
Algorithms for Reliable Peer-to-Peer Networks

Rita Hanna Wouhaybi

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Graduate School of Arts and Sciences

Columbia University

2006

c©2006

Rita Hanna Wouhaybi

All Rights Reserved

ABSTRACT

Algorithms for Reliable Peer-to-Peer Networks
Rita Hanna Wouhaybi

Over the past several years, peer-to-peer systems have generated many head-

lines across several application domains. The increased popularity of these sys-

tems has led researchers to study their overall performance and their impact on the

underlying Internet. The unanticipated growth in popularity of peer-to-peer sys-

tems has raised a number of significant problems. For example, network degra-

dation can be observed as well as loss of connectivity between nodes in some

cases, making the overlay application unusable. As a result many peer-to-peer

systems can not offer sufficient reliability in support of their applications. This

thesis addresses the problem of the lack of reliability in peer-to-peer networks,

and proposes a number of algorithms that can provide reliability guarantees to

peer-to-peer applications. Note that reliability in a peer-to-peer networking con-

text is different from TCP type reliability. We define a reliable peer-to-peer as

a network that is resilient to changes such as network dynamics, and can offer

participating peers increased performance when possible. We make the following

contributions to area of peer-to-peer reliability:

• we propose an algorithm that creates resilient low-diameter topologies that

guarantee an upper bound on delays among nodes;

• we study parallel downloads in peer-to-peer networks and how they affect

nodes by looking at their utilities and the overall performance of the net-

work; and

• we investigate network metrics relevant to peer-to-peer networks and their

estimation using incomplete information. While we focus on latency and

hop count as drivers for improving the performance of the peers, the pro-

posed approach is more generally applicable to other network-wide metrics

(e.g., bandwidth, loss).

Our research methodology encompasses simulations and analytical analysis to

understand the behavior and properties of the proposed systems, and substantial

experimentation, as practical proof of concept of our ideas, using the PlanetLab

platform. The common overarching theme of the thesis is the design of new re-

silient network algorithms capable of offering high-performance to peers and their

applications.

As more and more applications rely on underlying peer-to-peer topologies, the

need for efficient and resilient infrastructure has become more pressing. A num-

ber of important classes of topologies have emerged over the last several years,

all of which have various strengths and weaknesses. For example, the popular

structured peer-to-peer topologies based on Distributed Hash Tables (DHTs) offer

applications assured performance, but are not resilient to attacks and major dis-

ruptions that are likely in the overlay. In contrast, unstructured topologies where

nodes create random connections among themselves on-the-fly, are resilient to at-

tacks but can not offer performance assurances because they often create overlays

with large diameters, making some nodes practically unreachable. In our first

contribution, we propose Phenix, an algorithm for building resilient low-diameter

peer-to-peer topologies that can resist different types of organized and targeted

malicious behavior. Phenix leverages the strengths of these existing approaches

without inheriting their weaknesses and is capable of building topologies of nodes

that follow a power-law while being fully distributed requiring no central server,

thus, eliminating the possibility of a single point of failure in the system. We

present the design and evaluation of the algorithm and show through extensive

analysis, simulation, and experimental results obtained from an implementation

on the PlanetLab testbed that Phenix is robust to network dynamics such as boot-

strapping mechanisms, joins/leaves, node failure and large-scale network attacks,

while maintaining low overhead when implemented in an experimental network.

A number of existing peer-to-peer systems such as Kazaa, Limewire and Over-

net incorporate parallel downloads of files into their system design to improve the

client’s download performance and to offer better resilience to the sudden depar-

ture or failure of server nodes in the network. Under such a regime, a requested

object is divided into chunks and downloaded in parallel to the client using multi-

ple serving nodes. The implementation of parallel downloads in existing systems

is, however, limited and non-adaptive to system dynamics (e.g., bandwidth bot-

tlenecks, server load), resulting in far from optimal download performance and

higher signaling cost. In order to capture the selfish and competitive nature of peer

nodes, we formulate the utilities of serving and client nodes, and show that selfish

users in such a system have incentives to cheat, impacting the overall performance

of nodes participating in the overlay. To address this challenge, we design a set

of strategies that drive client and server nodes into situations where they have to

be truthful when declaring their system resource needs. We propose a Minimum-

Signaling Maximum-Throughput (MSMT) Bayesian algorithm that strives to in-

crease the observed throughput for a client node, while maintaining a low num-

ber of signaling messages. We evaluate the behavior of two variants of the base

MSMT algorithm (called the Simple and General MSMT algorithms) under dif-

ferent network conditions and discuss the effects of the proposed strategies using

simulations, as well as experiments from an implementation of the system on a

medium-scale parallel download PlanetLab overlay. Our results show that our

strategies and algorithms offer robust and improved throughput for downloading

clients while benefiting from a real network implementation that significantly re-

duces the signaling overhead in comparison to existing parallel download-based

peer-to-peer systems.

Network architects and operators have used the knowledge about various net-

work metrics such as latency, hop count, loss and bandwidth both for managing

their networks and improving the performance of basic data delivery over the In-

ternet. Overlay networks, grid networks, and p2p applications can also exploit

similar knowledge to significantly boost performance. However, the size of the

Internet makes that task of measuring these metrics immense, both in terms of in-

frastructure requirements as well as measurement traffic. Inference and estimation

of network metrics based on partial measurements is a more scalable approach.

In our third contribution, we propose a learning approach for scalable profiling

and prediction of inter-node properties. Partial measurements are used to create

signature-like profiles for the participating nodes. These signatures are then used

as input to a trained Bayesian network module to estimate the different network

properties. As a first instantiation of these learning based techniques, we have

designed a system for inferring the number of hops and latency among nodes.

Nodes measure their performance metrics to known landmarks. Using the ob-

tained results, nodes proceed to create anonymous signature-like profiles. These

profiles are then used by a Bayesian network estimator in order to provide nodes

with estimates of the proximity metrics to other nodes in the network. We present

our proposed system and performance results using real network measurements

obtained from the PlanetLab platform. We also study the sensitivity of the system

to different parameters including training sets, measurement overhead, and size

of the network. Though the focus is on proximity metrics, our approach is gen-

eral enough to be applied to infer other metrics of interest, potentially benefiting

a wide range of applications.

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Technical Barriers . 6

1.2.1 Low-Diameter Resilient Topologies 6

1.2.2 Optimizing the Use of Multiple Server Nodes 8

1.2.3 Estimating Node Metrics Using Partial Information 10

1.3 Thesis Outline . 11

1.3.1 Building Resilient Low-Diameter Peer-to-Peer Topologies 12

1.3.2 Strategies and Algorithms for Parallel Downloads in Peer-

to-Peer Networks . 12

1.3.3 A Learning Based Approach for Network Properties In-

ference . 13

1.4 Thesis Contribution . 14

2 Building Resilient Low-Diameter Peer-to-Peer Topologies 16

2.1 Introduction . 16

2.2 Related Work . 20

i

2.3 Phenix Peer-To-Peer Networks 22

2.3.1 Power-Law Properties 22

2.3.2 Phenix Algorithm Design 25

2.3.3 Network Resiliency . 27

2.3.4 Preferential Nodes . 33

2.4 Simulation . 36

2.4.1 Power-Law Analysis . 36

2.4.2 Attack Analysis . 37

2.4.3 Sensitivity to Bootstrapping Mechanisms 49

2.5 Experimental Testbed Results . 57

2.5.1 Implementation . 57

2.5.2 Degree Distributions Experiments 58

2.6 Summary . 62

3 Strategies and Algorithms for Parallel Downloads in Peer-to-Peer Net-

works 63

3.1 Introduction . 63

3.2 Related Work . 67

3.3 Parallel Downloads Model and Client/Server Strategies 70

3.3.1 Parallel Downloads Model 70

3.3.2 Client Strategy . 72

3.3.3 Nash Equilibrium . 78

3.3.4 Server Strategy . 80

ii

3.4 Minimum-Signaling Maximum-Throughput

(MSMT) Bayesian Algorithm . 85

3.4.1 Simple MSMT Algorithm 86

3.4.2 General MSMT . 91

3.5 Simulation Results . 92

3.5.1 Simulation Design and Setup 93

3.5.2 Varying Object Size . 95

3.5.3 Dynamic Networks . 97

3.5.4 Varying the Size of the Serving Queue 99

3.5.5 Re-running Queries . 101

3.6 Implementation and Testbed Evaluation 104

3.6.1 Experiment Set I . 105

3.6.2 Experiment Set II . 109

3.6.3 Existing Systems . 114

3.7 Summary . 118

4 A Learning Based Approach for Network Properties Inference 119

4.1 Introduction . 119

4.2 Related Work . 122

4.3 Profiling and Learning-based Estimation Techniques 125

4.3.1 Min-Sum Algorithm . 127

4.3.2 Profiling Techniques . 128

4.3.3 Bayesian Techniques . 135

4.4 Measurement Setup . 137

iii

4.5 Evaluation . 139

4.5.1 Accuracy . 139

4.5.2 Estimation of Number of Hops 141

4.5.3 Latency Estimation . 148

4.5.4 Scalability and Other Practical Considerations 152

4.6 Future Work & Summary . 154

5 Conclusion 156

6 My Publications as a Ph.D. Candidate 160

6.1 Patents . 160

6.2 Journal Papers . 161

6.3 Conference Papers . 161

6.4 Workshops, Panels and Technical Reports 162

iv

List of Figures

2.1 Algorithm for connect to network(i) 28

2.2 Example of Phenix Overlay Construction 28

2.3 Probability that a Preferred Node Appears 36

2.4 Degree Distribution for 1000 Nodes 37

2.5 Degree Distribution for 100,000 Nodes 38

2.6 Modest Attacker . 40

2.7 Comparison of Group Attacks 44

2.8 Type I Attacks . 44

2.9 Type II Attacks . 45

2.10 Giant Component . 46

2.11 Hybrid Attacks in 2,000 and 20,000-node Networks 47

2.12 The Average of the Ratio of Preferred Nodes to Random Nodes

Across all Nodes . 49

2.13 Degree Distribution While Using Caching 50

2.14 Degree Distribution With Partial Knowledge 51

2.15 Group Attacks While Caching 52

2.16 Group Attacks With Partial Knowledge 52

v

2.17 Group Attacks With Additional Discovery 56

2.18 Group Attacks With Using 2 Bootstrap Servers 56

2.19 Out-Degree (number of neighbors) Distribution 59

2.20 Round Trip Time (rtt) Distribution of Nodes in the Testbed 60

2.21 Node Maintenance Duration . 60

3.1 The System Setup . 76

3.2 Simple MSMT Bayesian Algorithm 89

3.3 State Diagram of an Object Download 90

3.4 Throughput of Downloads . 91

3.5 Number of Signaling Messages vs. Size of Object 95

3.6 Number of Signaling Messages vs. Average Size of Objects 97

3.7 Number of Signaling Messages Per Object vs. % Nodes Departing 98

3.8 Number of Signaling Messages Per Object vs. C 100

3.9 Average Bandwidth per Object vs. C 100

3.10 Cumulative Distribution of Number of Servers per Object 103

3.11 Cumulative Distribution of Average Throughput per Object 104

3.12 Signaling Messages per Object vs. Total Number of Requests . . . 107

3.13 Average Download Bandwidth vs. Total Number of Requests . . . 107

3.14 Throughput as Perceived by Ω 109

3.15 Update per Object vs. Number of Requests in the Network Under

Light Conditions . 111

3.16 Update per Object vs. Number of Requests in the Network Under

Loaded Conditions . 112

vi

3.17 Correct Prediction vs. Number of Requests in the Network Under

Light Conditions . 114

3.18 Correct Prediction vs. Number of Requests in the Network Under

Loaded Conditions . 115

3.19 Comparing General MSMT to Existing Systems (Signaling Mes-

sages) . 116

3.20 Comparing General MSMT to Existing Systems (Throughput) . . 117

4.1 System Block Diagram . 125

4.2 Bayesian Profiling Algorithms Pseudocode 129

4.3 Example of m-Closest Algorithms 132

4.4 Simple Bayesian Network Structure 136

4.5 Modified Bayesian Network Structure 137

4.6 Average Accuracy for the Different Profiling Algorithms 142

4.7 Cumulative Distribution of the Absolute Error 143

4.8 Accuracy vs. Number of Landmarks 144

4.9 Effect of Bayesian Network Structure on Accuracy 145

4.10 Effect of Initial Training Set and Number of Nodes on Accuracy . 146

4.11 Accuracy for the Same Initial Set of 200 Nodes 147

4.12 Accuracy vs. Number of Nodes in the system 148

4.13 Accuracy vs. Number of Iterations During Training 149

4.14 Distribution of Latencies . 150

4.15 Comparison of the Algorithms for Latency Estimation 151

4.16 Predicting Latencies Over Time 152

vii

Acknowledgements

I would like to start by expressing my thanks and gratitude to my advisor, An-

drew T. Campbell. His way of thinking inspired my critical thinking. Andrew’s

approach to research helped me in reaching my potential while maintaining my

enthusiasm for the subject matter. His advice during the long Ph.D. process helped

me in maintaining my focus and guiding me towards a better future. For all the

times that Andrew encouraged me and told me I can make it while challenging

my ideas, I express my gratitude. I am also grateful for his support during my

stay at Columbia and for introducing me to many researchers in both academic

and industrial circles.

I would like to thank Professor Aurel A. Lazar for introducing me to the world

of scale-free networks, and game theory methods. The endless chats in the hall-

ways with Professor Lazar, as well as his comments on many of my ideas were

priceless. I express my thanks to Professor Edward G. Coffman for introducing

me to many fields during the Comet Lab Coffee Hours. My gratitude to Professors

Vishal Misra, Keith Ross, and Dan Rubenstein, as well as Jack Brassil for taking

time from their busy schedules to sit on my committee.

During my stay at Columbia, I had the pleasure of spending two enriching in-

viii

ternships at excellent research labs (Intel IT Research, and HP Labs). While doing

so, two wonderful researchers mentored me. For that and their many advices and

guidance, I wish to express my gratitude to John Vicente (Intel IT Research) and

Sujata Banerjee (HP Labs). Without John and Sujata, my career decisions might

have been very different. Thank you for introducing me to industry research and

being frank and welcoming. I also want to thank the entire teams of Intel IT Re-

search and NAPA group at HP Labs for their support and feedback on my work.

Many colleagues at Columbia’s COMET Lab were not only great friends but

excellent critiques of my work. For that and all the long late hours we spent

discussing research over coffee, thanks. In fact, I was lucky to have met each and

every one of you, and hope to keep hearing from you all.

On the personal level, I would like to thank my relatives back in Lebanon, and

their support. Lots of thanks and appreciation to Sharon L. Middleton and her

great presence in my life, her wonderful sense of humor when I most needed it,

and her accommodation for my crazy work schedule. Last but not least, I wish

to dedicate this work to the souls of Isabelle and Hanna. Mom and dad, thank

you for teaching me to never stop dreaming. Without your love, dedication, and

persistence, I would have been a very different person. I am grateful for you,

eternally.

ix

1

Chapter 1

Introduction

1.1 Overview

The phenomenal success and popularity of peer-to-peer (p2p) networks over the

last decade took many providers, computer experts, as well as the public, by sur-

prise. What started out initially as a modest software program for file sharing

and downloading music (by the now “infamous” Napster system [58]) suddenly

became a platform of great interest and importance to a wide range of user com-

munities, in the home and the business enterprise. The freedom and flexibility of-

fered by peer-to-peer networks results from the fact that the rigid communications

model represented by the server-client relationship, which has been dominant for

a number of years now, has collapsed offering peer-to-peer users total control over

their communications patterns. This freedom comes, however, with a certain cost

because end-users become responsible for providing and managing network and

computing resources. As a matter of fact, applications and services using peer-

2

to-peer technology have become so popular, that service providers, software and

hardware manufacturers, researchers, and even lawyers have dedicated a consid-

erable amount of effort to try to influence and contribute toward the evolution of

peer-to-peer networks and its technologies.

Technically speaking, a pure peer-to-peer network has the following charac-

teristics [8]:

1. Each end-user (also called a peer) is a client and a server at the same time.

Peer-to-peer applications often refer to an end-user as a servlet (a concate-

nation of the words “server” and “client”).

2. The whole network is totally distributed, where there is no central authority

that dictates roles or manages the network, in any way.

3. Routing is totally distributed and uses local information. Each end-user

is, typically, connected to a small number of other end-users (also called

nodes), resulting in a partial view or knowledge of the network topology,

for any node.

Because these characteristics are in contrast to the server-client architecture,

peer-to-peer networks present a number of new challenges and constraints. The

distributed nature of peer-to-peer networks is a design choice not a hardened rule.

For example, when Napster [58] appeared in 1999, it included a central server

that managed the database of available files on the network, keeping track of the

availability of files and their location. The server maintained the routing table for

the whole network. However, as the system was shutdown due to copyright laws

3

infringement, the community realized the need for a fully-distributed network that

has no single point of failure. As a result, Gnutella [37] came into existence in

2000, and became the predecessor to many more present day systems, such as

KaZaA [78], Morpheus [82], and LimeWire [53], to name a few.

Peer-to-peer networks have evolved since the first appearance of Napster in

1999, and so have the challenges, problems and obstacles. Researchers are con-

tinuously challenged by an evolving problem space which includes, but is not

limited to:

• Topologies of peer-to-peer networks [81] [69] [74] where researchers stud-

ied applying Distributed Hash Tables (DHTs) to distribute the database of

the network, carrying information such as file and duplicate locations. Other

systems [86] [78] tried to create a less rigid structure than DHTs while pro-

viding some bound on the number of hops between nodes.

• Security and attacks in peer-to-peer networks where researchers have stud-

ied many security problems that appeared and continue to appear in peer-to-

peer networks. Solutions have been proposed for censorship resistance [86],

anonymous connections [19], poisoning and polluting attacks [18], denial

of service attacks [33], encryption [83], as well as other problems.

• Applications of peer-to-peer networks where researchers found innovative

ways to provide improved performance to peers and higher availability [46]

[25] of the overall network by exploiting topology. In fact, some problems

were not possible to solve under current technology limitation had they not

been adapted to a peer-to-peer topology [60].

4

• Incentives, Cooperation and Reputation in peer-to-peer networks where re-

searchers dealt with solving the problem of free riders on the network (nodes

that take benefit of the network by being only clients and do not serve any-

thing in return) [45] [40] [91].

• Performance of peer-to-peer networks [17] [54] [20] [50] [4] where re-

searchers have looked into various improvements for fault tolerance, content

caching, replication, as well as other performance metrics.

As mentioned earlier, peer-to-peer networks changed the networking platform

by moving from a traditional server-client environment to one where end-nodes

have the freedom to communicate to any subset of nodes they deem appropriate

and rely upon these nodes to provide their connections to the rest of the network.

