless domain. By open, we mean that there is a need to
“open up” hardware devices (e.g., mobile devices, access
points, and mobile-capable switches and routers) for imple-
mentation of new mobile signaling, transport,and adaptive
QoS management algorithms. At the lowest level of pro-
grammability, mobiware abstracts hardware devices and repre-
sents them as distributed computing objects based on
Common Object Request Broker Architecture (CORBA)
technology [15]. These objects (e.g., an access point object)
can be programmed via a set of open programmable network
interfaces to support adaptive QoS assurances. By pro-
grammable, we mean that these programmable network inter-
faces are high-level enough to allow new adaptive services to
be built using distributed object computing technology. By
active, we mean that adaptive QoS algorithms can be repre-
sented as active transport objects based on Java objects and
injected on the fly into mobile devices, access points, and
mobile-capable network switches/routers to provide value-
added QoS support when and where needed.

In this article, we present an overview of mobiware fol-
lowed by a detailed discussion of the design, implementation
and evaluation of the mobiware programmable mobile net-
work layer. The source code distribution for mobiware v. 1.0
can be freely downloaded from [13] for experimentation. The
structure of the article is as follows. The next section describes

IEEE Personal Communications • August 199832 1070-9916/98/$10.00 © 1998 IEEE

T

The Mobiware Toolkit: Programmable Support
for Adaptive Mobile Networking

Oguz Angin, Andrew T. Campbell, Michael E. Kounavis,
and Raymond R.-F. Liao
Columbia University

Abstract
Existing mobile systems (e.g., mobile IP, mobile ATM, and third-generation cellular systems) lack the intrinsic architectural flexibility to deal with

the complexity of supporting adaptive mobile applications in wireless and mobile environments. We believe that there is a need to develop
alternative network architectures from the existing ones to deal with the tremendous demands placed on underlying mobile signaling, adaptation
management, and wireless transport systems in support of new mobile services (e.g., interactive multimedia and Web access). In this article we

present the design, implementation, and evaluation of mobiware, a mobile middleware toolkit that enables adaptive mobile services to dynamical-
ly exploit the intrinsic scalable properties of mobile multimedia applications in response to time-varying mobile network conditions. The mobi-
ware toolkit is software-intensive (comet.columbia.edu/mobiware) and is built on CORBA and Java distributed object technology. Based on an
open programmable paradigm developed by the COMET Group, mobiware runs on mobile devices, wireless access points, and mobile-capable

switch/routers providing a set of open programmable interfaces and algorithms for adaptive mobile networking.

IEEE Personal Communications • August 1998 33

an adaptive-QoS application pro-
gramming interface (API) and ser-
vice model, the mobiware
architecture, and the network
model. Following this, we present
the design and implementation
details of the mobiware pro-
grammable mobile network layer.
This is followed by an evaluation of
the system in an experimental set-
ting and a discussion of our results.
Finally, we present some conclud-
ing remarks.

Mobiware
Mobile applications need to be
capable of responding to time-varying wireless QoS and
mobile QoS conditions. To address this, wireless transport
and adaptation management systems should be capable of
transporting and manipulating content in response to chang-
ing mobile network QoS conditions. Mobile signaling should
be capable of establishing suitable network support for adap-
tive mobile services (e.g., the delivery of scalable flows or
packet services with drop preferences). Medium access con-
trollers must be capable of sharing the wireless link capacity
among mobile devices supporting adaptive QoS assurances
when possible.

Mobiware is based on a methodology of open programma-
bility [9] for the introduction, control, and management of
new adaptive mobile services. It provides a set of open pro-
grammable CORBA interfaces and objects that abstract and
represent network devices and resources, providing a toolkit
for programmable signaling, adaptation management, and
wireless transport services. Mobiware aims to provide a foun-
dation for open programmable mobile networking that is suit-
ed to managing the evolving service demands of adaptive
mobile applications and dealing with the inherent complexity
of delivering scalable audio and video and real-time services
to mobile devices. Built on an adaptive QoS API, mobiware
consists of a set of controllers that interact with transport, net-
work, and medium access control distributed objects that
maintain application-specific adaptive QoS needs.

The Adaptive QoS API and Service Model
By trading off temporal and spatial quality with available
bandwidth, mobile applications can be made to adapt to time-
varying conditions with minimal perceptual distortion. In [16],
we introduced an adaptive QoS API and service model specif-
ically designed to quantitatively address the wireless QoS and
mobile QoS needs of adaptive mobile applications. Mobile
applications use this API at the transport layer, specifying:
• A utility function, which captures the adaptive nature over

which an application can successfully adapt to available
bandwidth in terms of a utility curve that represents the
range of observed quality to bandwidth. The observed qual-
ity index refers to the level of satisfaction perceived by an
application at any moment, as illustrated in Fig. 1.

• An adaptation policy, which captures the adaptive nature of
mobile applications in terms of a set of adaptation strategies
(fast, smooth, after handoff, never). These policies allow the
application to control how it moves along its utility curve as
resource availability fluctuates, for example, sale up only
after handoff, fast adaptation, and smooth adaptation.
The utility function allows utility-fair bandwidth allocation

algorithms to derive explicit optimization rules under hetero-
geneous application adaptation behavior. Here bandwidth is

allocated fairly to all the flows so
that the same utility value is
achieved at an access point. For
full details of the utility-fair band-
width allocation algorithm, see
[16]. The utility function alone,
however, is not capable of captur-
ing application-specific adaptation
dynamics. Rather, a simple set of
adaptation policies is used to cap-
ture how an application wishes to
respond to instantaneous band-
width availability.

A mobile multimedia applica-
tion’s range of perceptible quality
is strongly related to how and when
it responds to resource changes.

Frequent oscillation between what may be considered optimal
and minimum utility or even the frequent small change
around an average application quality may be annoying to
many applications. Some applications may wish to limit the
frequency of adaptation to change (e.g., multiresolution appli-
cations). In contrast, others may wish to exploit any opportu-
nity for adaptation (e.g., real-time data applications). By
limiting or dampening the response to change an application
attempts to follow trends in resource availability rather than
fluctuations to instantaneous changes. Such a conservative
adaptation policy may lead to a more stable operating point
on an application’s utility curve. This is in contrast to a policy
that responds to instantaneous fast-moving points, which may
suit other styles of mobile application.

The adaptive QoS API is supported by mobiware at the
transport level and realized at the mobile device and in the
network. Mobile applications use this API to specify flow utili-
ty functions and adaptation policy. The adaptive QoS API
allows applications to associate temporal or event-based
dimensions with their utility functions.

The mobiware service model supports the following adap-
tation “menu” policy options:1
• Fast, to instantly move up the utility curve, responding

instantly to any resources changes.
• Smooth, to move up the utility curve only after a suitable

damping period has passed.
• Handoff, to move up or down the utility curve only after

handoff.
• Never, to never move up the utility curve after the initial

bandwidth allocation has been made.

The Architecture
Mobiware is a software-intensive adaptive mobile networking
environment based on distributed object technology. As
illustrated in Fig. 2, mobiware promotes the separation of
mobile signaling and adaptation management, and the trans-
port of media. At the transport layer, an active wireless trans-
port supports the end-to-end transmission of audio, video
and real-time data services based on an adaptive QoS
paradigm. The active wireless transport is an object-based
transport that blurs the region over which traditional trans-
ports (e.g., TCP and RTP) typically operate to include access

■ Figure 1. Utility functions.

Discretely adaptive
Strongly adaptive

Linearly adaptive

Weakly adaptive

BandwidthBL

0

1

Utility

BL+EL BL+EL+E2

1 A generalization of this approach is detailed in [16]. Adaptive mobile
applications supply adaptation handlers, which implement application-
specific adaptation policies supporting more sophisticated levels of adapta-
tion than the current menu options (e.g., fast, handoff) offered in the
existing system. Mobiware exposes a set of low-level APIs to allow the
application to control its adaptation strategy.

IEEE Personal Communications • August 199834

points and mobile devices. Built on a set of Java classes, the
transport system binds active and static transport objects at
mobile devices and access points to provide end-to-end
transport adaptation services. Static transport objects
include segmentation and reassembly, rate control, flow
control, playout control, resource control, and buffer man-
agement objects. These objects are loaded into the mobile
device as part of the transport service creation process.
Active transport objects can be dynamically dispatched to
mobile devices and access points to support valued-added
QoS. Currently, two styles of active transport objects have
been implemented: active media filters [17], which perform
temporal and spatial scaling for mul-
tiresolution video and audio flows, and
adaptive forward error correction
(FEC) filters [13], which protect con-
tent against physical radio link impair-
ments by matching the level of Reed
Solomon channel coding to time-vary-
ing error characteristics.

At the network layer, a programmable
mobile network supports the introduction
of new mobile adaptive QoS services
based on the xbind broadband kernel
[14]. The network layer supports
switched IP flows over ATM native
transport services. Architecturally, the
network comprises a set of CORBA net-
work objects and adaptation proxies that
operate at the mobile device, access
points and at mobile-capable
switch/routers. Currently, an adaptive
QoS network service supports the deliv-
ery of multiresolution flows having a
base layer and one or more enhance-
ment layers. The base layer provides a
foundation for better resolutions to be
delivered through the reception of
enhancement layers based on the avail-
ability of resources in the wireless envi-
ronment. Three key mobiware network
algorithms include:
• QoS-controlled handoff, which grace-

fully scales flows (up and down) based
on the semantics of the adaptive QoS

service during handoff when bandwidth availability
may vary

• Mobile soft-state, which provides mobile devices
with the capability to respond to changes in wire-
less and mobile QoS.

• Flow bundling, which exploits a common routing
representation for all the flows to and from a
mobile device to speed up handoff.
The focus of this article is the design and evalua-

tion of the programmable mobile network layer
described in the next two sections.

At the data link layer, a programmable MAC [18]
combines a set of foundation services to support
more sophisticated adaptive wireless QoS services.
Foundation services provide sustained rate services
used to support minimum wireless QoS assurances,
and active and passive adaptive services to support
application-specific adaptation policy, as discussed
earlier. The “programmable” nature of the data link
service provisioning over wireless networks provides
an alternative approach to that found in the litera-
ture. Rather than supporting a specified set of “hard-

wired” MAC services (e.g., constant bit rate) by means of
centralized control schemes, it provides a programmable air
interface that allows new services to be dynamically created
and installed on the fly. This programmable MAC service
support relies on a simple core architecture that pushes com-
plexity and application-specific adaptation decision making to
the mobile device. For full details on the programmable
MAC see [18].

The Network Model
Mobiware provides a middleware toolkit that controls mobi-
net, an experimental programmable broadband cellular access

■ Figure 2. The mobiware architecture.

Mobile applications with adaptive QoS

Wireline/wireless network

Java VM

Network controller

Adaptation proxies

Active transport objects
Transport controller

Programmable MAC

Programmable mobile
network

Active wireless
transport

xbind
(CORBA-based)

Signaling and
adaptation management Transport

■ Figure 3. Mobinet.

S1

Internet

Br
oa

db
an

d
ce

llu
la

r
ne

tw
or

k
Br

oa
db

an
d

ad
 h

oc
 n

et
w

or
k

A
da

pt
iv

e
Q

oS

S2 S3

AP1 AP2

AP3 AP4

Mobility agent

FORE ASX100

SwitchServer

SwitchServer

MobileDevice

Connected ad hoc network

Wireless-QOS

ATML1

Mobile-QoS
Autonomous ad hoc network

ATML2
ATML3

NEC Model 5

Flow bundling

Scorpio Stinger
RAP&QAP

Crossover switch

AccessPoint

IEEE Personal Communications • August 1998 35

network. The network model2 comprises a set of mobile
devices, wireless access points, and mobile-capable
switches/routers providing broadband cellular and ad hoc
communication services to mobile users. Mobinet is based on
asynchronous transfer mode (ATM) switching technology that
supports IP-switched flows in the access network. Mobile
devices can be connected to mobinet via broadband cellular
or ad hoc wireless access modes. In broadband cellular mode,
mobile devices receive core network services via a set of wire-
less access points. Ad hoc devices may operate autonomously
without the aid of any fixed infrastructure and core network
services or can connect to the broadband cellular network via
multiple ad hoc hops as illustrated in Fig. 3.

Providing QoS assurances in broadband cellular networks
is difficult. However, providing QoS assurances without the
aid of any fixed infrastructure, as in the case of mobile ad hoc
networking, is more challenging [19]. We believe there is a
need to understand the level of QoS that can be supported at
different points of attachment in mobinet (e.g., at the access
point or multiple hops away from the access point). We
observe that QoS assurances are likely to diminish as a mobile
device moves away from the core network. Providing seamless
QoS support to mobile devices on the move (e.g., switching
between broadband cellular and ad hoc modes) underpins
mobiware’s adaptive QoS design approach.3

A Programmable Mobile Network
Programmable Objects

The mobile network comprises a set of programmable dis-
tributed CORBA objects4 that support the delivery of adap-
tive QoS flows to mobile devices over mobinet. The use of
distributed object technology also provides support for inter-
operability between mobile devices utilizing different operat-
ing systems and protocol support. Mobiware objects execute
on mobile devices, access points, and mobile-capable
switch/routers supporting a set of mobile signaling and QoS
adaptation algorithms (QoS-controlled handoff, flow bundling,
and mobile soft-state), as illustrated in Fig. 3. Objects com-
bine data structure (defining the object’s state) with a set of
methods (defining the object’s behavior). Methods are exe-
cutable programs associated with objects that operate on
information in an object’s data structure.

Two per-mobile proxy objects support the adaptation and
handoff of flows in mobiware:
• QoS adaptation proxy (QAP) objects play an integral role in

allowing mobile devices to probe and adapt to changing
resource availability over the wireless link.

• Routing anchor proxy (RAP) objects support the

“bundling”(i.e., aggregation) of flows to and from mobile
devices for fast, efficient, and scalable handoff.
To manage the network state introduced by flow-oriented

communications and, importantly, to gain efficiency across a
wireless link, mobiware deploys a number of network objects
that can execute on network nodes or on servers at the edge
of the network. In the following we outline the function of
some of the mobiware objects and their interface definitions.
For full details on the objects and interfaces see [13].

A mobile device object abstracts the operation of mobile
devices and provides APIs for querying beaconing information,
registering with new access points, establishing flows, renego-
tiating QoS and handing off flows. It also includes the func-
tionality to dynamically control the transport system at the
access points (e.g., to set the media scaling or error control
level for video flows). The mobile device object state mainly
consists of QoS specification (viz. utility function and adapta-
tion policy) for all the flows transported to/from the mobile
device, and routing information including the source/destina-
tion address and current RAP and access point addresses.