Such a major change in the topology requires, in our opinion, a different class

of solutions that carries a higher degree of sophistication. At the same time, the

solutions should be reliable and scalable facing the ever-changing nature of peer-

to-peer networks. In order to address this, we have reached into other fields where

computer scientists, typically, do not venture, to borrow appropriate solutions, for

pressing problems in peer-to-peer systems. In each case, we looked for a solu-

tion in a field where “reliability” have been studied, achieved, and tested with

success, while dealing with the unpredictability of other nodes and a dynamic

system, whether such an area is social sciences, economics, or machine learning.

Note, we define reliability (which is distinct from merely reliable communication

as achieved by using a reliable transport protocol such as TCP) in a peer-to-peer

networking context as a peer network that is resilient to changes (e.g., network

5

dynamics, attacks, etc.), and can offer peers increased performance when pos-

sible. In doing so, this thesis provides reliable algorithms for peer-to-peer net-

works, by empowering nodes with efficient yet simple techniques. We argue that

existing peer-to-peer algorithms are often not scalable because developers have

mainly tweaked client-server solutions without re-thinking the problems at hand.

This thesis addresses a range of problems in peer-to-peer networks that limit the

resilience and performance of the peer network, and proposes new scalable solu-

tions.

With the absence of a central server or authority in peer-to-peer systems, reli-

ability becomes a significant challenge, and even more so as the number of nodes

increases in the system. Peer-to-peer networks are often criticized as not having

sufficient a level of reliability for the prime-time business domain. Researchers

have often tried to solve such problems by tweaking solutions devised for server-

client networks. Because the peer-to-peer network paradigm is very different from

client-server such solutions are not real remedies. Rather, they often have a break-

ing point that is easily achieved as the number of nodes on the network increases

driving the complexity of the network.

In this thesis, we study peer-to-peer reliability as an overarching challenge and

propose a solution that can be viewed along three axis. First of all, we argue that

a reliable topology that has upper limits on its response time is essential for any

peer-to-peer application. Such an upper bound should not sacrifice resilience for

performance, thus, we study topologies that can provide a low-diameter topol-

ogy while preserving the resilience of the network connectivity under the most

severe dynamic conditions of nodes join and leave, as well as targeted attacks.

6

Second, we devise a system that allows a client node on a peer-to-peer network

to take advantage of available resources provided by other server nodes in paral-

lel, thus maximizing its benefit. Third, we propose an algorithm that can provide

nodes with an estimation of metrics of other nodes, including round trip delay and

node hops among others, providing nodes with information about the network as

a whole. In doing so, we propose a flexible general framework that can be used

for a number of different possible metrics depending on the needs of the overlay-

ing applications and nodes. Such a system moves the functionalities into the end

nodes which is in agreement of the whole end-to-end approach of peer-to-peer

networks. We describe next the problems in existing peer-to-peer networks and

how they affect their notion of reliability.

1.2 Technical Barriers

We now discuss the technical barriers facing the problems presented above and

how they affect the system performance in a peer-to-peer network.

1.2.1 Low-Diameter Resilient Topologies

When Gnutella appeared, the main focus was to create a “resilient” topology, in

the sense that there is no single point of failure, whose removal can bring the

network down. Thus, each node in a Gnutella network [37] connects to a random

subset of the existing nodes on the network creating a random graph topology [24].

Such a topology guarantees a resilient graph where shutting down the network,

or at least disconnecting it into separate sub-graphs require the removal of a large

7

number of existing nodes. Keeping in mind that Gnutella came into existence after

Napster was shutdown (simply by disconnecting the central server) Gnutella’s

focus was on creating resilience in terms of connectivity without paying attention

to the effect of such a topology on the performance of the network as a whole.

As nodes join the network, running the Gnutella protocol, they connect to a

random subset of existing nodes, creating what is mainly a random graph. The

problem with a random graph is its high “diameter”, where a diameter is defined

as the average distance between any two nodes on the network in hops. As the

number of nodes increases, the diameter increases linearly. Gnutella is mainly

used for file exchange. After a node joins the network, it initiates one or more

queries for specific objects. It forwards the queries to the nodes it connects to,

typically referred to as “neighbors,” which in their turn forward the queries to their

neighbors, except if they carry the file requested themselves. This mechanism of

forwarding queries is typically known as flooding, which can generate exponential

traffic growth, if not limited by an upper bound for the number of forwards to be

done, also known as TTL (Time To Live). Thus, each forwarding peer receiving a

query decreases the TTL by 1. When the TTL reaches zero, the query is dropped

and the file is declared unfound. Typically, the TTL is set to 7 in Gnutella.

At first, the number of nodes in Gnutella was under 100,000 [72], making most

nodes reachable within the 7 hops enforced by the TTL. However, as the number

of nodes started increasing, nodes faced a problem where they could not reach a

considerable number of other existing nodes on the network due to the random

topology. This translated into many queries failing despite the fact that nodes did

carry the required files, but were more than 7 hops away from the requesting node.

8

As a result, nodes became restricted to the most common files on the network, as

they were sufficiently replicated so that they can be found with such a flooding

query. Thus, the network suffered from a large diameter that often was much big-

ger than 7 (the TTL). Because peer-to-peer networks rely on end-users, creating a

scalable low-diameter topology raises a number of tecnhical challenges:

• Nodes have partial knowledge of the existing nodes and their interconnec-

tions. Thus, a node cannot calculate its list of optimal neighbors, and has to

deal with incomplete information.

• Nodes are typically very dynamic, where some can join and leave the net-

work in the order of seconds while other nodes stay for an extended period

of time. Thus, any rigid structure, such as a tree, would be costly to main-

tain.

• Nodes can be malicious and should not be trusted. Thus, each node should

be suspicious and any algorithm has to be adaptive to fast and aggressive

attacks, otherwise, the resilience of the network will be compromised.

1.2.2 Optimizing the Use of Multiple Server Nodes

The first generation of peer-to-peer networks, as defined by Gnutella v0.4 [37],

requires a node i to run a query for a needed object O by flooding. Once a node

j carrying the object in question O is found, it returns an answer to i indicating

the availability of O. Node i is then called the client node and node j the serving

node, acting as a server for node i.

9

If object O is a popular object, then the probability of finding more than one

serving node carrying it becomes higher. In Gnutella v0.6, a client node i takes

advantage of this situation of multiple serving nodes, by dividing the object O

into chunks and downloading these chunks in parallel from several serving nodes.

Since end-users often have a higher download bandwidth then upload bandwidth,

parallel downloads benefit node i by increasing its download throughput to an

upper limit equal to the summation of the upload bandwidth of all serving nodes.

In peer-to-peer networks, nodes are often very dynamic, and might leave a net-

work even if they were in the middle of serving an object to a client node. Thus, a

client node i, downloading a certain object in parallel from several serving nodes,

is enjoying a resilient service. In the event that one or more of the serving nodes

disappear, node i does not have to restart the download of the entire object from

another serving node. Rather, only the chunks whose downloads were interrupted

are requested from the remaining serving nodes. This adds to the resilience of the

object download as a whole.

Such a problem of multiple serving nodes is not new, as it was studied thor-

oughly in the area of Content Distribution Networks (CDN), where, by definition,

multiple servers carry the same content whether it is web content or any other ap-

plication. However, in sharp contrast to CDNs, where servers are well maintained

by professional personnel, peer-to-peer networks tend to be very dynamic and the

performance of nodes is quite often sporadic and unpredictable.

Thus, parallel downloads in peer-to-peer networks face many challenges:

• Serving nodes are often dynamic and their performance unpredictable. A

10

client node has to adapt to their changes in the absence of explicit knowl-

edge about their behavior. Client nodes can only rely on their own observa-

tions.

• Client nodes are selfish and want to take advantage of the maximum avail-

able resources, a fact that might lead them to cheat and declare untruthful

intents.

• Serving nodes are also selfish, and their behavior should be studied and

taken into consideration when designing any parallel download algorithm.

1.2.3 Estimating Node Metrics Using Partial Information

Typically, a node has a limited and partial view of a peer-to-peer network. How-

ever, as the need for reliable services and applications increases, nodes require a

more global knowledge of certain metrics on the network. For example, in a video

streaming application, nodes value connecting to other nodes that can be reached

within a short round trip delay. While in a disaster relief application, nodes might

be more interested in connecting to nodes with the longest lifetime on the network.

Thus, depending on the application, nodes are often interested in a metric

or a set of metrics, on a global scale covering all other nodes on the network.

Considering that a network has N nodes, then if every node has to conduct its own

measurements of such a metric, in order to determine its optimal deterministic

connections, then the network performs N(N −1) measurements. Add to that the

dynamic nature of the nodes and their connectivity, resulting in repeating these

11

measurements quite often, we end up with a system generating traffic in the order

of O(N2). Such a system is, at best, not scalable.

Thus, the challenges in determining network metrics are as follows:

• Nodes have to deal with partial knowledge of the network, and conduct

a fraction of the complete set of measurements. Thus, the measurements

should be well designed so that general behavior can be captured.

• Nodes have to predict changes in metrics in the future as well as correlate

information collected, so that repeated measurements are less frequent.

• Any estimation mechanism should be general enough to be applied to sev-

eral metrics and adaptive to many applications and their needs.

1.3 Thesis Outline

In this thesis, we propose a number of algorithms that can be used by applications

to improve on the reliability and performance of peer-to-peer networks. We start

by proposing low-diameter resilient topologies for peer-to-peer networks relying

on partial information. We then present a formal model for parallel downloads

in peer-to-peer networks and propose an algorithm that can achieve optimal per-

formance for both client and server nodes. Finally, we devise a general scalable

framework that nodes can use to estimate important metrics globally, using par-

tial local information. We test our systems using the PlanetLab [66] platform,

evaluating their usability and characteristics in an operational network.

12

1.3.1 Building Resilient Low-Diameter Peer-to-Peer Topologies

Unstructured networks, based on random connections are limited in the perfor-

mance and node reachability they can offer to applications. In contrast, structured

networks impose predetermined connectivity relationships between nodes in or-

der to offer a guarantee on the diameter among nodes. We observe that neither

structured nor unstructured networks can simultaneously offer both good perfor-

mance and resilience in a single algorithm. To address this challenge, we propose

Phenix, in Chapter 2, a peer-to-peer algorithm that constructs low-diameter re-

silient topologies. Phenix supports low diameter operations by creating a topology

of nodes whose degree distribution follows a power-law, while the implementation

of the underlying algorithm is fully distributed requiring no central server, thus,

eliminating the possibility of a single point of failure in the system. We present

the design and evaluation of the algorithm and show through analysis, simula-

tion, and experimental results obtained from an implementation on the PlanetLab

testbed [66] that Phenix is robust to network dynamics such as joins/leaves, node

failure and large-scale network attacks, while maintaining low overhead when im-

plemented in an experimental network.

1.3.2 Strategies and Algorithms for Parallel Downloads in Peer-

to-Peer Networks

Chapter 3 starts by proposing an analytical model for parallel downloads in peer-

to-peer networks. To address the challenges of such a system, we design a set of

strategies that drive client and serving nodes into situations where they have to be

13

truthful when declaring their system resource needs. We propose the Minimum-

Signaling Maximum-Throughput (MSMT) Bayesian algorithm that strives to in-

crease the observed throughput for a client node, while maintaining a low num-

ber of signaling messages. We evaluate the behavior of two variants of the base

MSMT algorithm (called the Simple and General MSMT algorithms) under dif-

ferent network conditions and discuss the effects of the proposed strategies using

simulations, as well as experiments from an implementation of the system on a

medium-scale parallel download PlanetLab overlay. Our results show that our

strategies and algorithms offer robust and improved throughput to downloading

clients while benefiting from a real network implementation that significantly re-

duces the signaling overhead in comparison to existing parallel download-based

peer-to-peer systems.

1.3.3 A Learning Based Approach for Network Properties In-

ference

In Chapter 4, we propose a learning approach for scalable profiling and predict-

ing inter-node properties. Partial measurements are used to create signature-like

profiles for the participating nodes. These signatures are later used as input to a

trained Bayesian network module to estimate the different network properties.

As a first instantiation of these learning based techniques, we have designed a

system for inferring the number of hops and latency among nodes. Nodes measure

their performance metrics to known landmarks. Using the obtained results, they

proceed to create their anonymous signature-like profiles. These profiles are then

14

used by a Bayesian network estimator in order to provide nodes with estimates

of the proximity metrics to other nodes on the network. In Chapter 4, we present

our proposed system and performance results from real network measurements

obtained from the PlanetLab platform. We also study the sensitivity of the system

to different parameters including training set, measurement overhead, and size of

network. Though the focus of this chapter is on proximity metrics, our approach

is general enough to be applied to infer other metrics and benefit a wide range

of applications. In fact, we argue through our results that our approach is very

promising, as it makes use of anonymous profiles for nodes coupled with machine

learning based estimation modules.

1.4 Thesis Contribution

In what follows, we summaries our contributions to reliable peer-to-peer networks

presented in this thesis:

• We propose an algorithm that constructs low-diameter peer-to-peer topolo-

gies that do not sacrifice the resilience of the network as a whole, while

achieving a diameter of the order O(logN). We draw analogies to connec-

tions in social networks that have been widely studied and proven to provide

reliability.

• We propose an analytical model for parallel downloads in peer-to-peer net-

works. We define the utilities of server and client nodes capturing the selfish

behavior of nodes. We show the inefficiencies as well as the vulnerabilities

15

of existing systems implementing parallel downloads.

• We devise an algorithm for parallel downloads that can deal with the un-

predictability of nodes using Bayes theorem in order to build profiles for

serving nodes. We show how this algorithm can add to the reliability and

performance of downloads by approximating optimal solutions.

• We define a general framework for predicting metrics in a peer-to-peer net-

work. We propose algorithms for extracting the characteristic features of the

collected measurements, creating anonymous profiles for nodes. We then

use these profiles in a machine learning algorithm that can learn and adapt

to nodes and network dynamics. Our work in this field includes collecting

a large set of measurements on the PlanetLab platform in order to prove

the validity of our proposed system. We also show that making profiles

anonymous, a feature that sounds counter-intuitive, improves the estimation

algorithm.

16

Chapter 2

Building Resilient Low-Diameter

Peer-to-Peer Topologies

2.1 Introduction

Over the past several years, we have witnessed the rapid growth of peer-to-peer

applications and the emergence of overlay infrastructure for Internet, however,

many challenges remain as this new field matures. The work presented in this

chapter addresses the outstanding problem of the construction of resilient peer-to-

peer networks and their efficient performance in terms of faster response time and

low-diameter operations for user queries. Low-diameter networks are often desir-

able because they offer a low average distance between nodes, often on the order

of O(logN). The two classes of peer-to-peer networks, found in the literature,

either offer better resilience to node dynamics such as joins/leaves, node failure

and service attacks, as in the case of unstructured networks [37] [78], or they offer

17

better performance as in the case of structured networks [69] [81] [94]. Because of

the inherent tradeoffs in the design space of these different classes of peer-to-peer

networks, it is difficult to simultaneously offer better performance and resilience

without having to reconsider some of the fundamental design choices made to de-

velop these network systems. We take one such alternative approach and propose

a peer-to-peer algorithm that delivers both performance and resilience. The pro-

posed algorithm builds a low-diameter resilient peer-to-peer network providing

users with a high probability of reaching a large number of nodes in the system

even under conditions such as node removal, node failure, and malicious system

attacks. The algorithm does not impose structure on the network, rather, the es-

tablished graph of network connections has the goal of creating some order from

the total randomness found in resilient unstructured networks, such as Gnutella

[37] and KaZaA [78].

Unstructured peer-to-peer networks, such as Gnutella, offer no guarantee on

the diameter because nodes interconnect in a random manner, usually resulting in

an inefficient topology. These unstructured systems are often criticized for their

lack of scalability [72], which can lead to partitions in the network resulting in

small islands of interconnected nodes that cannot reach each other. However, these

same random connections offer the network a high degree of resiliency where the

operation of the resulting network as a whole is tolerable to node removal and fail-

ure. In contrast, structured peer-to-peer networks based on Distributed Hashing

Tables (DHTs), such as Chord [81] and CAN [69] have been designed to provide

a bound on the diameter of the system, and as a result, on the response time for

nodes to perform queries. However, these systems impose a relatively rigid struc-

18

ture on the overlay network, which is often the cause of degraded performance

during node removals, requiring non-trivial node maintenance. This results in cer-

tain vulnerabilities (e.g., weak points) that attackers can target and exploit. Due

to the design of DHTs, these structured topologies are also limited in providing

applications with the flexibility of generic keyword searches because DHTs rely

extensively on hashing the keys associated with objects [2] [16].

These observations motivate the work presented in this chapter. We propose

Phenix, a scale-free algorithm that constructs low-diameter P2P topologies offer-

ing fast response times to users. An important attribute of Phenix is its built-in

robustness and resilience to network dynamics, such as, operational nodes join-

ing and leaving overlays, node failures, and importantly, malicious large-scale

attacks on overlay nodes. The main design goals of Phenix can be summarized

as follows: to construct low-diameter graphs that result in fast response times

for users, where most nodes in the overlay network are within a small number

of hops from each other; to maintain low-diameter topologies under normal op-

erational conditions where nodes periodically join and leave the network, and

under malicious conditions where nodes are systematically attacked and removed

from the network; to implement support for low-diameter topologies in a fully

distributed manner without the need of any central authority that might be a sin-

gle point of failure, which would inevitably limit the robustness and resilience

of peer-to-peer networks; and to support connectivity between peer nodes in a

general and non-application specific manner so a wide-variety of applications can

utilize the network overlay infrastructure. An important property of Phenix is that

it constructs topologies based on power-law degree distributions with a built-in

19

mechanism that can achieve a high degree of resilience for the entire network. We

show that even in the event of concerted and targeted attacks, nodes in a Phenix

network continue to communicate with a low diameter where they efficiently and

promptly rearrange their connectivity with little overall cost and disruption to the

operation of the network as a whole. To the best of our knowledge Phenix rep-

resents one of the first algorithms that builds resilient low-diameter peer-to-peer

topologies specifically targeted toward, and derived from, popular unstructured

P2P network architectures, such as, Gnutella [37] and KaZaA [78].

In this chapter, we present the design of the Phenix algorithm and evaluate its

performance using analysis, simulation, and experimentation. We make a num-

ber of observations and show the algorithm’s responsiveness to various network

dynamics including systematic and targeted attacks on the overlay infrastructure.

We implement and evaluate Phenix using the PlanetLab testbed [66]. Experimen-

tal results from the testbed implementation quantify the algorithm’s overhead and

responsiveness to network dynamics for a number of PlanetLab nodes. The chap-

ter is structured as follows. We discuss the related work in Section 3.2 and present

the detailed design and operations of Phenix in Section 3.4. Section 2.4 presents

a detailed evaluation of the algorithm’s operation, followed by Section 3.6, which

presents experimental results from the implementation of Phenix on the PlanetLab

platform. Finally, we present a summary of the work in Section 3.7.