An access point object supports APIs for binding to wire-
line network objects (e.g., mobility agent) on behalf of mobile
stations, propagating CORBA calls, and establishing and peri-
odically refreshing local wireless flow state, as illustrated in
Fig. 4. This object plays an important role in QoS-controlled
handoff and interacts with the transport system for the injec-
tion of active transport objects.

A mobility agent object provides flow, adaptation, and
mobility management services. It interacts with per-mobile
RAP and QAP state in the switch servers and supports APIs

2 It is envisioned that the Internet will provide interconnectivity between a
set of these access networks providing a programmable cellular internet-
working environment. In this case the Internet will support macro-level
mobility using Mobile IP and the programmable access networks will sup-
port QOS controlled handoff, flow bundling, mobile soft-state and active
wireless transport services to mobile devices.

3 In this article we focus on adaptive quality of service support for pro-
grammable broadband cellular communications. Currently, mobile ad hoc
support is under investigation by the COMET group [19, 20].

4 Mobiware programmable objects also include active transport objects
based on Java classes that “plugin” to the wireless transport data path at
access points to provide value-added quality of service adaptation support.
Currently, the active wireless transport supports active media scaling and
adaptive FEC support.

■ Figure 4. CORBA IDL for an access point object.

interface AccessPoint : NodeServer {
// flow setup from the current access point to
// the network, called by the mobile device object
void setupFlow (in long fbi,

inout QOSSpecification qosSpec,
inout FlowInfo flowinfo, in string<40> scrname,
inout EndPoint peerEp,
inout EndPoint RAP_fix, inout EndPoint RAP_mobile,
inout EndPoint AP_fix, inout EndPoint AP_mobile,
inout End PointId airIP, inout double msr_time)

raises (Reject);

// handoff flow bundle for a specific mobile device
void handoffFlowBundle (in long fbi, inout QOSSpecList

qosSpec [2], inout FlowInfoList flowinfo [2],
inout SourceList scrname [2], inout EndPointList
RAP_fix [2], inout EndPointList RAP_mobile [2],
inout EndPointList AP_fix [2], inout EndPointList
AP_mobile [2], inout EndPointList airIP [2],
inout double msr_time)

raises (Reject);

// refresh mobile soft-state for flow bundle
// through the current access point to the network
void refreshFlowBundle (in long fbi,

inout EndPointList RAP_mobile [2],
inout EndPointList AP_fix [2],
inout EndPointList AP_mobile [2],
inout double ntw_msr_time)

raises (Reject);

// initialize mobile related states during registration
void mobileRegistration (in long fbi,

const char *rapName, const char *cmName,
const char *msName)

raises (Reject);
};

IEEE Personal Communications • August 199836

for retrieving network topology information from a router
object (e.g., location of the crossover switch) and for interact-
ing with the switch servers (see below) to establish, maintain,
and hand off flows in the cellular access network.

A set of switch server objects [14] abstract and represent phys-
ical ATM switch/routers and are QoS programmable. These
objects support APIs for the reservation and release of
namespace, such as virtual channel identifier/virtual path iden-
tifier (VCI/VPI) pairs, and the allocation of network resources
(e.g., bandwidth). State mainly consists of per-flow connection
information, stored in local hash tables called switch caches.
Switch server objects have been extended to be mobile-capable
(i.e., support RAP and QAP functionality). The General
Switch Management Protocol (GSMP [21]) is used at the
access points and switch/routers for accessing the switch tables.

QoS-Controlled Handoff
QoS controlled handoff gracefully scales flows during handoff
based on the semantics of the adaptive QoS API described
earlier. By scaling flows during periods of resource contention
(e.g., during handoff), mobiware improves the wireless
resource utilization and helps reduce the handoff dropping
probability. While the style of handoff is entirely pro -
grammable [22], the current implementation style is mobile-
initiated, forward handoff with soft handoff on the downlink
and hard handoff on the uplink. By mobile-initiated, we mean
that after a suitable dwell time a mobile device initiates a
handoff by first registering with the forward/new access point.
By soft handoff, we mean that during handoff the mobile
device simultaneously receives flows from the old and new
access points on the downlink. In contrast, uplink flows use a
“break and make” approach between the old and new access
points. During handoff, registration to the new access point,
rerouting of flows, and QoS adaptation are accomplished by
signaling objects and associated APIs outlined in the previous

section. Signaling APIs are programmable,5 allowing various
styles of handoff to be tailored toward particular radio envi-
ronments.

The QoS-controlled handoff object interactions are illus-
trated in Fig. 5. Mobile device objects periodically “hunt” for
beacon signals from neighboring access points. Beacons are
made programmable by the mobiware toolkit and carry low-
level signal information in addition to the current bandwidth
availability at the sending access point. The mobile devices’
hunting algorithm periodically compares all beacons received
over the current hunt period and cumulatively over multiple
hunt periods. If the wireless QoS6 indicated in the beacon
from the current access point falls below a predetermined
threshold, the hunt algorithm selects a new access point for
handoff. Handoff is initiated after a suitable dwell period,
when the mobile device registers with the new access point
starting the handoff process as indicated by 2 and 3 in Fig. 5.

The device registration procedure triggers the new access
point object to bind to a mobility agent object (4). The mobility
agent caches bindings to the per-mobile adaptation proxies that
are implemented as part of switch servers. Mobility agents
and proxies can run anywhere in the mobinet, that is, mobility
agents can operate at fixed edge devices or mobile devices, or
on the switches. Mobility agents are the main controllers for
managing handoff in mobiware. Mobility management is a
fully distributed algorithm that includes one or more mobility
agents for scalability. Currently, we allocate a single mobility
agent to manage handoff in the experimental mobinet. When
the mobile device initiates a handoff (5), it passes a unique

■ Figure 5. QoS-controlled handoff object interaction.

7'

7

6
10'

10
SetupConnAck()
with QoS, VCI

SetupConn(..,fbi,...)

SwitchServer SwitchServer AccessPoint
MobileDeviceHandoffFlowBundle(...,fbi,...)

HandoffFB_Ack() with QoS", Port

MobileRegistration(...,fbi,...)
MobileRegAck(...,fbi,...)

AccessPoint Beacons with QoS hints

SetupConn(..,fbi,VCI...)

MobilityAgent Router WirelessManagementTool

DisplayBeaconInfo()
returns beaconData

HandoffSetup()

getRoute()

HandoffFlowBundle(..,fbi,...)

HandoffFBack()
with min(Qos, QoS'), VCI'

getRouteAck() with routeData

_bind(MobilityAgent)

SetupConnAck()
with QoS', VCI'

9

• reserveOutputVCI()
• reserveResource()
• GSMP_SEND(..., VCI,...)
• updateCache()

• reserveOutputVCI()
• reserveResource()
• GSMP_SEND(..., VCI,...)
• updateCache()

• reserveVirtualPortI()
• reserveResource()
• setupDatapath()
• updateCache()

9'

1

13

3' 2

12

4

8
8' 11

5

3

5 The programmable object-oriented nature of the mobiware signaling sys-
tem makes it easy to “program” different styles of handoff algorithm (e.g.,
network-initiated handoff that is hard by nature) that can operate in paral-
lel to other styles of handoff over mobinet. For full details of the program-
ming interfaces and results from the different styles of programmable
handoff, see [22].