20

2.2 Related Work

Traditionally, low diameter networks tend to appear in social networks forming

small-world topologies [5], while power-law behavior is often seen in many natu-

ral systems as well as man-made environments [1] [29] [43]. These observations

led to a body of work related to analyzing and modeling of such networks [5] [10]

[47] [49]. The contribution discussed in [9] on preferential attachment has been

influential in our thinking. However, the idea of preferential attachment is used in

Phenix as a basis to ensure resiliency in a fully distributed, dynamic peer-to-peer

environment. The work on peer-to-peer networks presented in [27] makes use of

small-world algorithms based on the proposition by Watts and Strogatz [87] on

“rewiring” the network. In [27], the idea of rewiring is applied to a Chord [81]

overlay. Pandurangan et.al. [63] [64] create a low-diameter peer-to-peer network

but rely heavily on a central server that is needed to coordinate the connections

between peers. This proposal creates a potential single point of failure in the over-

lay network. The authors also do not address the resilience of such a network in

the event of targeted node removal, various attacks, or misbehaving nodes. Under

such conditions the performance of the network would likely degrade and deviate

from the low-diameter design goal.

A family of structured peer-to-peer topologies relying on DHTs, such as Chord

[81], CAN [69] and Tapestry [94], has attracted considerable attention in the

P2P/overlay community. However, such networks might be limited because they

unduly restrict the queries that the users can initiate (e.g., keyword queries) due

to the use of hashing tables to store objects at overlay nodes. These networks also

21

couple the application to the underlying infrastructure layer, which makes them

attractive to specific applications, but the infrastructure may need to be revised to

support changing needs of users. The idea of differentiating the rank of different

overlay nodes (e.g., a super node over a regular node) in a peer-to-peer network

has been used by a number of systems in order to achieve better performance. For

example, KaZaA [78] uses the notion of “supernodes”, and Guntella v.0.6 [37]

uses “ultrapeers” [85] as supported by the Query Routing Protocol (QRP) [68].

KaZaA creates supernodes among peers by assigning an elevated ranking to nodes

with a faster connectivity such as broadband Internet access. However, the imple-

mentation details of these popular P2P schemes are not open or published, which

makes it difficult to make a comparative statement on the deployed algorithms.

Ultrapeers are a standard feature of Gnutella v.0.6, constituting an essential el-

ement of QRP, as mentioned above. Ultrapeers differ from what we propose in

Phenix in a number of ways. First, ultrapeers act as servers in a hierarchy that is

widely known by all other nodes in the network. As a result of this predetermined

hierarchy, ultrapeers create a number of vulnerabilities in the system. If ultrapeers

were forcefully removed from the network by an attacker, the system would suf-

fer considerably; potentially fragmenting the remaining nodes into disconnected

smaller partitions. Another vulnerability arises when malicious nodes assume the

role of ultrapeers and mislead other nodes into relying on them for services. An

ultrapeer does not use lower level nodes (also called leaves) to relay traffic to other

ultrapeers in the network, rather, ultrapeers interact directly with each other. Such

reliance could create disconnected groups of nodes in the event that ultrapeers un-

expectedly drop out of the network in an uncontrolled manner due to node failure

22

or forceful removal. Each ultrapeer also keeps state information related to the data

held by leaf nodes that are connected to it. Creating such a hierarchy that is closely

tied to the application level may call for a complete redesign in the event that the

application’s needs change or new applications need to be efficiently supported.

In our work, we make a distinction between the type of information carried by

packets and the routing decisions that are made. RON [7] and i3 [3] have already

been designed based on this approach, where a generic topology is proposed that

is independent of the application that makes use of it. Such a topology would be

an asset for smart search algorithms [2] [16] that direct queries instead of flooding

the entire neighborhood of the requesting node. Finally, in the context of secu-

rity, secure peer-to-peer and overlay networks have been proposed as policies to

protect individual nodes against denial of service (DOS) attacks in the SOS [46]

and Mayday [6] systems, but not in the context of an overall resilient P2P network

architecture. Phenix addresses the resilience of the entire network and not the

individual nodes.

2.3 Phenix Peer-To-Peer Networks

2.3.1 Power-Law Properties

The signature of a power-law or a scale-free network lies in its degree distribution,

which is of the form presented in Equation (2.1).

p(K) ∼ K−γ (2.1)

23

Many networks tend to have an exponent γ close to 2, for example, the Inter-

net backbone connectivity distribution is a power law with an exponent γ =

2.2 ± 0.1[29]. As a result of this distribution some nodes are highly connected

and can act as hubs for the rest of the nodes. These nodes and their position in

the network contribute to a highly desirable characteristic of these graphs: a low

“almost constant” diameter, defined as, the average shortest path between two

nodes in the graph. This graph is capable of growing while maintaining a low di-

ameter hence the name scale-free networks. Typically, unstructured peer-to-peer

networks suffer from a large diameter, which often causes the generation of more

network traffic. This is inefficient because it requires nodes to either increase the

radius of a search for an object, or opt for a low radius search, which would limit

the probability of finding less popular objects in the network. These design trade

offs result in increased signaling or degraded performance. In the light of these

observations, it seems natural to construct a peer-to-peer topology that conforms

to a power-law for its node degree distribution. However, for a proposed algo-

rithm to be feasible, it must adhere to a number of design restrictions. First, the

algorithm should be easy to implement and make few assumptions about the un-

derlying network. Despite the problems associated with Gnutella, its deployment

is widespread as a result of the simplicity of the underlying protocol [37]. Next,

the algorithm should be fully distributed based on local control information, and

not include any centralization of control, which might become a bottleneck or a

target for attacks. Finally, the algorithm should be robust to node removal whether

random or targeted. This means that the network should not be easily partitioned

into smaller sub-networks and should be capable of maintaining a high level of

24

resiliency and low diameter in the face of node removal. The main motivation

behind Phenix is to allow nodes in the network to “organically” emerge as special

nodes (called preferred nodes) with a degree of connectivity higher than the aver-

age, so that a scale-free topology can be formed. In other words, we do not dictate

special nodes or hierarchies in advance for the topology to emerge or the network

to function. As shown in [9], such networks appear in nature due to preferen-

tial attachment, where newcomers tend to prefer connecting to nodes that already

have a strong presence characterized by their high degree, and the dynamic na-

ture of such networks involving growth. By examining social networks, we can

observe the following; if someone joins a new social network, the first network

of “friends” is pretty much random. However, most people, after seeing that a

specific person has more acquaintances and is better connected to a larger number

of members in that specific network, tend to acquire a connection to that person in

order to gain better visibility. In fact, [9] shows that if a new node has knowledge

of the states of all the existing nodes in the network and their interconnections, it

can connect to the nodes with the highest degree giving it the highest visibility and

putting it in a place where it is a few hops away from the rest of the network. This

will guarantee that the resulting network has a degree distribution conforming to a

power-law resulting in a low diameter. However, in a peer-to-peer network having

such a global view is practically impossible, since most nodes typically can only

see a small fraction of the network, and have to make decisions based solely on

local information. We present the detail design of the Phenix Algorithm in the

next section and show the emergence of a power-law topology through simulation

and experimental results in Sections 2.4 and 3.6, respectively.

25

After presenting the detail design of the Phenix algorithm in the next section,

we show through analysis that Phenix encourages the emergence of preferred

nodes that follow power-laws in Section 2.3.4. We reinforce this observation

through simulation and experimental results in Sections 2.4 and 3.6, respectively.

2.3.2 Phenix Algorithm Design

In what follows, we describe the Phenix algorithm for the simple case where nodes

join the network. A node obtains a list of addresses using a rendezvous mechanism

by either contacting a host cache server [35] or consulting its own cache from

a previous session in a fashion similar to an initial connection, as described in

Guntella v0.6 [37]. However, instead of establishing connections to “live” nodes

from the returned list, the joining node divides these addresses into two subsets,

as expressed in Equation (2.2): that is, random neighbors and friends that will be

contacted in the next step.

Ghost,i = [Grandom,i, Gfriends,i] (2.2)

Then i initiates a request called a “ping message” to the nodes in the list Gfriends,i,

sending a message of the form:

M0 = 〈source = i, type = ping, TTL = 1, hops = 0〉 (2.3)

Each recipient node constructs a “pong message” as a reply containing the list

of its own neighbors, increments the hops counter, decrements the TTL, and for-

wards a new ping message to its own neighbors, as follows:M0 = 〈source =

i, type = ping, TTL = 0, hops = 1〉. Each node j receiving such a message

26

will send no pong message in reply, but instead add the node i to a special list

called Γj for a period of time denoted by τ . Following this procedure, the node

i obtains a new list of all the neighbors of nodes contained in Gfriends,i and con-

structs a new list denoted by Gcandidates,i. Then i sorts this new set of nodes

using the frequency of appearance in descending order, and uses the topmost

nodes to create a new set that we denote as Gpreferred,i, where Gpreferred,i ⊆
Gcandidates,i. Thus, the resulting set of neighbors to which i creates connections is

Gi = [Grandom,i, Gpreferred,i].

Node i opens a servent (server-client) connection to a node m (m is in the

list Gpreferred,i) where the word servent is a term denoting a peer-to-peer node,

which is typically a server and a client at the same time as it accepts connections

as well as initiates them. Then node m checks whether i is in its Γm list, and

if this is the case, increments an internal counter cm and compares it against a

constant γ. If cm ≥ γ, then cm = cm − γ, a connection is created to node

i, which we call a “backward connection”, and the set of neighbors added as

backward edges is updated, as follows: Gbackward,m = Gbackwardm

⋃{i}. This

backward connection creates an undirected edge between the two nodes i and m

(i ↔ m)from the initial directed edge, as i → m. In addition, γ ensures that

a node does not add more connections than din,m/γ where din,m is the in-degree

for node m, or the number of its incoming connections. When node i receives a

backward connection from node m it will consider its choice of node m as a good

one, and accordingly update its neighbors lists: Gpreferred,i = Gpreferred,i − {m},

and Ghighly preferred,i = Ghighly preferred,i + {m}. The final list of neighbors for

node i is: Gi = [Grandom,i, Gpreferred,i, Ghighly preferred,i, Gbackward,i].

27

A summary of this algorithm is presented in Figure 2.1, and an example of

the creation of Gi is presented in Figure 2.2, for illustration purposes. In this

particular scenario, the existing overlay network is shown in Figure 2.2 where

the interconnections between nodes are shown with arrows, with the bold arrows

representing connections that were created by preferential and backward forma-

tion. In the scenario, Node 8, wants to join the network and goes through the

process shown in Figure 2.2. Node 8 starts by obtaining a list of hosts that

are present in the network and then divides this list into two sub-lists where

Grandom = [1, 3] and Gfriends = [5, 6]. Then it contacts the nodes contained

in Gfriends to obtain their lists of neighbors and constructs the following list

Gcandidates = [7, 2, 4, 7]. Sorting the nodes in descending order using their fre-

quency of appearance yields Gpreferred = [7, 2]. Then Node 8 constructs the final

list G = Gpreferred

⋃
Grandom = [7, 2, 1, 3] and connects to these nodes. Note,

that as Node 8 starts its servent sessions with the resulting nodes in G then one or

more of them might choose to create a backward connection to Node 8 depending

on the values of their respective counters c.

2.3.3 Network Resiliency

According to the Webster Dictionary [57], the word resilience is defined as “an

ability to recover from or adjust easily to misfortune or change.” Networks with

power-law degree distributions are often criticized in the literature for collapsing

under targeted attacks. Under such conditions if a small fraction of the nodes with

high degrees is removed from the network then the whole network suffers and

28

obtain Ghost from web cache;

divide Ghost into Grandom and Gfriends;

let s be the size of Gfriends;

Gcandidates = ∅;

for (x = 0; x < s; x + +)

send M0; where M0 = ping〈i, Gfriends[x], 1, 0〉
Gcandidates = Gcandidates ∪GGcandidates[x];

Gpreferred = [g1, g2, ..., gp] ⊆ (sorted)(Gcandidates);

connect to all nodes in G = Grandom ∪Gpreferred;

if ((j connects back to i) && (j ∈ Gpreferred))

Gpreferred = Gpreferred − {j};

Ghighly preferred = Ghighly preferred + {j};

Figure 2.1: Algorithm for connect to network(i)

1

2
 3

4
 5

6
 7

3

4

2

6

2

4

7

5

7

4

5

7

7

3

6

1

3

5

6

1

3

7

2

4

7

5

6

1

3

7

2
7

2

8

Figure 2.2: Example of Phenix Overlay Construction

29

often becomes disconnected into smaller partitioned fragments, also referred to

as “islands” in the literature [9]. Phenix attempts to make connections resilient,

protecting the well being of the entire network. We achieve this goal by following

a set of guidelines that can be summarized, as follows. First, we attempt to hide

the identity of highly connected nodes as much as possible, making the task of ob-

taining a comprehensive list that contains these nodes practically impossible. The

second deterrent deals with neighbor updates, or what we call “node maintenance”

(discussed below), where a network under attack can recover when existing nodes

rearrange their connections and maintain connectivity. Note, that we assume that

an attacker is powerful enough to force a node to drop out of the network, whether

by denial of service attacks or by any other mechanism available, once an attacker

acquires the IP address of such a node. In Phenix networks, resiliency implicitly

means: the resilience of the whole network consisting of all “live” nodes where

their connections form edges in a graph that is as close to a strongly connected

graph as is possible, as we will show in Section 2.4.

Hiding Node Identities

In order to limit the likelihood of a malicious user obtaining a global view of the

whole overlay graph (formed by the live nodes) of the network, Phenix supports

three important mechanisms. First, a node receiving a ping message M0 will re-

spond with a pong message, and forward a ping message M1 to its neighbors.

All nodes receiving M1 will add the originator to a list denoted by Γi. This list

supports the notion of either “temporary blocking” or “black listing”, where if

the same originating node sends a ping message with the intent of “crawling” the

30

network to capture global or partial graph state information, such a message will

be silently dropped with no answer/response sent back to the originating node.

Black lists can be shared with higher layer protocols to isolate such malicious

practices and can serve to isolate such nodes. A mechanism that detects a node

crawling the network and silently discards queries will not stop a malicious user,

but rather, slow its progress because the malicious node needs to obtain a new

node ID (e.g., this would be similar to the Gnutella ID) to continue the crawl of

the overlay, or wait for enough time for nodes to purge their black lists Γi. Peer-

to-peer networks such as Guntella [37] have proposed including the MAC address

as part of the node ID, making it even more difficult for an attacker to obtain a

new and distinctly different node ID at a rate fast enough to continue the crawl.

It is worth noting that if joins/leaves of an overlay network are dynamic enough

then crawling at slower time scales will not yield an accurate view of the net-

work state and topology. Even though such a scheme helps limit the impact that

malicious nodes can have, it still does not fully eradicate potential attacks on the

network. Next, Phenix also employs the policy of silently dropping any ping mes-

sage, similar to the one shown in Equation (2.3), whose TTL value is greater than

1. A non-conforming node with malicious intent might generate such a message.

Nodes drop these messages without responding to the originator or forwarding

such a message to neighbors. This has the effect of eliminating crawling even

if the originating node is not on the list Γi of the receiving node, in contrast to

Gnutella where crawling is often practiced. Third, a node that establishes back-

ward connections to other nodes in the network will not return these connections

when it receives a ping in any of its pong reply messages. This policy is not meant

31

to protect the node’s Gbackward sub-list of neighbors. Rather, it protects the iden-

tity of the node itself and any possible preferential status that the node may have,

from an attacking node. If an attacker were to receive a long neighbors list from a

node, it can infer that such a node is a highly connected node from the size of its

neighbors’ list. Thus, a node will only return the subset Goutside world defined by

Equation (2.4) in a pong message. In this case, this node does not need to forward

M1 to all of its neighbors. Rather, it only forwards M1 to nodes in its Goutside world

subset since these are the nodes that might risk exposure to an attacker, where,

Goutside world = [Grandom, Gpreferred, Ghighly preferred] (2.4)

Node Maintenance Mechanism

In the event of an attack, the network needs to be responsive and able to rearrange

connectivity in order to maintain strong connections between its nodes. In what

follows, we propose a state probing mechanism that makes Phenix responsive

to failed nodes or nodes that drop out of the overlay because of attacks. The

number of neighbors of a node i, represented by hi, is defined as the summation

of the number of neighbors obtained through random, preferred and backward

attachments; in other words, the out-degree of the node defined as the total number

of outgoing connection for a node i. This total number is expressed as hi =

hr
i + hp

i + hb
i , where hb

i = 0, if i /∈ [preferred nodes]. hr
i , hp

i , and hb
i represent the

number of random, preferential (standard and highly), and backward neighbors,

respectively. Nodes examine their neighbors’ table in order to make sure that they

are not disconnected from the network due to node departures, failures, or denial

32

of service attacks. If the following Inequality hr
i + hp

i < threshold is satisfied,

signaling a drop, then node i runs a node maintenance procedure, as described

below.

If a node on the i’s neighbors’ list leaves the network gracefully, then it informs

all the nodes connecting to it by closing the connections. However, if a node is

forcefully removed or fails then node i will be informed of this fact only through

probing where a message is sent to its neighbors, as follows: M2 = 〈source =

i, type = ping, TTL = 0, hops = 0〉. In the case where no answer is received

after a timeout (which is discussed in Section 3.6) then the neighboring node is de-

clared down. The number of neighbors before node maintenance can be expressed

as follows: h−i (tn) = hi(tn−1)− dr
i (tn)− dp

i (tn)− db
i(tn), where, h−i (tn): current

number of nodes (prior to the last maintenance run), and dr
i (tn), dp

i (tn), db
i(tn):

the number of neighbors (random, preferential, and backward, respectively) lost

since the last node maintenance. Following the node maintenance, we have:

hi(tn) =





h−i (tn), threshold < h−i (tn)− hb
i(tn) ≤ max

h−i (tn) + up
i (tn) + ur

i (tn), otherwise

(2.5)

where, hi(tn): the number of neighbors after the node maintenance and up
i (tn),

ur
i (tn): the number of new neighbors added preferentially and randomly, respec-

tively. The ratio of preferential and random neighbors for a node i is presented in

Equation (2.6).

αi(tn) =
hr

i (tn)

hp
i (tn)

, and
hr

i (tn)

max− hr
i (tn)

≤ αi(tn) ≤ 1, ∀i, n (2.6)

and the initial value of α is expressed by: αi(t0) = 1, ∀i.