6 In addition to monitoring delay, loss, and bandwidth characteristics of
flows, a mobile device object receives beacons that inform it of the state of
the wireless link. The beacon informs the mobile device of the channel
conditions upon reception, reporting the signal level, silence level, signal
quality, and antenna selected. The signal and silence levels are derived
from the receiver’s automatic gain control settings. Beacon messages are
augmented with a 16-bit field that indicates the available bandwidth at the
access point. The mobile device can use this to scale down its request for
bandwidth resources during handoff, given that the bottleneck node is typi-
cally the access point. Our radios are based on WaveLAN operating in the
2.4–2.8 GHz industrial, scientific, and medical (ISM) band, to which we
have low-level access for programming the beacon.

IEEE Personal Communications • August 1998 37

mobile device identifier called the flow
bundle identifier (FBI) to the access point
that allows mobiware to identify the mobile
device’s flow bundle in the wireless access
network.

Mobility agents are responsible for
rerouting a mobile device’s flow bundle
from an old access point to a new one, as
illustrated in Fig. 5. This entails the mobili-
ty agent invoking the route object (7) to
determine the location of the crossover
switch. Switch server objects are used to
reestablish new flow state at all switches
between the crossover switch and the new
access point. The rerouting phase includes
name space reservation (outgoing
VCI/VPI) and bandwidth value at each
network switch and the new access point.
The final process of rerouting a flow bun-
dle through a switch includes the use of GSMP (9) (9’) (12) to
set up the switch table and reserve resources. However,
GSMP does not support the concept of flow bundling. While
the mobile agent informs the switch server objects to establish
state for a complete flow bundle, the switch server interacts
with GSMP on a flow-by-flow basis. In the “Evaluation” sec-
tion we describe enhancements to GSMP to support flow
bundling. The mobility agents interact with mobile-capable
switch servers and the new access point in parallel (8) (8’)
(11), resulting in a speedup of the rerouting phase of the
handoff algorithm over conventional hop-by-hop signaling.
After the rerouting of the flow bundle is complete, the mobile
agent informs the new access point of the negotiated QoS and
flow bundle VCI/VPI mappings (11). The new access point
interacts with the active wireless transport to provide active
media filters based on the available bandwidth at the air inter-
face [17].

To keep the name space binding between the mobile
device and access points constant with mobility, we have
implemented the notion of virtual wireless ports. As mobile
devices connect to different access points, their VPI/VCIs
mapping remain constant. The flow bundle to VPI/VCI bun-
dle is resolved by a virtual wireless port, which is dynamically
allocated by the new access point during handoff. This
approach minimizes the impact of renegotiation in compari-
son to a full name space renegotiation, which would be dis-
ruptive during handoff.

Flow Bundling
QoS-controlled handoff and mobile soft-state exploit flow
bundling to speed up handoff and minimize the signaling over-
head associated with maintaining the network state. Flow
bundling [23] provides a common routing representation for all
the flows to and from a mobile device, as illustrated in Fig. 3.
This is similar to the virtual path concept in ATM networks or
tunneling in IP networks. Flow bundling is a general method
for encapsulating and routing. Flow bundling is motivated by
the need to reduce the complexity of rerouting multiple inde-
pendent flows to and from mobile devices during handoff. By
aggregating flows in this manner we can speed up handoff,
simplify mobile soft-state probing and minimize signaling
overhead. Using flow bundling, QoS-controlled handoff sim-
ply discovers a single crossover switch, then reroutes all flows
to the new access point in a single object-level operation.

During handoff the flow bundle object interaction is as fol-
lows. The mobile device object invokes the access point’s
HandoffFlowBundle() method once for the flow bundle, mini-
mizing the signaling overhead at the air interface, as illustrat-

ed in Fig. 5. Mobiware supports the option of enabling or dis-
abling bundling when flows are established. Note that when
flow bundling is disabled the mobile device, access point, and
mobility agent objects treat each flow independently during
handoff. As discussed in the evaluation, this increases the sig-
naling overhead and the handoff latency. During each invoca-
tion a separate crossover switch needs to be located, using a
shortest path algorithm and individual flows need to be
rerouted and signaled independently.

The mobile agent interacts with the switch servers to
reestablish flows and update switch tables for all switches
between the crossover switch and the mobile device. GSMP is
used to update the switch table at each traversed switch. In
order to support the atomic rerouting of flow bundles we have
enhanced the GSMP protocol. Flow aggregation at the switch
control level has been implemented as a modification to the
GSMP invocation mechanism. Two enhancements to GSMP
to support flow bundling are considered later. The first
enhancement has no impact on the current GSMP client–serv-
er interaction. The mobile agent simply invokes the GSMP
client for each flow in a flow bundle without waiting for
acknowledgment from each GSMP command. This results in
the switch server sending a burst of GSMP setup messages to
the switch, then waiting for acknowledgments. The second
enhancement augments the GSMP setup message to allow up
to 256 VCI pairs to be passed across the interface in one
client–server interaction. This allows the switch server to set
up the switch table for a flow bundle in one operation. We
discuss the performance benefits of flow bundling later.

Mobile Soft-State
During handoff a flow bundle must be rerouted to a new
access point, resources need to be reserved, and the old flow
bundle state between the old access point and the crossover
switch must be removed. Mobile devices resident in cells also
need to scale flows in accordance with channel conditions,
whether new flows are established or released, and when new
mobile devices enter and leave cells. Mobile soft-state pro-
vides QoS adaptation support to cater to a number of these
conditions. Mobile soft-state results in the periodic establish-
ment of bandwidth and name space resources for flow bun-
dles between a mobile device and a per-mobile QAP.
Mobiware supports the idea of soft-state [24] in the mobinet
to refresh the network state. The periodic refresh messages
sent by a mobile device as part of a soft-state probing mecha-
nism are sent on a per-flow-bundle basis, not a per-flow basis.
This means a mobile device sends a single probe message for
all flows supported at the mobile device rather than one

■ Figure 6. Mobile soft-state object interaction.

SwitchServer
(At QAP)

4

3 3'
6

1

7

• updateQoS()
• refreshTimer()

AccessPoint

8

MobileDevice
SwitchServer

4'

• updateQoS()
• refreshTimer()

• updateQoS()
• refreshTimer()

2

MobilityAgent

refreshAck()
with QoS

refreshFlowBundle(...fbi...)
refreshAck() with min(QoS, QoS')

refreshFlowBunde(...fbi...)

refreshFB_Ack()
with min(QoS, QoS', QoS")

refreshAck()
with QoS

refreshFlowBundle(...fbi...)

5'
5

IEEE Personal Communications • August 199838

probe per flow. During the refresh phase mobile devices
respond to any changes in allocated bandwidth (based on util-
ity functions) to a flow bundle.

In [25] we argue that a soft-state approach is well suited to
supporting QoS adaptation in mobile networks. Mobile soft-
state supports a distributed probing mechanism based on flow
bundles, allowing mobile devices to compete fairly for band-
width in a completely decentralized, competetive, and scalable
manner. During handoff mobile devices do not explicitly
remove the old flow bundle state between the old access point
and the crossover switch. In this case, mobile soft-state timers
located at the switches and old access point timeout and
release resources automatically. Mobile devices resident at the
old access point compete for these available resources, there-
by potentially improving their utility.

Mobile devices periodically probe the path between the
mobile device and the per-mobile QAP and contend for
resources. Note that per-mobile QAPs can be located at an
access point or any mobile switch/router between the mobile
and its corresponding RAP. If the QAP is located at the
access point, mobile soft-state is only active over the air
interface; that is, between the mobile device and access
point. The position and configuration of where these proxies
reside is programmable. In many cases, the access point is
the most suitable location because radio resources are gener-
ally the bottleneck in broadband wireless or wireless LAN
systems.