33

The update of neighbors is then performed according to Equations (3.4).

ur
i (tn) = dr

i (tn) and up
i (tn) =




d τi(tn)−µp

αi(tn−1)
e , dp

i (tn) > 0

0 , dp
i (tn) = 0

(2.7)

where, τi(tn) =
∑

k=n−l+1 dp
i (tk)/l. τ r

i (tn) is the average number of preferential

neighbors that dropped out over the last l node maintenance cycles, measured at

time tn, mup is the expected value of the number of neighbors that disappeared

in one node maintenance cycle. The symbol d e rounds up the value to the next

highest integer. Therefore, the final number of neighbors is:

hp
i (tn) =





hp
i (t0), up

i (tn) < hp
i (t0)− h−p

i (tn)

h−p
i (tn) + up

i (tn), up
i (tn) < max− h−p

i (tn)− hr
i (tn)

max− hr
i (tn), otherwise

(2.8)

For preferred nodes, we already have the following approximation: hb
i =

⌈
ni−γ

γ

⌉
,

where ni is the number of nodes pointing to node i. The preferred node updates

its ci counter, as follows: ci = ci + (γ × db
i(tn)), while no nodes are added in

the backward set during the node maintenance process. Analysis of the effect of

α on the network’s behavior, particularly when faced with large-scale attacks is

discussed in Section 2.4.

2.3.4 Preferential Nodes

We now show through analysis that Phenix encourages the emergence of nodes

whose degree is higher than the average across the entire network, even if we ini-

tially start out with a completely random set of connections among nodes present

34

in the overlay network. In what follows, we analyze the emergence of nodes with

a degree deviating from that of the average of the network. We call such nodes

preferred nodes. Let us assume that we initially have a network of N nodes in-

terconnected randomly. A new node i, running the Phenix algorithm wishes to

connect to this network. So, i acquires a list of friends using a rendezvous or

bootstrapping mechanism similar to the one used by many P2P systems. As de-

scribed earlier, node i contacts these friends asking for their respective lists of

neighbors. The summation of all answers constitutes the list of candidates. It fol-

lows that after node i acquires the list of Gcandidates,i, the probability of connecting

to a node on the list is directly proportional to the frequency of appearance of that

node; that is to say, it is equal to the probability that a node will appear more than

once in its list of candidates.

Let, µ be the average number of neighbors and N the number of nodes in the

network. A new node i will connect to µ/2 nodes randomly in Grandom,i, since

αi(t0) = 1,∀i, and will contact µ/2 nodes requesting a list of their neighbors,

which will become Gcandidates,i. Thus, the resulting number of nodes on this latter

list is an average of µ2/2.

Since we are interested in nodes appearing more than once on this list (which

translates to a higher probability in initiating a connection to one of them), we

calculate the probability of a node j appearing at least twice, which is expressed as

the summation of the probabilities that j appears 2, 3, ...m times, where m = µ/2.

This upper bound of m comes from the fact that a node can appear at most once

in each list returned by one node of the sub-list Gcandidates,i. Thus the probability

of a node appearing twice becomes the probability that it is on two of the lists of

35

nodes in Gcandidates,i, and similarly, three appearances signifies the presence on

three lists, and so on until m. The values of these probabilities are approximated

by (µ/N)2, (µ/N)3, ..., (µ/N)m, respectively. Therefore, the probability that a

node appears at least twice, encouraging a preferential attachment in a Phenix

setup is given by the following equation:

P (X > 2) =
m∑

i=2

P (X = i) =
(µ

N

)2

+ ... +
(µ

N

)m

=
1− (µ/N)m+1

1− µ/N
− 1− µ

N

(2.9)

since µ/N < 1. Now that we know the value of the probability of a preferential

attachment, we are interested in analyzing how fast such an attachment will take

place (as the network grows) assuring the evolution of the network graph from

a random network to one based on power-laws. Figure 2.3 plots the probability

derived in Equation (2.9) versus the average number of neighbors for different

values of N , the initial random network. We can observe that it is desirable for

the initial network to be small so that preferential attachments start to form as

early as possible; for example, given an initial Phenix network of 20 nodes, the

probability of preferential attachment is around 0.117. This means that with the

9th node joining the network, at least one preferential attachment is formed. It

follows that after one preferential attachment forms, the probability of a second

preferential attachment increases since the probability of this node appearing more

than the others is already biased. Note that N is not the total number of nodes in

the final overlay, but only the first initial nodes that come together in the network.

Clearly, the overlay network can grow to encompass a much larger number of

nodes, and at that time Equation (2.4) no longer holds because the connections

36

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7

P
ro

ba
bi

lit
y

of
 P

re
fe

re
nt

ia
l

Average Number of Neighbors

N=10
N=15
N=20
N=25

Figure 2.3: Probability that a Preferred Node Appears

among nodes is not random, but biased, forming a power-law, as we have just

shown in this section.

2.4 Simulation

In what follows, we discuss the results obtained from implementing the Phenix

algorithm in a simulation environment based on Java software. We start by exam-

ining the emergence of a power-law where nodes enjoy a low-diameter. We then

study different types of attacks on an overlay network using the Phenix algorithm

to measure the network’s degree of resilience. Finally, we discuss the sensitivity

of Phenix to different bootstrapping mechanisms.

2.4.1 Power-Law Analysis

Degree distributions following power-laws tend to appear in very large networks

found in nature [9] [10]. However, we would like to have an algorithm where such

37

 1

 10

 100

 1000

 1 10 100 1000

Figure 2.4: Degree Distribution for 1000 Nodes

a distribution will be present in networks of modest size. Such an algorithm might

be useful in different situations for various applications where an assurance of a

large number of nodes might not be feasible. We studied the effect of creating

a network of pure joins in order to be guaranteed of the emergence of a power-

law in such a simple scenario. The nodes join the network following a normal

distribution at simulation intervals, by acquiring neighbors’ connections based on

the Phenix algorithm. Plotting the degree distribution for the resulting network of

a 1000-node on a log-log scale shows a power-law emerging in Figure 2.4. This

property is more clearly observed for a network of 100,000 nodes, as observed in

Figure 2.5.

2.4.2 Attack Analysis

Next, we study more sophisticated networks where nodes join and leave the net-

work using different scenarios. The attacks analyzed in this section are aggressive

and to some extent extreme requiring additions of nodes to the network that prob-

38

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

Figure 2.5: Degree Distribution for 100,000 Nodes

ably would not be typical of an attacker in a practical network. However, we chose

to include such an analysis in order to test the limit at which the Phenix algorithm

is capable of adapting, and the point beyond which the network does not serve its

purpose anymore of interconnecting participants to each other.

We consider a number of attack scenarios where an attacker can perform one

of three different types of distinct attacks on the network, or a combination of

such attack scenarios. The first attack scenario consists of a user that acquires

host cache information like a legitimate node might. The attacker contacts these

acquired nodes with a M0 message, getting the respective lists of their neighbors,

and building his candidate’s list, as a result. However, once the attacker has this

information it will then attack the nodes appearing in this list more than once,

removing them from the network. Such an attacker is limited in its capabilities

and resources when compared to the two other scenarios discussed next, because

the attacker attempts to target nodes that might have a node degree higher than the

average without participating in the overall structure. However, such an attacker

39

has a level of sophistication because it is not removing nodes randomly. Rather,

the attacker attempts to cause as much disruption as possible by maximizing the

damage to the network in creating targeted attacks toward nodes that are important

to the network performance, with as little investment as possible. The other two

types of attacks are more organized from the attacker’s perspective and require

adding a large number of nodes to the network. Such an attack option is possible

due to the fact that the network is open and welcomes any connection with no

prior authentication or authorization. The first of these two additional attacks

we denote as a “Group Type I” attack. This attack requires an attacker to add

a number of nodes to the network that only point to each other, thus, increasing

the probability that they will emerge as preferred nodes in the overlay network.

The last type of attack, which we denote as a “Group Type II” attack, consists of

adding a number of nodes to the network that would behave like normal nodes

do. These last two types of attacks attempt to create anomalies in the network by

introducing “false” nodes that remain connected for a prolonged period of time.

Such a regime would ensure that other “true” nodes come to rely on these false

malicious nodes due to the length of time that the false nodes are available in the

network. Under such attack scenarios, these false nodes suddenly disconnect from

the overlay network all at the same time with the intention of disconnecting and

fragmenting the network into small islands of nodes. We also consider a hybrid

attack scenario where the strategy dictates that some of the malicious nodes use

the strategy of “Group Type I” and the others use “Group Type II” attacks.

The following simulation results are for an overlay network composed of 2000

nodes. Each node chooses a number of neighbors between 5 and 8, which repre-

40

 0

 20

 40

 60

 80

 100

R
ea

ch
ib

ili
ty

 %

TTL

Random
No Attack

Modest Attacker

Figure 2.6: Modest Attacker

sents small numbers of nodes, if compared to Gnutella [37], denoted, respectively,

by min and max, with equal probability while maintaining αi(t0) ≤ 1, ∀i, result-

ing in an average of E(αi(t0)) = 41/48 for the whole network. However, this

initial state for α will change as nodes join and, most importantly, leave the net-

work, as we will discuss later. At each simulation time interval, the number of

nodes joining the network is based on a normal distribution. For the case of nodes

leaving the network, we consider three different cases: (i) the departure pattern is

based on a normal distribution with a mean λ where nodes leaving are randomly

selected from the overlay network. This scenario is equivalent to the case where

the system faces no attacks, as shown in Figure 2.6; (ii) the departure pattern is

based on a normal distribution, however, the nodes are removed by sending ping

messages creating a sorted list of candidates, and removing preferred nodes from

the network (this corresponds to the “modest attacker”); and (iii) represents group

attacks as in the case of Group Type I, Group Type II, and hybrid of Group Type

I/Group Type II attacks. In this case, a percentage of the nodes (note that different

41

values of this percentage are studied extensively later in this section) represent

malicious nodes that conspire together to create the maximum possible damage to

the whole structure of the network. The attack proceeds by having nodes at each

interval leave the system as if there is no attack scenario until the malicious nodes

suddenly drop out of the system, as described earlier. In each case of nodes leav-

ing the system, we compare the performance of the network with a pure random

network having the same average number of neighbors across all nodes, taking

into consideration the min, max values, and backward connectivity from pre-

ferred nodes in a fashion similar to a topology created in the Gnutella network

[37].

In all simulations, we start with a small number of nodes ninit = 20 that are

interconnected randomly to each other with each node maintaining a number of

neighbors min ≤ hi ≤ max. The average rate of nodes arriving (i.e., issuing

joins) is greater than the average departure rate, allowing the network to grow to

the total number of nodes we would like to examine. In the case of Type I, Type

II or hybrid group attacks, the process with which the network is formed starts

by adding 50% of the legitimate or “true” nodes in incremental steps. At each

step, the number of nodes added is drawn from a normal distribution, in a fashion

similar to what would happen in a real P2P network. Following this, the malicious

nodes are introduced in a single step giving them enough time to establish a strong

presence in the network. We then add the next 50% of the legitimate nodes also in

incremental steps. During all the steps, nodes continue to leave the network under

a “no attack” situation. Eventually, we remove the malicious nodes, and study the

effect on the remaining live nodes.

42

The metric measured for these networks consists of the percentage of unique

reachable nodes in the network vs. the number of hops that we also denote by

TTL. This measurement will give us an understanding of how many nodes can be

reached when an application issues a query on top of the Phenix topology. Also

note, that the same can be denoted as a radius because it starts with a node as the

center and proceeds to try to cover as much of the network as possible. The figures

represent this reachability metric in terms of the percentage of the total number

of “live” nodes in the network. We compare the Phenix network under attack to

a purely random network (as implemented by the Gnutella v0.6 [37]) because a

random topology network is often cited to be the most tolerable to attacks [10].

Also, it is worth noting that the response of the network to various attacks is shown

before the nodes run their node maintenance procedure (as described in Section

2.3.3) because the performance of a Phenix network will return back to the case

of “no attacks” after a single neighbors maintenance is performed on each node.

Each experiment ran 10 times to ensure that the results stem from the struc-

ture and properties of the Phenix algorithm. We then sampled 10% of the nodes

and measured the reachability of each of the sampled nodes and calculated the

averages for each result. All measurements deviated only a little from the aver-

ages presented, proving that the behavior of the distributed algorithm is indeed

predictable and reliable.

Figure 2.6 shows a comparison of the performance for the first type of targeted

attack discussed above, which we denote on the plot as the “modest attacker”,

versus the “no attack” and random network. We can see that in response to the

targeted node removals, the performance of the network degrades but the loss is

43

quite tolerable and still offers a gain over the random topology. Thus, in this sce-

nario, Phenix has the potential of offering the participating nodes a more efficient

overall performance where a node can be reached even with a smaller TTL value.

Figure 2.7 shows four different attacks: 30% of both Group Type I and Group

Type II attacks, and two hybrid combinations each resulting in a total of 30%

malicious nodes in the overlay. In studying such a comparison we were interested

in seeing which strategy might be more damaging in fragmenting the network and

disconnecting the live nodes. We observed that Group Type I attacks create a

larger fragments in the network when introduced as a small percentage, than the

same number of nodes running in the Group Type II attack mode. In addition,

when we have a smaller percentage of Group Type I nodes backed up by more

nodes as Group Type II, the performance of the network degrades the most as the

maximum number of nodes reachable drops, as shown in Figure 2.7. This is due

to the fact that nodes in Group Type I attacks, point to each other, which means

that if we increase their number beyond a certain threshold the probability that

they will be chosen by legitimate users as preferential drops. However, Figure

2.7 also shows us that across all attack scenarios, the network does not collapse

into small islands. A promising result shows the giant component, indicated by

the maximum reachability, not dropping below 70% of the remaining “live” nodes

under all attack conditions.

Figures 2.8 and 2.9 show the effect of Group Type I and Group Type II attacks

on a Phenix network where the percentage of malicious nodes shown is actually

the percentage from the final network. This means that if we have 10% malicious

nodes in a 2000-node network then the number of legitimate nodes is 1800. This

44

 0

 20

 40

 60

 80

 100

R
ea

ch
ib

ili
ty

 %

TTL

random
No attacks

Type II 30%
Type I 30%

Hybrid: 20% type II - 10% type I
Hybrid: 10% type II - 20 type I

Figure 2.7: Comparison of Group Attacks

 0

 20

 40

 60

 80

 100

R
ea

ch
ib

ili
ty

 %

TTL

random
No attacks

Type I 10%
Type I 20%
Type I 50%
Type I 90%

Figure 2.8: Type I Attacks

result implies that for an attacker to launch a 50% attack, he/she has to have the

capability of introducing a number of malicious equal to the number of existing

nodes in the network that he/she wishes to partition or harm.

In Figures 2.8 and 2.9, we can observe that a network under an attack of 50%

malicious nodes scenario seems to provide a performance that is better than the

20% malicious nodes attack. This result seems counter-intuitive at first. However,

it occurs because the number of nodes in the network becomes half the initial size,

45

 0

 20

 40

 60

 80

 100

R
ea

ch
ib

ili
ty

 %

TTL

random
No attacks

Type II 10%
Type II 20%
Type II 50%
Type II 90%

Figure 2.9: Type II Attacks

as the other half were malicious nodes that dropped out of the network, while

the measured reachability is represented as a percentage of the total number of

live nodes. Similarly, a network undergoing a 90% malicious node attack seems

to reach a constant plateau with a lower TTL value than the initial network for

the no attacks scenario, as shown in the figure. This is due to the fact that the

structure of the network carries the signature of a power-law like distribution,

offering a diameter in the order of O(logN) where N is the total number of nodes

participating in the network. As N drops to 10% of its initial size, the diameter

follows by decreasing as well.

Measuring the giant component, which is the largest portion of the network

that remains strongly connected, under different group attack scenarios is shown

in Figure 2.10. If we consider, for example, the 20% attack for both Group Type I

and Group Type II modes, we can observe that the giant component still amounts

to around 80% of the total nodes of the network. At the same time, an 80%

attack results in a giant component composed of 60% of the nodes. One can

46

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

S
iz

e
of

 G
ia

nt
 C

om
po

ne
nt

 (
%

)

% Malicious Nodes

Type I Attacks
Type II Attacks

Figure 2.10: Giant Component

conclude that in order for a malicious attacker to divide a network of 400 nodes

into half, then as many as 1600 nodes have to be introduced into the network for a

considerable amount of time. This is a high price to pay to break such a network in

two parts as the attacker is adding a number of nodes equal to 400% of the number

of nodes in the initial targeted network. Add to this that the network recovers to a

giant component in the order of 90% of the total number of nodes after performing

one node maintenance interaction. This result looks very promising in terms of

Phenix’s ability to respond to such attacks.

We ran the same set of simulations where the total number of nodes is 20,000

instead of the 2,000 keeping all other parameters identical. In Figure 2.11, we

present a summary for the hybrid attack discussed earlier. The behavior is very

similar to that of the previous set of experiments showing that Phenix can provide

a high degree of resiliency to the network independent of the total number of

nodes in the network. Figure 2.11 also shows another signature of a power-law

like distribution. A 20,000 node network reaches almost a stable plateau with a

47

 0

 20

 40

 60

 80

 100

R
ea

ch
ib

ili
ty

 %

TTL

20000 Nodes: 10% type II - 20% type I
20000 Nodes: 20% type II - 10% type I
2000 Nodes: 10% type II - 20% type I
2000 Nodes: 20% type II - 10% type I

Figure 2.11: Hybrid Attacks in 2,000 and 20,000-node Networks

TTL larger by 1 hop than the 2000-node network, even though the total number

of nodes is 10 times greater.

These plots indicate that increasing the TTL beyond a certain limit does not

provide any significant benefit, as can be seen in Figure 2.7 and Figure 2.11. In

fact, the number of reachable nodes seems to reach a maximum value beyond

which increasing the TTL does not offer a wider variety of nodes reached. For

example, it can be seen from Figure 2.8 that increasing the TTL from 4 to 5 in a

2000-node network with 10% malicious nodes of Group Type I will increase the

reachability from 88.29% to 88.44%. This is a characteristic that can be exploited

by applications where a query carrying a large TTL might have its hop decre-

mented by more than 1 at a node receiving it because the gain of a larger TTL is

not that significant. Such structure is beneficial in the sense that a reply can be

returned to the originating node in a faster period of time because the number of

hops is smaller than the random counterpart. An application sitting on top of such

a topology might consider not to flood all of its neighbors limiting the generated

48

traffic. Rather, it can direct the search using a smart policy such as GIA [16], for

example.

The α parameter introduced in Section 2.3.3 contributes to a fast recovery

because most nodes will become quite aggressive in creating highly connected

nodes after losing their preferred neighbors. This encourages the promotion of

existing nodes to become highly connected nodes and assume the role of preferred

nodes. We show the behavior of α in Figure 2.12. In this experiment, we use a

hybrid attack of 10% Group Type I and 20% Group Type II. We can observe in

Figure 2.12, that the initial value of the average of α across the entire network

is close to 0.7 before introducing malicious nodes. However, when these nodes

are added to the network (at time=60), they create a false sense of stability that

can be seen in an increase and almost constant α despite the normal operation

of the rest of the network where nodes are joining and leaving. Following the

disappearance of the malicious nodes (at time=180), we observe a sudden drop in

α across the entire network, as a sudden change is experienced by most legitimate

live nodes. However, as the network goes back to normal operations, α starts to

increase again, indicating that the network is in a stable state again. The choice of

the α update influenced by Equations (3.4) ensures aggressiveness in decreasing it

in order to respond as fast as possible to an attack, while the process of increasing

it again is more conservative. We assumed any node can handle any traffic offered

to it in the work presented, however, in practice this might not be the case and

some nodes might refuse to have a higher in-degree than the average.

49

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 A
lp

ha

Time

Figure 2.12: The Average of the Ratio of Preferred Nodes to Random Nodes

Across all Nodes

2.4.3 Sensitivity to Bootstrapping Mechanisms

In this section, we test the sensitivity of the Phenix algorithm to the use of different

bootstrapping mechanisms. We test mechanisms that are in use in existing peer-

to-peer systems, and we compare them to the use of an ideal bootstrap server. We

define an ideal bootstrap server as one that is able to return a list of nodes chosen

randomly with equal probabilities from all the nodes present in the system, when

contacted by a new node that needs to connect to the network. Note that in this

section, we are not attempting to propose a scheme for a bootstrap server as it

is beyond the scope of our research, however we are testing the dependence of

Phenix on the different bootstrapping mechanisms.

We compare an ideal bootstrap server to a system where nodes on their first

connection to the network obtain a list of existing nodes as in the case of the

ideal bootstrap mechanism, however, we incorporate the idea of caching where a

node i saves the addresses of its neighbors Gi(t0) that it acquired during a previ-

50

 1

 10

 100

 1000

 1 10 100 1000

Figure 2.13: Degree Distribution While Using Caching

ous connection at time t0. Node i favors connecting to the same set of neighbors

at a later time tn. This mechanism biases connections to be made to nodes that

stay connected to the network for an extended period of time. By testing against

this caching mechanism, we want to ensure that Phenix does not compromise its

resilience in such a situation. We implement Phenix with 4,000 distinct nodes

whose session lifetimes follow a distribution similar to observations of empirical

data as reported by [75] and [77]. We measure the degree distribution of all nodes

in the network, whenever the size of the network exceeds 2,000 nodes. The av-

eraged results over 10 runs are shown in Figure 2.13. We can observe that the

system still follows a power-law distribution preserving the desired characteristic

of a low-diameter.

In order to measure the resilience of Phenix with such a bootstrapping mech-

anism, we repeat the experiment of Group Type I attacks, Group Type II attacks

as well as Hybrid attacks. The results are shown in Figure 2.15. We can observe

that such a bootstrapping mechanism does affect the performance but to a limited

51

 1

 10

 100

 1000

 1 10 100 1000

Figure 2.14: Degree Distribution With Partial Knowledge

extent in the sense that the reachability is lower than that for the case of an ideal

random bootstrap server. However, these aggressive attacks did not succeed in

dividing the network into separated islands. The reasoning behind this is that un-

der the ideal random bootstrapping, nodes who emerged as preferred nodes were

not necessarily the “oldest” in the system, since no caching is implemented. On

the other hand, caching neighbors connections on client nodes changes the system

by improving the chances of malicious nodes since they are staying in the system

for a prolonged period of time and a returning node is more likely to connect to

one of them than to a legitimate node. This adds to the effect of the simultane-

ous disappearance of malicious nodes helping them create a noticeable void in the

overall presence of preferred nodes in the network, thus increasing the diameter.

In addressing this void of preferred nodes, the remaining nodes are able to recover

to a power-law distribution after one update of their list of neighbors, promoting

existing nodes into a preferred status.

Another mechanism of bootstrapping that we test against is when the bootstrap

52

 0

 20

 40

 60

 80

 100

 2 3 4 5 6 7 8

R
ea

ch
ib

ili
ty

 in
 %

TTL

No attacks
Type II - 30%
Type I - 30%

Hybrid: 20% Type II - 10% Type I

Figure 2.15: Group Attacks While Caching

 0

 20

 40

 60

 80

 100

 2 3 4 5 6 7 8

R
ea

ch
ib

ili
ty

 in
 %

TTL

No attacks
Type II - 30%
Type I - 30%

Hybrid: 20% Type II - 10% Type I

Figure 2.16: Group Attacks With Partial Knowledge

53

server does not know about all the nodes in the system, but instead has knowledge

about a smaller subset that it chooses randomly from. The size of this subset is

represented as a percentage of the total number of nodes that we denote by ρ. In

such a scenario, the bootstrap server will still return a set of random nodes when

contacted by new-coming nodes, however, this set is biased towards nodes that

it knows about giving them a higher chance of being in control of which nodes

become preferential. One might imagine that a bootstrap server should be able to

know about a high percentage of nodes connected to the network since these nodes

contact the bootstrap server before connecting to the network, allowing the server

to add them to its list. However, this is often not the case due to the fact that nodes

might use their cache from a previous session, as presented above, while they

have a different IP DHCP-obtained; this will make the bootstrap server oblivious

to their presence in the network. Another reason why a bootstrap server cannot

obtain full knowledge is due to the use of distributed bootstrapping infrastructure

on several servers, which typically do not exchange information among each other

for scalability reasons; thus resulting in each bootstrap server having a partial view

of the network.

We test Phenix using a network of 2000 nodes that operate with 5 distinct

bootstrap servers. We assume that the initial subset of 20 nodes appearing in the

network is known to all 5 of the bootstrap servers. However, any subsequent ar-

riving node will pick a bootstrap server randomly with equal probabilities, and

queries it for random nodes. At that instance, that specific server will add this

new node to its list of known nodes. We observe that the degree distribution of

this network is still powerlaw-like as seen in Figure 2.14. We test the reachabil-

54

ity of Phenix using such a mechanism under normal operation as well as under

attacks for the same setup of 2000 nodes and 5 mutually independent bootstrap

servers. The results are shown in Figure 2.16. Testing this algorithm against mali-

cious attacks of Group Type I, Group Type II, and Hybrid shows that the network

remains resilient under the first two cases of attacks, but seems to lose more under

the Hybrid attack. Note that under the Hybrid attack the network does not get

disconnected but instead its typical diameter increases deviating from a powerlaw

behavior. The reason behind this is that with partial knowledge of nodes, mali-

cious nodes constitute a set of preferred nodes and another set of nodes pointing to

them. Thus, if we picture the network where the preferred nodes are in the center,

the ones pointing directly to them constitute a circle around them. The Hybrid

attack strategy puts malicious nodes in the center as well as a set of nodes around

them. Thus, the topology becomes similar to a star topology. As the nodes in the

center of the star and a big portion in the first layer disappear, as they are mali-

cious, the network does not have sufficient connections to sustain the powerlaw

distribution; consequently the diameter increases. Note that in our experiments,

it took the nodes two rounds of the update mechanism to acquire a powerlaw dis-

tribution back, instead of the regular one round of updates that is sufficient under

previous mechanisms and attacks scenarios.

Under such conditions, it seems necessary for the nodes to discover other

nodes more aggressively instead of relying on the initial set. In order to allevi-

ate this issue, we modify the Phenix algorithm by adding another mechanism that

we call the discovery stage, which takes place during the initial connections stage.

In the discovery stage, a node starts by connecting to one of the random nodes in

55

Ghost,i, and sends a special ping message with TTL = x, where x > 1 and chosen

randomly. Each node j receiving this special message will decrease the TTL by

1 and forward the message to only one of its neighbors also chosen randomly, as

long as TTL > 1. If TTL = 1, then the receiving node jx will send back a list

of its neighbors (or a subset, if it is a preferred node) to the sender node i. This

procedure introduces a more diverse sample that a node can use as a startup point

to collect its final list of neighbors, while maintaining restricted crawling capabil-

ities that a malicious node can abuse. In fact, this newly obtained list of neighbors

from node jx will be used by node i as Gi defined in Equation (2.2). Note that

no matter how deep a node sends a ping message, it will stay in the “circle” of

malicious nodes if it had already started with one of them forcing it to connect to

the circle as its sole outbound connection to the rest of the network. However, the

probability that a node will have all of its initial set of nodes belonging to the set

of malicious nodes is quite low. Another mechanism to overcome such situations

requires a new node to contact more than one bootstrap server adding to the di-

versity of its initial set. The results of simulating both of these mechanisms are

presented in Figures 2.17 and 2.18. In the first technique, nodes send the initial

discovery message with x chosen from the set [2, 3, 4, 5] with equal probability. In

the second technique, nodes contact two bootstrap servers chosen randomly from

the set with equal probabilities. We can observe that the problem shown in Figure

2.14 is not replicated under these modifications.

56

 0

 20

 40

 60

 80

 100

 2 3 4 5 6 7 8

R
ea

ch
ib

ili
ty

 in
 %

TTL

No attacks
Type II - 30%
Type I - 30%

Hybrid: 20% Type II - 10% Type I

Figure 2.17: Group Attacks With Additional Discovery

 0

 20

 40

 60

 80

 100

 2 3 4 5 6 7 8

R
ea

ch
ib

ili
ty

 in
 %

TTL

No attacks
Type II - 30%
Type I - 30%

Hybrid: 20% Type II - 10% Type I

Figure 2.18: Group Attacks With Using 2 Bootstrap Servers

57

2.5 Experimental Testbed Results

We implemented Phenix in a real Internet-wide overlay environment running on

the PlanetLab experimental testbed [66] for the purpose of measuring the overhead

of the algorithm in the face of aggressive node removal scenarios. The code is built

on the Open Source Jtella software system [44], a Java API for implementing the

Gnutella protocol. We present our results from an implementation and experiment

that ran on 81 PlanetLab nodes. We also measured the time needed for the network

to recover from an attack targeted at highly connected nodes in the Phenix overlay

running on PlanetLab.

2.5.1 Implementation

Each node in our implementation has two layers. The first layer being the Phenix

algorithm composed of a servent (server and client) daemon responsible for in-

coming as well as outgoing connections. The node opens a socket connection

waiting for incoming connections from other nodes either sending an M0 (as de-

scribed in Equation (2.2)), or nodes wishing to add this node to their neighbors’

list. In terms of the graph, this connection receives and services all the incoming

edges pointing to this node. The second type of connection constitutes all the

connections that a node opens to other nodes, or the outgoing connections. As

for the second layer, it is purely for experimental purposes, and opens a listening

socket interacting with a central control server. The purpose of this latter layer is

to be able to monitor the connections of a node in order to observe the progress of

the network formation as well as the emerging topology. In addition, the control

58

server can send a stop signal to this layer asking it to remove the node from the

overlay network; thus, emulating targeted node removal. The implementation is

performed by modifying the JTella API which is a Java module based on Gnutella

v0.6 [37]. The modifications are mainly in acquiring hosts and creating outgoing

connections, making it conform to the Phenix algorithm, presented in Section 3.4,

instead of the random Gnutella topology.

2.5.2 Degree Distributions Experiments

The Phenix overlay ran on the 81 PlanetLab nodes spread over 43 sites across

8 countries (Australia, Canada, Germany, Hong Kong, Sweden, Taiwan, UK, and

US). The network started with ninit = 10 nodes interconnected randomly, in order

to boot up the process of network formation. After that, nodes started joining at

the rate of 2 nodes every 5 seconds by contacting the control server, which acts as

a bootstrap server and provides the rendezvous mechanism by giving each node

a list of 4 nodes that it can connect to. The generated list of nodes, given as a

response for each request, is drawn randomly from nodes that have already joined

the system with no bias given towards node location or proximity.

Thus, each starting node contacted the control server to get the initial Ghost

list, and applied the Phenix algorithm in making its decisions. In the following

experiment, we chose the values of 3 and 4 for min and max (lower and up-

per bounds on the number of initial neighbors for a node, respectively), since the

number of nodes (81 nodes) is a small number as compared to the growth of peer-

to-peer systems in today’s networks. Choosing higher values for min and max

59

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

Number of Neighbors

N
od

e
D

is
tr

ib
ut

io
n

Initial Network
Final Network

Figure 2.19: Out-Degree (number of neighbors) Distribution

would create a network that is closer to a mesh while lower values can easily

result in situations where a node might find itself completely disconnected from

the rest of the network with the removal of few nodes. Following the complete

formation of the network and connections of all nodes, we took a snapshot of the

resulting graph by examining the nodes’ neighbors’ list. Figure 2.19 presents the

out-degree distribution (or number of formed outgoing connections) for the entire

Phenix overlay network. The purpose behind this metric is to examine the number

of nodes that emerged as preferential nodes and their respective degrees, as they

acquired backward connections, thus, becoming hubs in the overlay network. We

can see from the figure that the majority of nodes have between 3 and 4 neighbors,

with the exception of 3 nodes with 5, 10, and 18 connections respectively. Before

sending these 3 nodes the command to close their incoming and outgoing connec-

tions, we measured the rtt (round trip time) from the control server to every node

in the network in order to see the diversity of the connections. Figure 2.20 shows

the distribution of rtt for the overlay nodes. We can observe that although the

60

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300 350 400

N
od

e
D

is
tr

ib
ut

io
n

rtt from Control Server (msec)

Figure 2.20: Round Trip Time (rtt) Distribution of Nodes in the Testbed

 0

 5

 10

 15

 20

 0 500 1000 1500 2000

N
od

e
D

is
tr

ib
ut

io
n

Time Needed to Acquire New Neighbors (msec)

Figure 2.21: Node Maintenance Duration

majority of the nodes are within less than 100 msec reach from the control server,

some offered a diversity in the network where their rtt reached higher values up to

350 msec, thus, offering a degree of heterogeneity for the experiment.

In this experiment we sent the 3 highly connected nodes (with 5, 10, and 18

connections) a stop signal through their control layer forcing them to close all of

their connections. We then waited for the reaction of the rest of the nodes in the

Phenix overlay, and measured how long it took them to rearrange their connections

61

and send their new state to the control server. Several factors enter into play when

obtaining these results as presented by ti: ti = rttj/2 + ζi + rtti + ηi + rtti/2.

The total time needed for a node i to inform the control server that it performed

the node maintenance, denoted by ti, is the summation of five terms presented

above. The first term is the time needed for the stop message to travel from the

control server to the node to stop j, denoted by rttj/2. The second term is the

time needed for the node i, in the case it is connected to node j, to realize that

node j is no longer available (or the timeout of the connection, in this case we

chose the value to be 1000 msec), denoted by ζi. The third term rtti is the time

needed for node i to contact the control server requesting the address of one or

more nodes that it can connect to, denoted by rtti. The fourth term, denoted by

ηi, is the time needed to run the Phenix algorithm, which might involve contacting

a friend node in the case of acquiring a preferential node. Finally, the fifth term

rtti/2 is the time required to send the node maintenance outcome for the control

server informing it of the change in the neighbors list. The distribution of time for

each of the affected nodes to run this node maintenance mechanism is shown in

Figure 2.21. We can observe that most nodes returned to a stable state by creating

new connections in less than 1 second. Finally, Figure 2.19 shows a comparison

of the resulting connectivity with the initial overlay graph, where we observe that

4 new highly connected nodes emerged ensuring the fast recovery of the Phenix

overlay with a low-diameter topology.

62

2.6 Summary

We have presented a fully distributed algorithm called Phenix that creates low-

diameter resilient peer-to-peer overlay networks. To the best of our knowledge

Phenix represents one of the first contributions that simultaneously supports high

performance in terms of low-diameter and fast response times, and is robust to

attacks and resilient to various overlay dynamics and node failure scenarios. In

this chapter, we have shown through analysis, simulation, and from results from

an experimental implementation on the PlanetLab overlay that Phenix results in

efficient connectivity, offering tolerance to various network dynamics including

join/leaves and a wide variety of simple and more sophisticated node attacks.

Because of the rise in number of security attacks and the growing creativity of

attackers, the need for resilient overlays that can offer both performance and re-

silient properties will become necessary particularly for commercial reliable over-

lays. Phenix supports low diameter performance and resilience without sacrificing

flexibility.

63

Chapter 3

Strategies and Algorithms for

Parallel Downloads in Peer-to-Peer

Networks

3.1 Introduction

Nodes joining peer-to-peer networks can benefit from initiating simultaneous re-

quests for different parts of an object to different serving nodes carrying this ob-

ject, or what is referred to as parallel downloads. The direct benefit of such re-

quests is the increased total download bandwidth for the client nodes. Parallel

downloads also offer increased resilience to the client node in the case where one

or more of the serving nodes suddenly depart the network or fail. Serving nodes

also benefit from parallel downloads because they do not have to serve a file in

its entirety, sharing the responsibility with other serving nodes carrying the same

64

file. Dividing an object and downloading it in parallel is not as simple as it may

seem since the client node wants to maximize its download bandwidth, maintains

a low overhead of signaling messages, and be responsive to system dynamics such

as sudden fluctuations in bandwidth offered by serving nodes or due to departing

serving nodes. Existing implementations of peer-to-peer applications that em-

ploy parallel downloads do so in a naive fashion by either dividing the file into

equal chunks and requesting each chunk from a different serving node, as is the

case with Overnet [61] and eMule [28], or sending requests for small chunks fre-

quently to serving nodes, as is the case with the implementation of Kazaa [78] and

Limewire [53]. As a result many of these existing systems send a large number of

signaling messages (e.g., object chunk requests), wasting a substantial amount of

the available bandwidth that a downloading node could have taken advantage of.

We conjecture that in order to maximize the download performance of client

nodes in a parallel download system, a more sophisticated and adaptive approach

is needed; one that takes into consideration the competitive nature of nodes in the

system and the network dynamics experienced by nodes in a real network imple-

mentation. To address this challenge, we propose a parallel download model for

peer-to-peer networks based on game theoretic techniques that reflects the selfish,

competitive and non-cooperative nature of peer nodes in the system. We model

these nodes and solve the problem of dividing an object into chunks while maxi-

mizing download speed and minimizing signaling messages. We show that, as a

result of this selfish behavior, the network can lack a Nash equilibrium. This lack

of equilibrium basically translates into a situation where client nodes continue to

include and omit certain serving nodes, which is detrimental to download speeds

65

and signaling costs. To counter this, we design a set of simple client and server

strategies that minimize the effect of selfish nodes, lowering the risk of driving the

network into oscillations due to the lack of Nash equilibrium in the system.

Because nodes do not have complete state information about peers, and instead

rely on local observations, the optimal solution of object division cannot be real-

istically achieved in practice. Thus, we propose an estimation and prediction al-

gorithm called the Minimum-Signaling Maximum-Throughput (MSMT) algorithm

that is based on the Bayesian Theorem [42]. The purpose of the MSMT algorithm

is to increase the observed throughput of the client node without adding an pro-

hibitive amount of signaling messages into the network. We discuss two variants

of the base MSMT algorithms called the Simple and General MSMT algorithms

where the latter one is more responsive to different bottlenecks observed in the

systems (e.g., at the client, network, and server). MSMT is a fully distributed al-

gorithm that bases its decision-making on local state information only. We show

the behavior of our proposed system and compare it to existing peer-to-peer sys-

tems (e.g., Limewire and eMule) using a combination of analysis, simulation, and

experimentation from an implementation on a medium scale (102 node) on the

Planetlab [66] overlay. Our results show that, with our proposed strategies and

MSMT algorithm, nodes can achieve faster download speeds while incurring a

lower number of signaling messages irrespective of changes in the file size, net-

work traffic, and number of requests. We show the effect of different choices for

important systems parameters on performance, such as, strategies for re-running

queries during on-going downloads in order to discover new serving nodes, and

changing the sizes of serving and wait queues on the serving node, as well as

66

network load and conditions.