Mobile devices independently probe the wireless access
network. The probe includes a list of flow requirements for
the complete flow bundle, which includes the utility function

for each flow. In the current system, we have implemented
discretely adaptive flow support (Fig. 1) where a base layer
(BL) and one or more enhancement layers (E1, E2) would
be signaled in the probe message. The probe interacts with
the access point and all mobile-capable switches/routers
between the mobile device and its QAP. The response is
returned to the mobile device indicating the available band-
width reserved for each flow in the bundle over the next
time interval. This time interval is called the refresh interval.
If a probe message is received along the path before the
refresh interval expires, the reservation is “refreshed” based
on available resources. In contrast, if no refresh message is
received and the timer expires, the resources are deallocated
and states are removed. This reservation-adaptation style of
probing and response is implemented at the object level as a
set of refreshFlowBundle() method invocations (2) (3) (3’),
as illustrated in Fig. 6. The mobile device issues a refresh to
the mobility agent object, which then refreshes all switches
and the current access point on the path between the mobile
and QAP.

Evaluation
To evaluate the programmable mobile network performance,
we have built the mobinet testbed, developed a wireless net-
work management tool, and designed a set of experiments to
analyze QoS-controlled handoff, flow bundling, and mobile
soft-state algorithms. Through the course of measurement,
evaluation, and redesign we managed to substantially improve
upon our initial baseline design.

■ Figure 7. Mobiman: a Java-based management tool.

IEEE Personal Communications • August 1998 39

The Experimental
Environment

At the network level, mobinet provides wireless access
to the Internet and comprises four ATM switches7

(ATML Virata, Fore ASX/100, NEC model 5, Scorpio
Stinger switches) and four wireless access points, as
illustrated in Fig. 3. The access points run the mobi-
ware code and are based on a set of multihomed 200
MHz Pentium PCs that provide radio access to a wire-
line IP/ATM switched access network. High-perfor-
mance notebooks (IBM, Gateway, and NEC) provide
support to mobile applications and mobile access to
the access network. Wireline ATM links operate at
OC-3 rates between the switches and fixed end sys-
tems, and at 25 Mb/s between the switches and access
points. Currently, the air interface is based on Wave-
LAN operating at 2 Mb/s in the 2.5 GHz band. A
future version of the mobinet will operate at 25 Mb/s
spectrum in the 5 GHz NII/SUPERNet unlicensed
band. Mobile-capable switches, access points and
mobile devices are abstracted as programmable
CORBA objects. Mobiware requires Internet Inter-
ORB Protocol (IIOP) CORBA for mobile signaling
and adaptation management. For the results provided
in this article the mobile devices and access points use
IONA’s Orbix CORBA running under Windows NT,
and the mobile-capable switches/routers use IONA’s
Orbix running under UNIX or proprietary operating
systems.

We have designed and implemented mobiman, a
Java-based management tool for wireless networks, as
illustrated in Fig. Mobiman drives experiments, dis-
plays recorded statistics, and provides network man-
agement capability to view the network and inspect
the state of any mobile device. To measure the per-
formance of the programmable mobile network, we
inserted measurement checkpoints throughout the
code and recorded performance statistics during the
experiments. Mobiman, which runs on any fixed or
mobile device, can remotely target any mobile device
operating in mobinet displaying mobile device object
statistics. It can set up flows, turn flow bundling and
mobile soft-state on/off, interact with media scaling
and adaptive FEC control at the transport level, and
force handoff operations to occur. Measured informa-
tion displayed by the mobiman wireless management
tool comprises flow information, QoS measurements
(e.g., signal level and access point bandwidth avail-
ability), and experimental checkpoint measurements.
Mobiman displays measured information, wireless
network topology, and mobile device location in a
control window, as il lustrated in Fig. 7. When a
mobile device is selected by mobiman a control win-
dow indicates the state of the mobile; for example, three flows are delivered to “mobile-air#1” in Fig. 7. In this exam-

ple, mobile-air#1 is running mobiman and the three flows
correspond to the playout of the “True Lies” video and two
low-resolution text windows. A flow setup panel appears in
the top left corner of Fig. 7.

Microsoft’s Active Movie is used for the reception, decod-
ing, and rendering of digital video. It provides a software tool
capable of controlling and processing streams of multimedia
data. Active Movie uses modular components called filters
and filter graphs. Typically, a filter graph consists of a source
filter that provides the system with multimedia data, a trans-
form filter that performs data decompression, and a rendering
filter. Active Movie’s filter graph has been enhanced with an

■ Figure 8. Handoff (a) with flow bundling on; (b) with flow bundling off.

S1

FORE ASX100

ATML 1

(b)

(a)

ATML 2
ATML 3

NEC Model 5
Flow bundling

Scorpio Stinger
RAP&QAP

Crossover switch
for all sources

AP1
AP2

AP3 AP4

S2
S3

FORE ASX100

ATML 1
ATML 2

ATML 3

NEC
Model 5

Scorpio Stinger

Crossover switch
for S2

AP1
AP2

AP3 AP4Cross-over
switch
for S1

Cross-over
switch
for S3

S3S2

S1

7 We modify the concept of switchlets [26] to provide an extended network
for mobiware evaluation. Switchlets allow multiple virtual network ele-
ments to be operational within the same physical nodes. Three ATM
switches (ATML 1, 2, and 3, as shown in Fig. 3) in our network are switch-
lets physically collocated at the same physical switch. For example, packets
traversing three switchets located at the physical switch travel across the
physical switch three times via cables that directly connect one port to
another in the same switch. Each switchlet corresponds to a different
CORBA switch server object with a different name space, and manages its
own resources and controls connections independently from others.

IEEE Personal Communications • August 199840

appropriate mobiware static transport object to perform syn-
chronization of flows during handoff, delay-jitter control, and
rate control.

The Experiments
Our evaluation methodology is based on a set of experiments
designed to investigate the performance of the mobiware pro-
grammable mobile network in supporting mobile multimedia
communications. The use of CORBA for mobile signaling,
wireless adaptation and mobile network programmability is a
novel aspect of our implementation. CORBA objects run at the
edges and in the mobile network to support wireless and mobile
QoS. An important aspect of our evaluation was to determine if
such distributed object technology is viable in supporting mobile
signaling and adaptation management.

Handoff Analysis — An important objective of this experi-
ment is to measure the handoff latency and understand how
the signaling system delays breakdown. In this experiment we
investigated the handoff of a single flow. Handoff with flow
bundling is described in the next section. For this experiment
we streamed a single video flow from a fixed network server
(S1) to a mobile device (M1) as illustrated in Fig. 3. The
mobile device moved repeatedly between access points AP2
and AP3 with the crossover switch located at the ATML2
switch. The average handoff latency for the baseline code was
measured to be 171 ms. This measurement broke down into
102 ms for mobile registration and object binding, 30 ms for
wireless ATM connection setup, and 39 ms for wireline con-
nection setup. The greatest portion of the total latency time
was absorbed by the binding process between objects during
handoff. As described earlier, the mobile device object
remotely binds to the access point object at the forward access
point. Following this, the access point locally binds to a QoS
mapper object and remotely binds to a mobility agent object
for handoff control.

The following enhancements were made to the baseline
code to reduce binding and remote procedure call (RPC)
overhead. First, by collapsing unnecessarily independent
CORBA objects into a single object, the binding overhead

was reduced. To reduce binding over the air interface,
the mobile proxy and QoS mapper located at the access
point object were collapsed into a single CORBA object.
This reduced the number of CORBA requests across the
air interface, reducing the binding time from 102 ms to
42 ms. Collapsing objects in this manner reduced the
handoff latency to 111 ms, as illustrated in Fig. 9. Next, by
reducing the number of CORBA RPCs between objects
during handoff, the overhead was further reduced. An
RPC across the air interface between the mobile and
access point took an average of 15 ms to complete. The
number of RPCs between the mobile and access point was
reduced from four to two (registration, handoff request).
Reducing the number of CORBA RPCs during handoff
reduced the handoff latency by 28 ms to 83 ms (Fig. 9).

The final enhancement to the baseline handoff code
exploited the concept of caching object bindings. In order
to eliminate the binding latency, we set up and cached
bindings between remote CORBA objects prior to handoff
being initiated; we call this prebinding. All access points
periodically broadcast their beacons, which include
address information, signal strength, and available band-
width resources at the access point. When mobile devices
receive these beacons in promiscuous mode they register
the signal quality in lieu of a possible handoff to a new
access point. A prebind capability was added to the pro-
grammable mobile network to allow mobile devices to

prebind to neighboring access points in advance of handoff.
The prebinding criterion is based on the signal strength and
available resources. The prebinding algorithm issues a prebind
to an access point object on the fly, establishing TCP connec-
tions for the CORBA IIOP between the mobile device and
the access points. Another enhancement establishes bindings
between all access point objects in a domain and its associated
mobile agent object. This final enhancement reduced the
average handoff latency from 83 ms to 41 ms.

Flow Bundling Analysis — This experiment evaluates the per-
formance gains using flow bundling during handoff. We
observe the performance of handing off multiple flows with
flow bundling disabled and then enabled. In the experiment
video is streamed from three independent sources (S1, S2, S3)
across the network to a single mobile device, which repeatedly
moves between access points AP2 and AP3. When flow
bundling is disabled (Fig. 8b) each flow S1, S2, and S3 is inde-
pendently rerouted during handoff via the ATML 1, ATML 2,
and ATML 3 crossover switches, respectively. When flow
bundling is enabled all flows are bundled at a per-mobile

■ Figure 9. Handoff latency measurement results.

Total latency
Binding latency
Wireline connection latency
Wireless connection latency

0
Baseline code

Time (ms)

20

40

60

80

100

120

140

160

180

200

Collapsing
CORBA objects

Reducing
CORBA calls

Prebinding

■ Figure 10. Performance gain with flow bundling.

Number of flows

Flow bundling performance

Optimized system with flow bundles
Optimized system without flow bundles

Baseline system with flow bundles
Baseline system without flow bundles

21
0

200

A
ve

ra
ge

 h
an

do
ff

 la
te

nc
y

(m
s)

400

600

800

1000

3 4 5 6 7 8 9 10

IEEE Personal Communications • August 1998 41

QAP located at the Scorpio switch and rerouted during hand-
off via a single crossover switch located at the ATML 2 switch
(Fig. 8a).

In this experiment, we vary the number of video streams
transported to/from a mobile device from one to ten flows
with bundling enabled and disabled, and measure the handoff
latency. We observe that the results from the baseline mea-
surement highlight the performance improvement (i.e.,
speedup in handoff) gained using flow bundling techniques in
the access network (Fig. 10). As indicated in the figure, the
benefit of flow bundling becomes more pronounced as the
number of flows increases. For example, the handoff latency
for two flows is 200 ms with flow bundling enabled and 250
ms when bundling is disabled. For ten flows with and without
flow bundling enabled the handoff latency is 320 ms and 780
ms, respectively. The benefit of flow bundling reduces the
handoff latency and, importantly, simplifies the state manage-
ment of flows in the cellular access network. The adoption of
flow bundling provides an improvement of 20 percent for two
flows and 59 percent for ten flows. With flow bundling enabled
(Fig. 8a) the handoff latency converges, whereas with flow
bundling disabled the latency increases almost linearly as the
number of flows increases. These results indicate the benefit
of using flow bundling to reduce handoff latency and signaling
overhead. This is mainly due to the fact that all interactions
between objects during handoff deal with aggregated signaling
rather than per-flow signaling.

The baseline code only provides flow bundling support
between the mobile device, access point, and mobility agent
objects. The interface between the mobility agent and the
switch server is per-flow. Another observation is that the
GSMP interface between the switch server object and switch
does not provide any support for aggregation (i.e., a GSMP
client cannot update the switch table for more than one VCI
pair). To address this we enhanced the GSMP interfaces used
by the switch server object. This resulted in seamless support
for flow bundling aggregation from the mobile device to the
switch tables, providing some level of speedup. The GSMP
enhancements include a “parallel” enhancement, which did
not require any changes to the GSMP code. In this case, for
two flows the latency for total GSMP messages is 849 µs with-
out aggregation and 511 µs with aggregation, showing a 40
percent improvement. With increasing number of flows, the
total gain obtained by aggregation increases to 70 percent for
ten flows (3907 µs vs. 1184 µs).

The baseline code was enhanced to support the optimiza-
tion discussed earlier. In addition, the GSMP messaging
between the switch server and GSMP provided some incre-
mental improvements, as discussed above. Considering the
enhanced code, the handoff latency was reduced to 56 ms
with bundling and 67 ms without bundling for two flows,
showing a 16 percent improvement. In contrast, the handoff
latency for ten flows was 155 ms and 420 ms with and without
bundling, respectively, showing a 63 percent improvement.

Mobile Soft-State Analysis — This experiment demonstrates
the ability of mobile devices to adapt their bandwidth needs
to changes in wireless and mobile QoS based on mobile soft-

state. Mobile devices periodically probe and adapt to changes
in available resources in wireless access networks. Users char-
acterize flows using an adaptive QoS API (described earlier)
that includes a utility function and an adaptation policy. In
this experiment we present two scenarios that illustrate the
benefit of mobile soft-state and QoS adaptation management
in wireless and mobile environments.

The first scenario, illustrated in Fig. 11a, shows the QoS
adaptive behavior of two mobile devices, M1 and M2, operat-
ing within a single wireless cell. Mobile devices M1 and M2
receive the “True Lies” and “Star Wars” video streams,
respectively. Both video flows are based on discretely adaptive
utility functions (i.e., multiresolution flows). Initially, M1
receives a base layer (BL) at 80 kb/s, and M2 a base and
enhancement layer (E1) at 150 kb/s. Currently, the adaptive
QoS service gives priority to support the minimum bandwidth
requirements of multiresolution flows [27]. During the sce-
nario, M2 registers an increase in bit error rate as it moves
away from its current access point. Adaptive FEC is applied
to the video between the access point and M2 based on the
observed signal-to-noise ratio (SNR) and the measured bit
error rate. An adaptive FEC object selectively codes the base
and enhancement layers of the “Star Wars” video, increasing
the bandwidth consumed by M2 from 150 kb/s to 250 kb/s.
For the experiment, the maximum capacity of the air interface
is set to 330 kb/s, and approximately 45 s into the scenario the
M2 video is adapted back to the base layer with FEC only.
Resources released by M2 are consumed by M1 increasing its
utility at 50 s8 into the scenario. This situation remains con-

■ Figure 11. (a) QoS adaptation within a single cell; (b) hand-
off-driven QoS adaptation.