The contributions of this chapter are:

• to model parallel downloads in peer-to-peer networks, using game theory

techniques, by considering nodes as non-cooperative participants competing

for the same resources;

• to investigate the existence of a Nash equilibrium in the system based on our

model under different scenarios in the network, in order to better understand

the effects of parallel download and to achieve more stable performance

from the participating nodes’ perspective;

• and finally to propose a smart adaptive algorithm that provides nodes with

a near optimal performance for parallel downloads of objects.

In addition, our model assumes the following characteristics:

• Fully Distributed: we argue that in realistic systems, there is no central

authority that can police the system. Thus, each node, whether server or

client, has to deal with many parameters and uncertainty and come up with

the best solution it can independently.

• Local Information: we assume that each node relies solely on local infor-

mation based on what it is observing in terms of behavior from the other

nodes interacting with it, and will not exchange any information with other

nodes as such an exchange might provide an incentive for nodes to lie and

cheat.

67

• Minimum Signaling: we propose an algorithm that has a main objective of

maximizing speed without adding prohibitive cost in signaling. Thus, the

proposed algorithm has “smart” components.

• Selfish Nodes: we assume each node is trying to maximize its utility which

might lead it into cheating, if the need arises or if a gain can be accomplished

as a result. Thus, our model assumes no cooperation among nodes and the

proposed algorithm and strategies are designed in order to provide users

with an environment where cheating would deteriorate their performance.

The structure of the chapter is as follows. We discuss the related work in

Section 3.2. In Section 3.3, we describe our parallel download model for peer-

to-peer networks and the necessary client and server strategies. We present a

detailed description of the Simple and General MSMT algorithms in Section 3.4.

Following this, we discuss our simulation results and the evaluation of the system

deployed in a medium-scale Planetlab overlay, in Section 3.5 and Section 3.6,

respectively. Section 3.7 presents a summary of the work.

3.2 Related Work

There is a growing body of work on parallel downloads found in the literature

and deployed on the Internet. A number of popular peer-to-peer applications such

as eMule [28], Kazaa [78], Limewire [53], and Overnet [61] use parallel down-

load techniques, however, these applications either divide a file into equal sized

chunks and request these chunks from different nodes, as is the case of Overnet

68

and eMule, or send requests for small chunks frequently to serving nodes as in

the implementation of Kazaa and Limewire. Note that a detailed description of

how Kazaa and Overnet work in practice is not publicly available and our obser-

vations on how objects are divided into chunks are based on our extensive moni-

toring of the behavior of these applications. However, we compare our proposed

algorithms and strategies to eMule and Limewire in Section 3.6. Note that our

model assumes a Gnutella-like protocol, thus we do not compare to BitTorrent

[13] which relies on users forming groups and cooperating while downloading

mutually exclusive chunks, only to exchange them later. Clearly, these existing

Internet parallel downloads applications can have an adverse effect on the overall

throughput of the network as a whole. This is because the client nodes are self-

ish and have the ultimate goal of increasing their own utility which is achieved

by taking full advantage of all offered resources in the system. However, parallel

downloads seem to be here to stay and therefore there is a need to develop new

application protocols, control algorithms, and client/server strategies that can mit-

igate the adverse effects of parallel downloads. Minimizing the cost of parallel

downloads on the network as a whole while maximizing the throughput achieved

by clients constitutes the goal of our work presented in this chapter.

Interest in parallel downloads of online files has been an integral part of Con-

tent Distribution Networks (CDNs)[34], [48], [73]. However, the CDN environ-

ment is quite different from the peer-to-peer particularly when you consider the

rate of arrival and departure of nodes in the system. In CDNs nodes are quite

stable and remain online for extended periods of time, which contrasts with peer-

to-peer networks where nodes are unpredictable and volatile.

69

On the other hand, in [12] the authors suggest the use of machine learning

techniques to help a peer pick a serving node among the ones carrying its desired

object, instead of aggregating all the bandwidth and taking advantage of all serv-

ing nodes. The focus of that paper is to find the most reliable node to download

from in terms of its offered bandwidth and time spent in the network and does not

take advantage of the aggregated bandwidth.

In addition, [15] and [32] study the benefits of using cooperative nodes in order

to increase the storage capacity of the whole system, which is mainly targeted

towards applications where nodes are cooperative. Research in [23], [51] and [52]

show the benefit of using error correction codes in obtaining different chunks of an

object from different serving nodes without targeting the actual division of such

downloads. In fact, error correction codes can be used in order to compliment our

study and offer better resilience in our model.

Finally, [14], [50], [71] and [88] discuss OceanStore, an infrastructure for

sharing and serving resources. Even though these papers provide a lot of insight

into such an infrastructure and assume the common use of parallel downloads

among participating nodes for performance and redundancy, there is no mention

of the actual divisions of these downloads and decision making involved.

Other researchers [67] [93] has investigated the performance of peer-to-peer

systems but not for the case of parallel download scenario from a node’s perspec-

tive. There has been little or no work on the analysis of parallel downloads for

peer-to-peer networks. The closest work that relates to our study is [4]. In [4]

the authors study parallel downloads determining the optimal peers to download

from, minimizing the cost associated with the download, assuming guaranteed

70

bandwidth between clients and servers, and a cost for downloads directly propor-

tional to the transfer from every serving node. However, we argue that in realistic

peer-to-peer systems, nodes do not offer any guarantee in performance. In addi-

tion, client nodes typically pay a flat fee for their unlimited use of bandwidth and

not usage-based fees.

3.3 Parallel Downloads Model and Client/Server Strate-

gies

We first formulate a model for parallel downloads in peer-to-peer networks, and

then present a set of recommended strategies to be implemented on the requesting

(i.e., client) and serving nodes.

3.3.1 Parallel Downloads Model

The system contains a set of nodes, denoted by A. Each node in A can initiate

queries and if it carries objects can act as a server at the same time. So, our whole

system can be expressed as follows:

A = I
⋃
N

⋃
V (3.1)

where, I, N , and V are the subset of nodes initiating a request, serving an object,

and idle, respectively. We also might have, I⋂N 6= ∅, accounting for the fact

that a node i might be downloading an object and, at the same time, acting as a

server where other nodes are downloading from it.

71

We denote the bandwidth that each node is using for its peer-to-peer applica-

tion by [Bu,Bd], the upload and download bandwidth, respectively. We assume,

initially, that congestion affecting Bu and Bd only happens on the last-mile of

the node connection. This assumption helps us in formulating the model from

an end-to-end perspective without taking into account the exact topology of the

underlying network. However, we relax this assumption in Section 3.4.2 and pro-

pose the General MSMT algorithm that accounts for any change in the network’s

throughput.

A node i in the system sends a query for an object of size Oi. It hears back

from a set of nodes Ni, where Ni ⊂ N . It then initiates the game that is going

to shape its strategy in dividing the object into chunks that can be downloaded in

parallel from these nodes. At first, node i starts by downloading a set of small

chunks which we denote by Oi,j[0], where j ∈ Ni at time t[0]. Because the node

is not aware of the usage on Bu,j[0],∀j ∈ Ni, it will download equal small chunks

of the file from all nodes. Thus, at time t[0], we have Oi,j[0] = Oi,k[0]∀j, k ∈ Ni.

Now node i has a rough estimate of what to expect in terms of the available

bandwidth from each serving node because it measures the download times from

each serving node and computes a set of values that we denote by B∗[0], the set

of observed bandwidth at time t[0]. The game becomes for node i to further

divide the remainder of the object into chunks among the nodes and download

these chunks. In general, we have Oi,j[n] representing the chunk that node i is

downloading from node j at time t[n]. The system is subject to the following

72

constraints: ∑
j∈Ni

∑T
n=0 Oi,j[n] = Oi, ∀i ∈ I

∑
j∈Ni

Bu,ji[n] ≤ Bd,i, ∀i ∈ I
Bu,ji[n] ≤ Bu,j, ∀j ∈ Ni

(3.2)

where T is the total time it takes to download the object. The intuition behind

this set of constraints (3.2) is, respectively, all the downloaded chunks should add

up to the object, the summation of all observed upload bandwidth from the nodes

serving the file cannot exceed the download bandwidth of the node receiving the

file, and finally, the requested upload bandwidth on any given node cannot exceed

the bandwidth set aside to serve uploads in general.

3.3.2 Client Strategy

In this section, we define the utility of the client node and how it affects its be-

havior in dividing an object into chunks for parallel downloads from the serving

nodes.

Dividing the Requests

When a node i obtains Ni, it can proceed to send the requests for downloads

of the chunks. At that point, i has to make a decision on how to divide these

chunks and whether to use all the nodes in Ni or a subset. A whole spectrum

of solutions exists. On one extreme, the node i can decide to have the smallest

possible granularity in dividing the files, at the cost of generating a lot of signaling

messages to the set of serving node in Ni. On the other extreme, node i can

decide to sacrifice efficiency by making one decision at first, generating one set

73

of requests and waiting for the downloads; this, of course, will not guarantee an

optimal solution as far as speed is considered, as we will show next.

For the latter case, the number of messages that node i generates is equal to

the number of nodes in Ni. However, for the former case, the node divides the

file into the smallest possible chunks and sends one request per chunk in a round-

robin fashion to all the nodes in Ni. This method generates s signaling messages

where s is defined as:

s =

⌈
Oi

ξ

⌉
(3.3)

where ξ is the minimum possible chunk size. s increases with the increase of file

size Oi.

The problem consists now of finding the solution where the division is the

closest to the solution with one set of requests, generating the least amount of

signaling, while i has to rely on the knowledge provided by Bu,ji[n],∀j ∈ Ni,

(the average observed throughput) which changes with time.

Simple Game Setup

Under all the assumptions stated above, parallel download can be defined as a

game where client nodes are competing to download their required objects. The

game has the following characteristics:

• Non-cooperative: each node is acting in a selfish manner.

• Repetitive: each object is divided into chunks to achieve the highest through-

put possible and the node can observe the download times of these chunks

to adapt its strategy for the next set of chunks.

74

• With varying opponents: some nodes finish downloading their objects while

others join at a later stage.

• With incomplete information: each node knows only its own action and can

only see the outcome but has no explicit knowledge of the actions of the

other active nodes in the network.

Analyzing the utility of each node, we know that a specific node has the sole

objective of downloading its object as fast as possible, while minimizing signaling

as it entails overhead that punishes download speeds. Thus, we define the utility

ui of node i to be:

ui = α max
j

tij + β
∑

j

sij

= α max
j

{
Oi,j

Bu,ij

}
+ β

∑
j

sij, j ∈ Ni

(3.4)

where α and β are normalizing factors, that represent how much a node i values

fast downloads and minimal signaling, respectively. Node i wants to minimize

(3.4).

Theorem 3.3.1. The minimum for the first term of Eq (3.4) for a node is achieved

when all download times are equal during any interval]t[n], t[n + 1][.

Proof. We have:

ti,j[n] =
Oj,i[n]

Bu,ji[n]
(3.5)

Let ti be the solution where all the download times are equal.

ti = ti,j1 = ti,j2 , ∀j1, j2 ∈ Ni (3.6)

75

We want to prove that ti is the optimal solution.

Let us assume that we have a better solution t∗i so that t∗i < ti.

However, by definition and from Eq (6), t∗i is a maximum, and since not all

nodes finished at the same time then we have at least one node m finishing before

t∗i . So, we have:
Oi,m

Bu,mi

< t∗i ⇒
Oi,m

Bu,mi

<
O∗

i

B∗
u,i

Thus, if we take a small part of O∗
i that we denote by ε and download it using the

node m, such that Oi,m + ε ≤ O∗
i − ε and since the respective throughput of the

nodes did not change, we get the following O∗i−ε

B∗u,i
<

O∗i
B∗u,i

, or, in other words, we

found a better solution than t∗, which contradicts our initial statement that it is

optimal.

After node i makes its initial test downloads at time t[0], it can infer an ex-

pected value of the bandwidth that we denote by 〈Bu,ji〉,∀j ∈ Ni, then using Eq

(3.4) and Theorem 1, it can decide on Oi,j[n] as well as whether it is going to use

all of the serving nodes in Ni.

Repetitive Game

Since the game is repetitive, node i can benefit from observing the outcomes of

each step. However, the space of players is varying with time, where some nodes

are no longer part of the game, as they finish downloading their objects, while

other players might be introduced by initiating new queries. In fact, the whole

space of players is changing as can be seen in Figure 3.1, where Ix is the subset

of A at time tx of nodes whose download activities has a direct effect on a certain

76

...

Players
 Servers

Node

B
d
 B
u

1

i+1

i

2

1

j+1

j

2

 ...
 ...

 ...

Figure 3.1: The System Setup

node i, as they are competing for the upload bandwidth of, at least, one common

node j, where j ∈ Ni.

Using the same argument, we can also deduce that the space of Ni might vary

with time if the node initiates the query again and discovers other nodes carrying

the object. This might be desirable in the case where the size of the object is

above a certain threshold (Oi > γ) making the discovery of additional nodes

beneficial. Also, some nodes might disappear from the network in the middle of

the download, as they decide to leave the network. In this case, their available

upload bandwidth Bu,ji[n],∀n, from then on, will be considered equal to 0.

Note, that if a node is downloading a set of objects at the same time, it can

start with the first one, check the bandwidth that this object is occupying and then

use the rest of its available bandwidth to initiate the second game, and so on and

77

so forth. Or, as an another strategy, the node might decide to divide the bandwidth

using some criterion among the different objects (equally, or proportionally to

their respective sizes, for example), thus having several games in parallel for each

of the objects. We do not tackle this problem, as, often, the user has his/her own

priorities that are subjective and content-dependent.

Varying Bandwidth

Since bandwidth offered by serving nodes quite often varies with time, then down-

loads from the nodes won’t proceed as expected. In fact, when a chunk Oij[n]

finishes before the rest of the chunks, node i will have the incentive to redistribute

the remainders of the rest of the chunks among all the nodes, to take advantage of

all available resources. Thus, Eq (3.4) becomes:

ui = α

T∑
n=1

ti[n] + β
∑

j

sij, j ∈ Ni (3.7)

since i re-issues the requests after a chunk Oij[n] finishes. In this case, we have

ti[n] = minjtij[n], and tij[n] = Oij[n]/Bu,ij[n].

Thus, in a realistic peer-to-peer network, a client node i, typically, has no

knowledge of the change in available bandwidth offered by serving nodes. Thus,

the problem reduces to estimating the expected value of the bandwidth that node

i is going to experience when dealing with the nodes in the set Ni. And, the

“optimal solution” for object division into chunks should satisfy the following

equation:
Oi,j1

Oi,j2

=
E[Bu,j1i[n]]

E[Bu,j2i[n]]
,∀j1, j2 ∈ Ni (3.8)

78

In Section 3.4, we detail the MSMT algorithm which attempts to provide an esti-

mate of the expected download bandwidth to client nodes, under different network

conditions.

3.3.3 Nash Equilibrium

We study now whether users in the system reach a Nash equilibrium. In fact,

the existence of Nash equilibrium is dependent on the values of α and β, the

two factors that determines how much a node i values speed and avoids signaling

messages, respectively. These two factors play a major role in the decision a node

makes at every tij[n] on how to divide the chunks and to determine which nodes

it will use as serving nodes.

Theorem 3.3.2. The existence of a Nash equilibrium depends on the stability of

Bu,ij and on the choice of α and β.

Proof. A node i has a utility defined by Eq (3.7), and it needs to minimize both

parts of it. In addition, we have, from Theorem 1:

Oij[n] =
Bu,ij[n− 1]∑
j Buij[n− 1]

(3.9)

Bu,ij[n− 1] represent the average upload bandwidth observed by node i from all

serving nodes in Ni at t[n− 1].

tij[n] =
Bu,ij[n− 1]

Bu,ij[n]
.

1∑
j Buij[n− 1]

(3.10)

Let gi ⊂ Ni, gi 6= φ where,

|Bu,ij − 〈Bu,ij〉|
Bu,ij

À 0, ∀j ∈ gi

79

the subset of nodes that offered effective bandwidth substantially different than

the expected value.

u−gi

i = α

T−gi∑
n=1

ti[n] + β
∑

j

sij, j ∈ N−gi

i (3.11)

where u−gi

i is the utility of node i while omitting gi. By definition, all nodes in

N−gi

i offer stable bandwidth, which can be expressed as:

Bu,ij[n− 1]

Bu,ij[n]
≈ 1

Eq (3.11) becomes:

u−gi

i = α

T−gi∑
n=1

1∑
j Buij[n− 1]

+ β
∑

j

sij, j ∈ N−gi

i (3.12)

We already know from Theorem 1 that Eq (3.12) is the optimal solution for mini-

mizing the second term. Thus, i will decide on Ni when,

α

T−gi∑
n=1

ti[n] + β
∑

j

sij > α

T∑
n=1

t′i[n] + β
∑

j

s′ij ⇒

α

β
>

∑
j s′ij −

∑
j sij∑T−gi

n=1 ti[n]−∑T
n=1 t′i[n]

and will omit gi otherwise. The system will oscillate, lacking a Nash equilibrium,

if for the same game setup, a node i has α/β chosen in a way that it continues to

switch between omitting and including gi. Such behavior will further deteriorate

the system, as it is a typical tragedy of the commons phenomenon [41].

Intuitively, Theorem 2 states that if Ni contains serving nodes with stable up-

load bandwidth, then node i might be better off using just these nodes if it values

80

sending a low number of signaling messages. However, if α and β are chosen

such that when the bandwidth offered by nodes in gi is considerably significant,

then node i will be tempted to include these nodes. When this happens, the band-

width offered by gi will decrease, especially if other client nodes in the system are

accessing these nodes for the same reasons, causing node i to send more signaling

messages. Then node i will start oscillating between including and omitting nodes

in gi and there is no Nash equilibrium.

A simple example of when such a situation tends to happen in reality is when

there is a serving node j in the system that carries a multitude of files whose sizes

follow a distribution with a large variance. In this case, client nodes downloading

small objects will create an oscillation in the consumed bandwidth that will inter-

fere with other clients downloading considerably larger objects. Another situation

is when the serving node j carries a large number of objects making it a more

likely serving node for a large number of client nodes. In addition, the situation

will deteriorate even further if the objects are popular, simply because the demand

for these objects is high.

3.3.4 Server Strategy

We now look at the perspective of the serving node and define its utility. For a

serving node j the utility is of the form

uj = θ max
i

tij + ι
∑

i

sij (3.13)

81

where θ and ι are normalizing factors. Also, we already know that tij is computed

as follows:

tij =

∑
j Oij(t)

Bu,ji

(3.14)

Node j has the objective of minimizing Equation (3.13).

Theorem 3.3.3. The minimum utility for a serving node j is achieved when it

offers each client node the maximum bandwidth possible.

Proof. Let node i aggregate all of its servers with the exception of j1 as follows:

B−j1
u,ji =

∑

j 6=j1

Bu,ji (3.15)

Assume that node j1 decides to give node i a smaller allocation such as Bu2,j1i <

Bu1,j1i. This will directly affect the decision of node i since the initial time was:

t1ij =
O1ij

Bu1,j1i

=
Oi

Bu1,i

(3.16)

where, Bu1,i =
∑

j Bu,ji =
∑

B−j1
u,ij + Bu1,ij1 . Similarly, when node j1 offers less

bandwidth, node i responds with a new strategy that directly affects the time t2ij

as follows:

t2ij =
O2ij

Bu2,j1i

=
Oi

Bu2,i

. (3.17)

But

Bu2,i =
∑

B−j1
u,ij + Bu2,ij1 (3.18)

Since, Bu2,i < Bu1,i then t2ij > t1ij resulting in an increase to the utility of j1 uj1

as expressed in (3.13).

82

Thus, j has the incentive to offer each node i as much bandwidth as it can,

of course, while omitting the obvious minimal solution of Bu,ij = 0,∀i, or a free

rider, that only acts as a client node without serving any objects.

To give insight to the serving node on how to divide its upload bandwidth

among the client nodes, we notice the following.

Theorem 3.3.4. The division of Bu,j among client nodes has no effect on mini-

mizing the utility uj .

Proof. If we aggregate all the requests that j receives that we denote by Oj =
∑

i Oi,j , then we need tj time to serve the objects, where,

tj =
Oj

Bu,j

(3.19)

which is independent of the individual Bu,ji,∀i.

The recommendation for the serving node is to divide its bandwidth equally

among clients irrespective of the size of the requested chunks, since any deviation

from this might prompt selfish clients into abusing such a policy. For example,

if the serving node offers small requests priority, then client nodes will tend to

ask for a larger number of smaller chunks increasing the signaling (i.e., chunk

requests) traffic, since a client node sends a signaling message for every chunk.

This will increase the second terms in Equations (3.4) and (3.13). In contrast, if a

serving node gives priority to larger chunks, then a client that needs a small chunk

might request a larger chunk and drop the connection once it gets the smaller

chunk that it initially wanted. Thus, we recommend that a serving node j offers

client nodes equal portions of its upload bandwidth Bu,ji = Bu,j/C, where C ∈

83

N,C > 0; in other words, C represents the number of clients that node j serves

simultaneously or the size of its serving queue.

Next, we consider the choice of C, the size of the serving queue. Because

we want to minimize the second term of Equation (3.13), it is tempting to use

C = 1, and serve only one client at a time. In this case, the serving node j is

offering its entire bandwidth which will minimize the download time (the first

term in Equation (3.13)). However, this is not a desirable solution and can drive

serving nodes to be untruthful in their declarations, by claiming less bandwidth

than they can offer, as we show in the following theorem.

Theorem 3.3.5. A serving node j should accept to serve at least 2 nodes in par-

allel, i.e. C > 1.

Proof. Let’s assume that all nodes use C = 1, also let us simplify the network

into 2 downloads whose sizes are O1 and O2 ordered in increasing size. Let us

assume in addition that N1 ∩N2 = {j}. Also, we define

B1 =
∑

Bu,l1, ∀l ∈ N1, l 6= j

B2 =
∑

Bu,l2, ∀l ∈ N2, l 6= j
(3.20)

For simplicity, and only in this proof, we will denote Bu,j as Bj . Now, we are

going to show that Node j has the incentive to “cheat” by making C > 1 under

the condition that O2

B2
> O1

B1+Bj
. The same reasoning can be applied for the general

case.

Scenario 1: All nodes including j assume C = 1. The times needed to serve

84

O1 and O2 are denoted by t1 and t2, respectively.

t1 =
O1

B1 + Bj

t2 = t1 +
O2 − t1B2

B2 + Bj

=
O1

B1 + Bj

[
1− B2

B2 + Bj

]
+

O2

B2 + Bj

=
1

B2 + Bj

[
O1Bj

B1 + Bj

+ O2

]

The time to serve both requests is: t = t2.

Scenario 2: All nodes assume C = 1, however node j “cheats” and assigns C

the value of 2. The times needed to serve O1 and O2 become t∗1 and t∗2, respec-

tively.

t∗1 =
O1

B1 +
Bj

2

=
2O1

2B1 + Bj

t∗2 = t1 +
O2 − t1(B2 + Bj/2)

B2 + Bj

=
2O1

2B1 + Bj

[
1− B2 + Bj/2

B2 + Bj

]
+

O2

B2 + Bj

=
2O1

2B1 + Bj

Bj/2

B2 + Bj

+
O2

B2 + Bj

=
1

B2 + Bj

[
O1Bj

2B1 + Bj

+ O2

]

In this case, the time to serve both requests becomes t∗ = t∗2. We can obviously

see that t∗2 < t2 giving node j an incentive of opting to strategy 2. However, this

strategy is bad for all serving nodes other than j as t∗1 > t1.

Corollary 3.3.6. It is desirable not to choose C as a uniform or guessable value

since other serving nodes might exploit this knowledge, and again claim less than

85

what they can offer. It is also desirable to keep C small, otherwise the download

speed as experienced by client nodes would change quite often, resulting in an

increase in the second term of Equation (3.13).

3.4 Minimum-Signaling Maximum-Throughput

(MSMT) Bayesian Algorithm

We have shown in Section 3.3.2 that a node i needs to predict the upload band-

width of its serving nodes in order to minimize Equation (3.4). In this section, we

detail the MSMT algorithm for estimating the bandwidth that the serving nodes

will offer a node i. This directly affect the “division” of an object into chunks at

the client node among its serving nodes while dealing with no information from

the network and the uncertainties arising from such a dynamic environment. Be-

cause node i has no knowledge of how the network will change over time, it needs

to rely on some prediction mechanism in order to estimate Equation (3.8). MSMT

is designed to be an adaptive/“smart” Bayesian algorithm in order to accurately

estimate E[Bu,ji[n]],∀j ∈ Ni necessary for Equation (3.8), where n is the n-th

round of the algorithm.

MSMT only operates at client nodes. We describe two versions of the MSMT

algorithm. The Simple MSMT algorithm assumes no interfering background traf-

fic between a client node and its serving nodes. Thus, a client node i assumes that

the measured bandwidth from a serving node j is an integer fraction of j’s upload

bandwidth. We show that despite this simplistic assumption, the Simple MSMT

86

algorithm maximizes the download bandwidth while maintaining low signaling

overhead. We then relax this simplistic assumption and extend the model with the

General MSMT algorithm which can adapt to more challenging network condi-

tions including congestion, losses, and node unreliability. Later in this chapter,

we compare these two models in a medium-scale testbed implementation of the

system using the PlanetLab platform under different network conditions.

Note that both algorithms need to predict the bandwidth obtained from serv-

ing nodes at the beginning of each round; a round is defined as the time when a

node i needs to send new signaling messages (i.e., requests) to its serving nodes

requesting a new set of chunks. Node i needs to undergo a new round whenever it

finishes downloading at least one chunk from its serving nodes. Note that node i

has no incentive to interrupt downloads and send a new set of signaling messages

if the observed throughput from serving nodes change unless if at least one chunk

finishes downloading. This feature is, in fact, quite beneficial since some oscilla-

tions in observed bandwidth can cancel each other, as we will see in experimental

sections 3.5 and 3.6.

3.4.1 Simple MSMT Algorithm

A client node starts by building an initial probability distribution, for every serving

node j, ∀j ∈ Ni, also called “prior distribution”. These distributions are used to

extract the expected values of download bandwidth. Then the algorithm proceeds

to bias these distributions at the end of every round according to the observed

download bandwidth. The Simple MSMT Bayesian algorithm uses learning tech-

87

niques to calculate the maximum likelihood based on the observed measurements

of the download bandwidth for each serving node.

A client node i that needs to download an object O1 requests a set of initial

chunks from each node in N1. These chunks constitute a small fraction of the

total object size. This probe helps in having an estimate for Bu,ji[0]∀j ∈ N1. The

obtained results are used in order to build the “prior distributions” for the Simple

MSMT Bayesian algorithm. Node i computes distinct prior distributions denoted

by fij for each node j ∈ N1, that is, a normal distribution whose mean is Bu,ji[0].

The x-axis of the distribution is comprised of intervals, also called “clusters”; in

other words, the x-axis is divided into r regions, and each region is assigned a

mean b, that we refer to as a “center of gravity”, and a probability. The center of

gravity of each cluster is chosen such that it is scaled up or down from Bu,ji[0] by

an integer fraction. The centers of gravity are chosen in such a manner because

we assume that Bu,ji[0] is an integer fraction of Bu,j[0]. Each requesting client

node i, running the Simple MSMT Bayesian algorithm, starts by estimating Cij ,

the size of the queue on a serving node j. A client node will then use 2.Cij + 1

bins or clusters on the x-axis for its prior distribution. Now each cluster is given a

specific bandwidth value for its center of gravity as follows:

bij [m] =





Bu,ji[0] 1
Cij−m+1 , 1 < m < Cij

Bu,ji[0] Cij

2.Cij−m , Cij ≤ m < (2.Cij − 1)
(3.21)

where m refers to the number of the cluster, and the set of all centers of gravity

for a serving node j is denoted by bij .

We start by assuming a normal distribution for the prior distributions, since

we have no previous knowledge of the download bandwidth offered by the serv-

88

ing node j. When one of the chunks Oij finishes downloading, node i uses the

observed bandwidth Bu,ji[n] in order to update the respective prior distributions

of all serving nodes by biasing them towards the observed download bandwidth.

fij is updated at time t[n] as follows:

fij[bij][n] =
Fij[bij][n] + Fij[bij][0]

L + seedi

,∀j ∈ Ni (3.22)

where Fij[bij][n] is the number of times that the observed throughput offered to

node i by node j is closer to the center of gravity bij up until time t[n], L is the

total number of observations that node i has seen for the object in question and
Fij [bij][0]

seedi
is the set of values used in constructing the prior distribution, fij[0], that

node i assumed when it started downloading. Intuitively, we are increasing the

probability associated with the observed bandwidth and readjusting the distribu-

tion to keep the total equal to 1. Thus, these updates are adapting the predictions

of the download bandwidth based on observed measurements.

Node i then computes the expected value for the bandwidth of each serving

node as Mi,j =
∑

n bij[n]fij[n], ∀j ∈ Ni. Then, each Bu,ji, where j ∈ Ni,

is estimated to be the element of bij closer to Mi,j in terms of their cartesian

distance. Then, Equation (3.8) is used to evaluate the new set of chunks Oij . The

Simple MSMT algorithm is detailed in Figure 3.2, and the state diagrams of an

object download is presented in Figure 3.3.

We now present an example of the Simple MSMT algorithm. Let node 1 be

the client node requesting an object of size O1 = 500Kb that is carried by 3

serving nodes; namely nodes 2, 3 and 4. Node 1 request a set of initial chunks

each 10Kb in size from the three serving nodes. It measures the perceived upload

89

Simple MSMT Bayesian Prediction { // Node i for object Oi

// initialize

download Oij [0];

Bu,ij [0] = Oij [0]/tij [0], ∀j;

decide on Cij ;

calculate bins

bij [m] =

{
Bu,ji[0] 1

Cij−m+1 , 1 < m < Cij

Bu,ji[0] Cij

2.Cij−m , Cij ≤ m < (2.Cij − 1)
;

decide on the weight of prior distributions seedi;

calculate fij [0], ∀j as normal with mean Bu,ji[0];

// start downloading

n = 1;

calculate Oij [n] = Bu,ji[n− 1]/
∑

j Bu,ji[n− 1];

send requests for Oij [n], ∀j;

// as long as Oi did not fail or finish

while ((Oi Failed) AND (Oi Finished)) {
if (Oij [n] Done) OR (Oij [n] Wait → Download)

if (Oij [n], ∀j Done) then

Oi Finished;

else

n = n + 1;

locate mj for each j s.t. minm|Bu,ji[n− 1]− bij [m]|;
adjust distributions fij by biasing towards mj ;

calculate Mij [n] =
∑

m bij [m]fij [m];

〈Bu,ji[n]〉 ← bij [m] s.t. minm|Mij [n]− bij [m]|;
calculate Oij [n] = 〈Bu,ji[n]〉/ ∑

j〈Bu,ji[n]〉;
send requests for Oij [n], ∀j;

}
}

Figure 3.2: Simple MSMT Bayesian Algorithm

90

Down-

loading

Finished
 Failed

Waiting

Done

R
e
m
o
v
e
d

f
r
o
m

w
a
i
t

q
u
e
u
e

&

p
u
t

i
n

s
e
r
v
i
c
e

q
u
e
u
e

N

o
d
e

D

e
p
a
r
t
e
d

N

o
d
e

D

e
p
a
r
t
e
d
F
i

n
i

s
h

e
d

1

o
r

m
o
r
e

r
e
q
u
e
s
t
(
s
)

n
o
t

d
o
n
e

Make

Decision

Send new requests

All requests for this

object are done

Figure 3.3: State Diagram of an Object Download

throughput as 10, 15, and 20 Kbps, respectively. Setting C = 3, node 1 builds 3

prior distributions for the 3 serving nodes and computes the next set of chunks for

the remaining 470Kb of O1. In this example, node 1 proceeds to request chunks

whose sizes are 104Kb, 157Kb, and 209Kb, respectively from nodes 2, 3, and 4.

The perceived throughput as observed by node 1 is depicted in Figure 3.4. In this

example, the throughput of node 4 increases from 20 Kbps to 25 Kbps. On the

other hand, node 2 maintains the same throughput until t = 2sec when it increases

from 10 Kbps to 20 Kbps. Likewise, node 3 maintains the same throughput of 15

Kbps, initially, however, at t = 3.8sec, the throughput drops to 10 Kbps. At

t = 6.3sec node 2 finishes downloading, thus node 1 has an incentive to re-divide

the remainder of the chunks that are being downloaded from nodes 3 and 4, in

order to take advantage of the offered bandwidth of node 2. Since, Node 1 is

running the Simple MSMT algorithm, it biases its probability distributions and

91

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

kb
ps

)

Time (sec)

Node 2
Node 3
Node 4

Figure 3.4: Throughput of Downloads

re-computes the expected values. As a result, it divides the chunks among nodes

2, 3, and 4 and sends requests with sizes 49Kb, 24Kb, and 61.5Kb, respectively.

The downloads then proceed until they end at t = 9.6sec. The whole download

finishes with 3 requests, including the initial measurement. Note that node 1 does

not gain by re-issuing requests whenever the perceived throughput change, and is

better off waiting until at least one chunk finishes downloading.

3.4.2 General MSMT

The General MSMT algorithm takes into consideration the existence of back-

ground traffic on the network between a client and a serving node. It does so by

re-visiting Equation (3.21), where we define the centers of gravity. In Equation

(3.21), we assume that the centers of gravity bij[m] do not change with time and

are directly dependent on Cij . We change this assumption in the General MSMT

algorithm by adapting the values of bij[m] every time we finish downloading a

chunk. We start by assuming that the new centers of gravity bij[m][0] are equal

92

to the bij[m] as defined in Equation (3.21). However, the General MSMT updates

these values after every download as follows:

bij [m][n] =





avgnBu,ij , minj |Bu,ij − bij [m][n− 1]|
bij [m][n− 1], otherwise

(3.23)

Intuitively, Equation (3.23) can be explained as follows: for every serving node,

locate the center of gravity closest to the perceived average bandwidth, change

that center of gravity to the average measured bandwidth so far, for every serving

node. For all other centers of gravity, do nothing.

We implement the General MSMT algorithm, test it in a real testbed subject

to network fluctuations based on PlanetLab, comparing it to the Simple MSMT,

and present the results in Section 3.6.

3.5 Simulation Results

In this section, we implement the client and server strategies, and the Simple

MSMT algorithm in a Java-based simulator. Note, we do not consider the perfor-

mance of the General MSMT in the simulator but do consider it during the Plan-

etLab experiments, (discussed in the next section) where its performance is more

relevant to a real network with time-varying background traffic. In particular, we

evaluate the impact of object size, dynamic networks (i.e., where serving nodes

abruptly depart), the dependence on the size of the serving queue (i.e., number

of nodes (C) served simultaneously by a serving node), and the effect of clients

re-issuing queries for downloads that are currently in progress in an attempt to

gain better download performance. We first discuss our simulation setup and then

93

the specific experiments.

3.5.1 Simulation Design and Setup

We create a peer-to-peer network based on the Gnutella algorithm [37], where

nodes join the network and establish random connections to existing nodes. We

allow the network to grow to 2000 nodes. The simulator is designed to be dynamic

where nodes can leave the network even if they were currently serving a request.

The simulated network carries a set of files, each having an associated popularity.

The popularity is drawn from an exponential distribution in order to reflect cases

that are often seen in realistic networks, where some files are popular and in high

demand, but, at the same time, cannot be represented by a Zipf distribution [38].

Each node carries a number of files that is greater than or equal to 0, in order to

include free riders in the experiments. Any node can initiate one or more requests.

Nodes have upload and download bandwidth drawn from three different pro-

files where the values are typical of those observed in dial-up, broadband, and

corporate settings, with bandwidth capacities of 56 Kbps, 300 Kbps, and 600

Kbps, respectively. A node i with a probability pi initiates a request by sending a

query to its neighbors with a TTL = 5. pi regulates the arrival rate of requests in

the system. The responding nodes constitute Ni. At that point, the client runs the

Simple MSMT algorithm and sends its requests to initiate the parallel downloads.

Downloads follow the state diagram presented in Figure 3.3. Each serving node

j has a serving queue of size C and a waiting queue of the same size C. When a

node j receives a request for a chunk Oi,j , it flags it as (i) downloading, if it has

94

less than C existing requests, (ii) waiting, if the number of existing requests is in

[C, 2C[, or (iii) failed, if the number of existing requests is 2C. Whenever a chunk

in the serving queue is complete, the serving node j waits for the client node i to

send a new request for a chunk from the same object for a period of time before

it times-out and assigns the empty slot to another request in its waiting queue, or

divides its upload bandwidth among the remaining requests if the waiting queue

is empty. A request also might fail when the serving node leaves the network.

If all requests for an object are flagged as complete, the object is considered to

be successfully downloaded and is flagged as done. However, if all requests are

flagged as failed, then the object download failed and it is simply dropped.

In experiments discussed below, we compare the Simple MSMT algorithm to

two other algorithms: (i) the “Last Observation” algorithm, which consists of us-

ing the last observed bandwidth as measured by the client node, as an estimate

for dividing the objects into chunks; and (ii) the “Average” algorithm, which uses

the average download bandwidth from a certain serving node up until the point in

time where requests for a new set of chunks are needed. We compare the Simple

MSMT algorithm against these two alternative, simple, and intuitive algorithms

for estimating the bandwidth offered by serving nodes. For each experiment pre-

sented next, we run the same experiment five times and average over all the ob-

tained results. The standard deviation for the five runs is very small leading us to

conclude that the results are consistent.