Time (s)

Adaptation

M1, True Lies video
M2, Star Wars video
M3, HTTP download

0

(a)

(b)

0

50

Bi
t

ra
te

 (
kb

/s
)

100

150

200

250

300

350

400

20 40 60 80 100 120 140 160

Time (s)

Handoff to AP2

H1

H2

H4

H3

Call dropping vs. handoff adaptation

M1, adaptation to a higher resolution
M2, adaptation to a lower resolution
M3, admitted call - no adaptation
M4, dropped call - no adaptation

0
0

100

Bi
t

ra
te

 (
kb

/s
)

200

300

400

500

600

700

20 40 60 80 100 120

8 Mobile device M1 probes and adapts to the available bandwidth within a
single refresh interval that is currently set to 10 s. There are a number of
trade-offs in setting the probe interval. A smaller duration allows mobile
devices to aggressively grab resources on a fast timescale. However, this
increases the signaling load overhead. Currently, we are investigating the
coupling of the probing and adaptation timescales to the application-level
adaptation policy [16].

IEEE Personal Communications • August 199842

stant until M2 handoffs to a new access point after 80 s,
allowing the access point to deliver another enhancement
layer to M1. Note that mobile-initiated adaptation to released
resources (i.e., scaling up) is somewhat dependent on the
refresh/probe interval. When a new mobile device, M3, enters
the cell after around 120 s, mobile device M1 explicitly scales
back by dropping an enhancement layer. Toward the end of
the scenario M3 probes and scales up to a better perceptible
quality as M1 hands off to a new access point. At 140 s into
the scenario, mobile device M3 sets up a new flow to access
Web services, downloading a GIF file at a rate of 70 kb/s scal-
ing up to 135 kb/s. In related work [16] we are investigating a
generalized adaptation policy mechanism where applications
can specify application-specific adaptation semantics. For
example, some applications would not wish to experience the
adaptation observed by M1, while others may be as aggressive
as M3 in exploiting any available resources.

The second experiment highlights a number of different
QoS adaptation scenarios that can take place during handoff.
In this experiment, mobile devices hand off to access point
AP2 from AP1 and AP3. Here, however, QoS adaptation is
not based on the mobile soft-state refresh mechanism
described and evaluated in the previous section. Rather, as
part of the QoS renegotiation phase during handoff, mobile
devices scale their QoS needs to match the available resources.
The handoff point at which each of the four mobile devices
(M1, M2, M3, M4) enter the new access point, AP2, is illus-
trated in the trace shown in Fig. 11b. The type of adaptation
that takes place after handoff points, marked H1 through H4,
is illustrated. During handoff a number of adaptation scenar-
ios may occur, depending on the available resources and the
ability of existing mobile devices to adapt. For example, the
new access point may force existing mobile devices to drop
enhancement layers to allow a new mobile to enter the cell
with minimum QoS assurances. In this experiment, mobile
device M1 enters the new cell at H1 and scales up its utility to
take advantage of available resources. M1’s adaptation policy
is to only scale after handoff. At point H2 mobile device M2
hands off to access point AP2 and is forced to scale down to
its base layer. Mobile device M3 has an adaptation policy of
never adapting. At H3 the mobile hands off to AP2 and main-
tains its current utility. In the final part of the experiment, M4
hands off to AP2 at point H4. In this instance, insufficient
resources are available to support the base layers of M1, M2,
M3, and M4, forcing the access point to deny the handoff.

Discussion
We have analyzed the performance of mobiware’s QoS-con-
trolled handoff, flow bundling, and mobile soft-state algo-
rithms. While the baseline code raised some initial
performance concerns about the viability of using distributed
CORBA object technology for controlling mobile networks,
the enhanced software is extremely competitive in relation to
existing work. The latency measured for QoS-controlled hand-
off was reduced from 171 ms to 41 ms for the handoff of a
single flow through two ATM switches making handoff
through a single switch in the order of 20 ms.

While it is difficult to compare results from different
testbeds running different signaling systems, we highlight
some measurements from comparable systems found in the
literature for the purpose of qualitative comparison only. In
[28] and [29] handoff latencies were measured to be 10 and 30
ms for a single flow through a single crossover switch. The use
of flow bundling techniques in mobile networks shows great
performance benefit as the number of flows increase with
handoff. The handoff latency for ten flows is 155 ms when

flow bundling is enabled and 420 ms when disabled. This
clearly shows the advantage of such aggregation techniques.
Mobiware’s flow bundling compares favorably to the litera-
ture. In [29] Mishra reported a handoff latency of 125 ms for
ten flows using native ATM signaling code. Mobile soft-state
also exploits aggregation techniques provided by flow
bundling. This allows resource probing to be based on flow
bundles rather than per-flow. In this article QoS adaptation
techniques clearly demonstrate the benefit of mobile soft-state
in sharing resources among competing mobiles in a cell.

Conclusion
In this article we discuss the design, implementation, and eval-
uation of an open programmable mobile network based on
distributed object technology called mobiware that dynamical-
ly exploits the intrinsic scalable properties of adaptive mobile
applications. A number of researchers have applied distribut-
ed object technology to mobile systems. Our work, however,
differs from these efforts. First as part of the open signaling
community [30] we are deeply interested in identifying open
programming interfaces for mobile and wireless networking.
In this work we have identified a number of objects, APIs,
and algorithms that provide QoS support for adaptive mobile
networking. The mobiware technology we have developed
over the last two years marks a considerable software effort.
To our knowledge we are one of the first groups to apply dis-
tributed object technology as a mobile middleware solution
for adaptive mobile networking. Mobiware objects execute on
the mobile devices, at the access points, and on switch/routers,
exposing open APIs that can be programmed to support
mobile signaling, QoS adaptation management, and wireless
transport. We observe that once the wireless and mobile APIs
have been designed, the programming of new network algo-
rithms (e.g., QoS-controlled handoff, flow bundling, and
mobile soft-state) is straightforward engineering. The source
code distribution for mobiware v. 1.0 can be freely download-
ed from [13] for experimentation.

Acknowledgments
First, we would like to thank the Comet Group’s industrial
participants for their kind support. We would also like to
thank Aurel A. Lazar and the xbind team for providing the
xbind broadband kernel on which mobiware is built. Also, we
would like to thank the following colleagues for their major
contributions toward the implementation of mobiware: Oguz
Angin implemented flow bundles, Anand Balachandran
implemented the active media filters, Javier G. Castellanos
retooled the beacon to include QoS hints, Michael E.
Kounavis implemented the transport system, Raymond Liao
implemented the signaling system, Chien-Ming Yu imple-
mented the active error control, and finally, Yasuro Shobatake
(Toshiba Corp. Japan) implemented the wireless transport
management. We would also like to thank Laura Zhou for
implementing mobiman and Mun Choon Chan (Lucent Tech-
nologies), who implemented the xbind connection manage-
ment system from which the mobiware mobility agent grew.
Finally, we would like to thank Lucent Technologies for pro-
viding a beacon API.

References
[1] R. H. Katz, “Adaptation and Mobility in Wireless Information Systems,”

IEEE Pers. Commun., vol. 1, no. 1, 1st qtr. 1994.
[2] Panel, “QoS in the Next Generation Mobile Internet: What Is Feasible?,”

chaired by A. T. Campbell, 3rd Annual ACM/IEEE Int’l. Conf. Mobile
Comp. and Networking (MobiCom ’97), Budapest, Hungary, Oct. 1997.

[3] K. Lee, “Adaptive Network Support for Mobile Multimedia,” Proc. Mobi-
com ’95, Berkeley, CA, Nov. 1995.

IEEE Personal Communications • August 1998 43

[4] Daedalus/BARWAN project at UC Berkeley; http://daedalus.cs.berkeley.
edu/index.html

[5] M. Satyanarayanan, “Mobile Information Access,” IEEE Pers. Commun.,
vol. 3, no. 1, Feb. 1996.

[6] B. Zenel and D. Duchamp, “A General Proxy Filtering Mechanism
Applied to the Mobile Environment,” Proc. Mobicom ’97, Budapest,
Hungary, Sept. 1997.

[7] S. Lu, K.-W. Lee, and V. Bharghavan, “Adaptive Service in Mobile Com-
puting Environment,” Proc. 5th IFIP Int’l. Wksp. QoS (IWQoS ’97), New
York, May 1997, pp. 25–36.

[8] M. Naghshineh and M. Willebeek-LeMair, “End-to-End QoS Provisioning
in Multimedia Wireless/Mobile Networks,” IEEE Network, Mar. 1997.

[9] A. A. Lazar, “Programming Telecommunication Networks,” IEEE Net-
work, Oct. 1997.

[10] D. L. Tennenhouse et al., “A Survey of Active Network Research,” IEEE
Commun. Mag., vol. 35, no. 1, Jan. 1997, pp. 80–86.

[11] A. T. Campbell, “Mobiware: QoS-Aware Middleware for Mible Multi-
media Communications,” 7th IFIP Int’l. Conf. High-Perf. Networking,
White Plains, NY, Apr. 1997.

[12] O. Angin et al., “Open Programmable Mobile Networks,” Proc. 8th
Int’l. Wksp. Network and Op. Sys. Support for Digital Audio and Video
(NOSSDAV), Cambridge, U.K., July 1998.

[13] Mobiware v. 1.0 Source Code Distribution: http://comet.
columbia.edu/mobiware

[14] xbind Broadband Kernel code: http://comet.columbia.edu/xbind
[15] OMG, The Common Object Request Broker: Architecture and Specifica-

tion, Rev. 1.2, Dec. 1993.
[16] G. Bianchi, A. T. Campbell, and R. R.-F. Liao, “Supporting Utility-Fair

Adaptive Services in Wireless Networks,” Proc. 6th Int’l. Wksp. QoS
(IWQoS ’98), Napa Valley, CA, May 1998.

[17] A. Balachandran, A. T. Campbell, and M. E. Kounavis, “Active Filters:
Delivering Scalable Media to Mobile Devices,” Proc. S7th Int’l. Wksp.
Network and Op. Sys. Support for Digital Audio and Video (NOSSDAV),
St. Louis, MO, May 1997.

[18] G. Bianchi and A. T. Campbell, “A Programmable MAC,” to appear,
Proc. ICUPC ’98, Florence, Italy, Oct. 1998.

[19] M. S. Corson and A. T. Campbell, “Toward Supporting QoS in Mobile
Ad hoc Networks,” work in progress session, 1st IEEE OPENARCH ’98,
San Francisco, CA, Apr. 1998.

[20] S-B Lee and A. T. Campbell, “INSIGNIA: Inband Signaling for Mobile Ad
Hoc Networking,” Proc. Int’l Workship Mobile Multimedia Commun.
(MOMUC ‘98), Berlin, Germany, Oct. 1998.

[21] P. Newman et al., “Ipsilon’s General Switch Management Protocol
Specification,” IETF RFC 1987, Aug. 1996.

[22] O. Angin et al., “Enabling the Creation, Control and Management of
Adaptive Wireless Services in Programmable Mobile Networks,” Ctr. for
Telecommun. Res. tech. rep. submitted for publication, June 1998.

[23] J. Porter et al., “The ORL Radio ATM System, Architecture and Imple-
mentation,” ORL tech. rep., 1995.

[24] D. Clark and D. Tennenhouse, “Architectural Considerations for a New
Generation of Protocols,” Proc. Sigcomm ’90, Sept. 1990.

[25] A. T. Campbell and G. Coulson, “QoS Adaptive Transports: Delivering
Scalable Media to the Desktop,” IEEE Network, Mar. 1997.

[26] J. E. Van der Merwe and I. Leslie, “Switchlets and Dynamic Virtual ATM
Networks,” Integrated Network Management V, A. A. Lazar, R. Saracco,
and R. Stadler, Eds., New York: Chapman and Hall, 1997.

[27] A. T. Campbell, D. Hutchison, and C. Aurrecoechea, “Dynamic QoS Man-
agement for Scalable Video Flows,” Proc. 5th Int’l. Wksp. Network and Op.
Sys. Support for Digital Audio and Video (NOSSDAV), Durham, NH, 1995.

[28] J. Naylon, “Radio Handover Measurements,” OPENSIG Spring ’97
Wksp. Open Signaling for ATM, Internet and Mobile Networks, Cam-
bridge, U.K., Apr. 1997.

[29] P. Mishra, “Implementation and Experimental Evaluation of Mobility-
enhanced ATM Signaling,” OPENSIG Fall ’97 Wksp. Open Signaling for
ATM, Internet and Mobile Networks, New York, Oct. 1997.

[30] http://comet.columbia.edu/opensig

Biographies
OGUZ ANGIN (comet.columbia.edu/~angin) is currently working at COMSAT
Laboratories, Maryland. He received his M.S. degree in electrical engineer-
ing from Columbia University in 1998, and his B.S. degree in electrical and
electronics engineering at Bosphorus (Bogazici) University, Turkey, in 1996.
His research interest is in wireless and mobile networking.

ANDREW T. CAMPBELL (comet.columbia.edu/~campbell) joined the E.E. faculty
at Columbia as an assistant professor in January 1996 from Lancaster Uni-
versity, where he conducted research in multimedia communications as a
British Telecom Research Lecturer. Before joining Lancaster University, he
worked for 10 years in industry focusing on the design and development of
network operating systems, communication protocols for packet-switched
and local area networks, and tactical wireless communication systems. He
is a member of the COMET Group at Columbia’s Center for Telecommuni-
cations Research, where he is conducting research in wireless media sys-
tems (comet.columbia.edu/wireless). His current research interests include
the development of programmable mobile networks, cellular IP networks,
and programmable router technology.

MICHAEL E. KOUNAVIS (comet.columbia.edu/~mk) is a Ph.D. student at
COMET Group, Columbia University. He received his Diploma in electrical
and computer engineering from the National Technical University of Athens
(NTUA), Greece, in 1996, and the MSc. degree from Columbia in 1998.
Until now he has been actively involved in the areas of network pro-
grammability and multimedia transport over wireless/mobile networks.

RAYMOND R.-F. LIAO (comet.columbia.edu/~liao) joined the COMET Group,
Columbia University in 1996 as a Ph.D. student and graduate research
assistant. Before that, he worked at Newbridge Networks Corporation,
Canada, for three years on ATM product performance analysis and traffic
management. He received the M.A.Sc. degree in fault-tolerant ATM switch
design and queueing analysis from the Dept. of Electrical and Computer
Engineering, University of Toronto, Canada, in 1993, and the Bachelor
degree from Huazhong University of Science and Technology, China, in
1990. His current research focuses on realizing adaptive QoS in
wireless/mobile multimedia networks with middleware methodologies,
including distributed computing and network economics.