95

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600

nu
m

be
r

of
 u

pd
at

es
 p

er
 fi

le

size in MB

Average
Last

Bayesian

Figure 3.5: Number of Signaling Messages vs. Size of Object

3.5.2 Varying Object Size

We show, in this section, that the Simple MSMT Bayesian algorithm offers client

nodes a gain in performance by decreasing the level of signaling messages irre-

spective of the size of the object being downloaded.

We start this experiment by populating the network with different objects of

the same size. We repeat the experiment by changing the size of the objects and

measure the number of signaling messages that a node sends until it finishes its

download of a specific object. Only 10% of the nodes are allowed to depart during

this experiment providing a fairly stable network. The results are depicted in

Figure 3.5.

The “Average” algorithm shows the worst performance which is expected,

since it is not able to grasp that when a change occurs that change might last for

some time and averaging all the previous measurements does not provide a good

prediction of future download bandwidth. In addition, as the size increases, the

96

number of signaling messages increases further, this is mainly due to the fact that

total download time increases adding uncertainty and making the average of the

past measured bandwidth even less appropriate for predicting the future behavior.

The “Last Observation” algorithm offers a slightly better performance than the

Simple MSMT when the object size is less than 10 MB, mainly due to the fact

that the prior distribution was not always appropriate for capturing the behavior

and the Simple MSMT needs some time to “learn” and adapt to the behavior of

the serving nodes. However, as the size of the downloaded objects increases the

Simple MSMT Bayesian requires less signaling messages and the gap between the

signaling messages needed by the two algorithms increases. In this case, and for

a live implementation, we propose that a node i keeps the biased distribution of a

serving node j after it finishes the download of a certain object for a considerable

period of time, since it has already adapted to the behavior of that serving node.

Thus, re-using, in the future, the biased distribution of a serving node as the prior

distribution might provide an additional benefit.

We repeat the same type of experiments where we have a mix of different

object sizes in the network, which is typical of realistic networks. Figure 3.6

shows the results for the number of signaling messages versus the average of the

size of objects in the network. Note that the distribution of object size is assumed

to be normal. We can see that the Simple MSMT algorithm provides the best

performance, outperforming this time both algorithms (“Last Observation” and

“Average”), with an obvious advantage.

The two figures in this section show a behavior that looks at first counter-

intuitive, where as the size of objects in the network increases, the number of

97

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400

N
um

be
r

of
 U

pd
at

es
 p

er
 F

ile

Average Size in MB

Average
Last

Bayesian

Figure 3.6: Number of Signaling Messages vs. Average Size of Objects

signaling messages decreases. This is mainly due to the fact that when the to-

tal download time is long, some oscillations in bandwidth seen in the network

cancel each other; an artifact of our decision to keep downloading from serving

nodes until one or more chunks finish, instead of wasting time and performance

by re-issuing requests as the throughput fluctuates. Also, as we mentioned ear-

lier, the MSMT Bayesian offers better performance as the size of the object in-

creases, due to the fact that we are biasing the distribution with the perceived

performance which provides a better fit than the initial normal distribution, as the

Simple MSMT has more time to learn the exact behavior of the nodes. In fact, we

can see from Figure 3.6 that the MSMT Bayesian offers a considerable gain of at

least 30% over the “Last Observation” algorithm.

3.5.3 Dynamic Networks

In this experiment, we vary the departure rate of nodes in the network, in order to

observe the impact on the performance of the downloads as the network becomes

98

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80

nu
m

be
r

of
 u

pd
at

es
 p

er
 fi

le

% nodes departing

Average
Last

Bayesian

Figure 3.7: Number of Signaling Messages Per Object vs. % Nodes Departing

more dynamic, making the task of predicting future throughput challenging. The

experiment initially considers a static network where no nodes depart, and then

starts to increase the percentage of nodes leaving the network with 10% incre-

ments, up until we reach a point where the nodes are so volatile that 80% leave

the network. The average size of objects is 50 MB. The result of the experiment

is shown in Figure 3.7. The figure shows that the Simple MSMT algorithm of-

fers the smallest overhead in terms of the number of signaling messages among

the three algorithms under consideration. We can observe that “Last Observation”

and Simple MSMT algorithms are quite responsive - as the number of departing

nodes increases, more signaling messages are needed to continue the download.

We observe that the Simple MSMT algorithm generated the least amount of

signaling messages meeting its design requirements. The “Average” algorithm,

on the other hand, generated fewer signaling messages when the departure rate of

nodes increased. The reason for this is mainly due to the fact that the “Average” al-

gorithm gives equal weight to every past measurement of bandwidth when making

99

a future estimation. So, when the network is lightly to moderately loaded, changes

in the measured bandwidth are typically not abrupt and giving more weight to

more recent observations tend to match future bandwidth - a fact that the MSMT

and “Last Observation” algorithms account for. On the other hand, as the load

increases further, download bandwidth tends to have larger oscillations matching

the blind averaging of the “Average” algorithm.

3.5.4 Varying the Size of the Serving Queue

This experiment studies the effect of the queue size of serving nodes (i.e., C)

on the system’s performance. We have shown in Theorem 3 that it is desirable

to have C strictly positive and as small as possible. In what follows, we pro-

vide some additional insights into the choice of this important system parameter.

We run a set of experiments while only varying C, which is used as the size of

the serving queues and the wait queues on serving nodes as we had explained in

Section 3.5.1. Figure 3.8 shows that as we increase C, the number of signaling

messages increases. However, in order to see the effect of C on the download

bandwidth observed by the client nodes, we measure the average bandwidth per

downloaded object for different values of C. The results are shown in Figure 3.9.

Even though the number of signaling messages per object increases with C, the

desired operating point seems to be somewhere between 5 and 7 as per Figure 3.9,

where the observed download bandwidth reaches its maximum.

100

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7

A
ve

ra
ge

 B
an

dw
id

th
 p

er
 O

bj
ec

t (
K

bp
s)

C

Average
Last

Bayesian

Figure 3.8: Number of Signaling Messages Per Object vs. C

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10

A
ve

ra
ge

 B
an

dw
id

th
 p

er
 O

bj
ec

t (
K

bp
s)

C

Average
Last

Bayesian

Figure 3.9: Average Bandwidth per Object vs. C

101

3.5.5 Re-running Queries

We assume so far that a query for an object is initiated at the beginning of a ses-

sion, and then the download will start until the whole object is fully downloaded or

all the serving nodes disappear before the end of the download resulting in a failed

download. In this section, we investigate the case where client nodes can re-issue

the query for an object currently being downloaded. We show that such a re-run

of queries will help the client node, not only in getting higher total throughput in

downloading its object, but also offering it a degree of resiliency in the case where

all of its serving nodes depart from the network before it finishes the download.

In this section, all nodes are running the Simple MSMT Bayesian algorithm.

We compare the naive strategy of no query re-runs during downloads to four

alternative strategies, that are as follows:

• Periodic: the client node periodically re-runs the query.

• Lost 1 server: the client node re-runs the query as soon as it loses one or

more of its serving nodes.

• Bandwidth drop by half: the client node re-runs the query when the ob-

served total bandwidth drops by at least half of its original value.

• Servers drop by half: the client node re-runs the query when the number of

serving nodes drop by at least half of its original value.

The first two methods described above (“periodic” and “lost 1 server”) are quite

aggressive and greedy while the last two (“bandwidth drop by half” and “servers

drop by half’) are more conservative. We run a set of experiments with a setup

102

similar to the one explained in Section IV.B, however, we fix the departure rate at

30% of the total number of nodes in the network. We start by plotting the distribu-

tion of the number of serving nodes per object download for the re-run strategies

discussed above. The results are shown in Figure 3.10. We can see clearly that

the “periodic” strategy changes the distribution of the number of serving nodes

considerably increasing the number of serving nodes maintained during each ob-

ject download. Intuitively, this increase will lead to more signaling messages in

the network since the probability of having bandwidth fluctuations increases with

the number of serving nodes. Note that the number of serving nodes per object

download does not increase in an abrupt manner, in these experiments, mainly due

to the fact that each serving node has a limit on the number of nodes it serves si-

multaneously represented by C (i.e., the serving queue), which acts as a bounding

limit. The initial strategy of no re-runs has the lowest number of serving nodes

as the distribution reaches its maximum at 10. The strategy of “lost 1 server” is,

as we expect, quite aggressive. The remaining two strategies (“bandwidth drop

by half” and “servers drop by half”) offer comparable behavior to each other, as

observed in Figure 3.10. This leads us to believe that a developer of a peer-to-peer

application might want to opt for one of these two strategies that offer an accept-

able compromise between increased throughput without incurring a large increase

in the amount of signaling messages.

Next, we measure the observed bandwidth for the queries re-run strategies.

The results are shown in Figure 3.11. We observe that all four strategies saturate

at a higher bandwidth rate than the no re-runs policy. Thus, we can conclude that

in terms of average throughput, re-running queries in general is useful and desired

103

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20

Number of Servers

No Re-run
servers drop to 1/2

bw drop to 1/2
lose 1 server

periodic

Figure 3.10: Cumulative Distribution of Number of Servers per Object

from the client nodes’ perspective. In addition, the “bandwidth drop by half” and

“servers drop by half” strategies offer higher throughput where some nodes ex-

perienced an average throughput of almost double that of the initial bandwidth.

In contrast, the two aggressive strategies of “periodic” re-runs and re-run for “1

lost server” show some gain but do not offer a considerable change to justify

the increase in signaling messages. The average number of requests sent in the

case of the queries re-run strategies are 2.103, 3.521, 3.629, 8.921 and 9.735 for

No Re-run, “servers drop by half”, “bandwidth drop by half”, “lost 1 server” and

“periodic”, respectively. We conclude that even though the two strategies that wait

for a loss of half the bandwidth or half the servers increase the average number

of signaling messages sent, they clearly make-up for this by offering considerable

increases in download bandwidth to the clients. On the other hand, the two ag-

gressive strategies of “periodic” and “lost 1 server” re-runs increase the number

of signaling messages by several orders of magnitude while offering only a small

increase in throughput, which might not be justifiable in most cases. Even though,

104

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 15 20 25 30 35 40

Bandwidth in Kbps

No Re-run
servers drop to 1/2

bw drop to 1/2
lose 1 server
lose 1 server

Figure 3.11: Cumulative Distribution of Average Throughput per Object

we cannot recommend a definite policy for re-runs as such a decision depends on

the priorities of the user and the application in question, these experiments offer

guidelines and insights into the expected behavior and outcome.

3.6 Implementation and Testbed Evaluation

In this section, we present results obtained from a testbed implementation of our

system on the Planetlab platform [66]. We implement the client and server strate-

gies, and the Simple and General MSMT Bayesian algorithms as a Java servlet

(server and client) based on the open source JTella distribution [44]. We consider

two sets of experiments for small (50 nodes) and larger-scale (102 node) over-

lays. We first deploy the code on a small number of PlanetLab nodes and mea-

sure the signaling on the network as well as the observed download bandwidth

for the client nodes. We then increase the number of nodes in the second set of

experiments and test the Simple and General MSMT Bayesian algorithms under

105

different network conditions by measuring the number of signaling messages as

well as the percentage of correct prediction.

3.6.1 Experiment Set I

We deploy the code on 50 nodes located in 28 sites and spanning 11 countries

(Australia, Canada, Denmark, France, Germany, Hong Kong, The Netherlands,

Russia, Switzerland, UK, and USA) on the Planetlab platform [66]. We chose

the sites so that they represent heterogenous environment in terms of bandwidth

assigned to them where some of the sites offer high throughput typical of corporate

and university networks, while others provide much lower throughput typical of

home and dial-up users. The network is populated by 10 different files with sizes

ranging from 4 MB to 250 MB. The distribution of the file size is 2, 3, 3, and

2 for files of 4 MB, 20 MB, 100 MB and 250 MB in size, respectively. Each

participating node i with a probability pio where, 1 ≤ o ≤ 10 and 0 ≤ pio ≤ 1

decides to carry an object o. Note that if a node i has pio = 0,∀o, then this node

is a free rider with no objects to offer to client nodes.

Signaling

After deploying these nodes, we initiate downloads where a client node forwards a

query to its neighbors requesting a specific file with a TTL = 2. Small chunks of

50 KB (these are Oij[0]) are initially downloaded from each of the serving nodes in

order to determine their current available bandwidth. These measured throughput

values are used by the client node to build the prior distributions, clusters, and

106

centers of gravity, as discussed in Section 3.4 for the Simple MSMT Bayesian

algorithm. Division of chunks for the next round is determined at this point and the

corresponding signaling messages are generated. The same experiment is repeated

where client nodes use the “Last Observation” and “Average” algorithms.

We repeat the experiments while varying the number of requests in the sys-

tem. Figure 3.12 shows the average time needed to download the files for the

three different prediction algorithms (“Last Observation”, “Average” and Simple

MSMT). Note that as the number of requests increases congesting the overlay,

we observe a decrease in the number of signaling messages. We can also observe

how the Simple MSMT algorithm outperforms the other algorithms irrespective of

the congestion in the overlay network and, on average, sends less signaling mes-

sages per downloaded object. Figure 3.13 shows that the download bandwidth

decreases sharply as we increase the number of requests since we are increasing

demand while supply is constant. However, the Simple MSMT provides better

performance as downloads suffer from less jitters and the object finishes while

maintaining relatively stable download speed versus the increased traffic in the

network.

Effective Throughput

Next, we run another set of experiments on the same overlay network where we

populated it with two objects O1 and O2 with respective sizes of 1 MB and 4

MB. Each participating nodes is either a free rider or a serving node carrying both

objects. The ratios of both profiles are 30% and 70%, respectively, of the total

number of nodes. We then choose a subset of nodes that we denote as F , where

107

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50

nu
m

be
r

of
 u

pd
at

es
 p

er
 fi

le

Number of Requests

Bayesian
Last

Average

Figure 3.12: Signaling Messages per Object vs. Total Number of Requests

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50

A
ve

ra
ge

 T
hr

ou
gh

pu
t p

er
 d

ow
nl

oa
ds

Number of Requests

Bayesian
Last

Average

Figure 3.13: Average Download Bandwidth vs. Total Number of Requests

108

F consists of 10 free riders. We proceed by initiating a request from each node

in F for O1. After finishing downloading the object in question, each client node

stays idle for 5 minutes before re-initiating the same request, creating background

traffic in the overlay network. We then initiate a download from a free rider that

we denote by Ω for O2, where Ω /∈ F . We repeat the same experiment from

Ω for the “Last Observation”, “Average” and Simple MSMT Bayesian algorithms

running on all nodes. In addition, we rerun each experiment three times and report

the averages in here.

The instantaneous download bandwidth measured by Ω for the different algo-

rithms is shown in Figure 3.14. We can observe that the Simple MSMT algorithm

not only offers better download bandwidth, but also a more stable allocation. The

MSMT download suffers from only two dips: one at around 900 sec and another

at around 1400 sec; these are due to sending a new set of signaling messages to its

serving nodes due to the fact that one of its chunks has finished downloading. At

the same time, both the “Last Observation” and “Average” algorithms suffer more

dips and eventually take longer to finish their respective downloads. In fact, these

dips, or short and sharp drops in bandwidth, are due to the fact that one or more

of the parallel downloads of chunks finishes and the node runs its prediction algo-

rithm (whether it is the “Last Observation”, “Average” or MSMT Bayesian), and

sends a new set of signaling messages to the serving nodes requesting different

chunks. These dips also show the importance of the parameter β, the weight for

minimizing the number of signaling messages, as it will directly affect the down-

load bandwidth of the client node, and feeds-back to the first term of Equation

(3.4).

109

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500

B
an

dw
id

th
 (

K
bp

s)

time (sec)

Bayesian
Average

Last

Figure 3.14: Throughput as Perceived by Ω

3.6.2 Experiment Set II

In this set of experiments, we study the system under loaded/stressful conditions,

and increase the number of nodes participating in the overlay. We subject the

system to congested scenarios typically found in peer-to-peer networks [38]. We

deploy the code on 102 PlanetLab nodes located in 74 sites, spanning 24 countries

(Australia, Brazil, Canada, China, Denmark, Finland, France, Germany, Greece,

Iceland, India, Italy, Korea, Lebanon, The Netherlands, Norway, Poland, Rus-

sia, Spain, Sweden, Switzerland, Taiwan, UK and USA). We aimed to have the

number of PlanetLab nodes sites as high as possible in order to minimize the

cases where a node is downloading chunks from another node sitting on the same

LAN. Our goal is to study more worst case scenarios where downloads have to

cross WAN boundaries that are more likely to encounter congested bottlenecks or

highly utilized links. We are also interested in including nodes that do not offer

high bandwidth, unlike typical universities networks in North America, in order to

110

better represent users with low-speed access. We run the same set of experiments

(presented below) several times while varying the time of day the experiment is

run over a several days period. We populate the overlay with 15 files each 4 MB

in size and 5 files each 600 MB in size; these files represent typical music and

video files, respectively. The popularity of objects follows an exponential dis-

tribution. We start by deploying the Simple MSMT algorithm on the PlanetLab

overlay and measure the number of signaling messages observed in the network.

We then re-run the same experiments using the General MSMT algorithm under

the same conditions in order to best measure the differences in the performance

of the two algorithms. Each node issues a request with a certain probability that

can vary in the same sense as the experiments discussed in in Section 3.6.1. We

maintain the same ratios of 30% and 70% for free riders and active serving clients

in the network, respectively.

Signaling

In this section, we report the number of signaling messages observed in the net-

work for both MSMT algorithms and show the number of messages sent for both

file sizes considered (4 MB, and 600 MB). Figure 3.15 shows the results of aver-

aging the number of signaling messages over 5 different runs of the same exper-

iment all under similar network conditions. Note, that even though we increase

the number of requests, the load on the network before our experiment started is

measured as unloaded and so are the nodes. We observe from the plot that the

General MSMT outperforms the Simple MSMT. The performance difference is

particularly pronounced when the number of requests increases, as more down-

111

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

N
um

be
r

of
 U

pd
at

es
 p

er
 F

ile

Number of Requests

Simple MSMT, 4MB files
General MSMT, 4MB files

Simple MSMT, 600MB files
General MSMT, 600MB files

Figure 3.15: Update per Object vs. Number of Requests in the Network Under

Light Conditions

loads generate increased traffic.

We repeat the same set of experiments this time under conditions where nodes

and their traffic are under high load. The results are averaged and presented in Fig-

ure 3.16. We observe from the plot that the gap between the number of signaling

messages associated with the Simple MSMT and General MSMT widens even

more under these conditions, particularly, as the number of requests increases.

Under heavy network load conditions, the download bandwidth for every serving

node becomes harder to estimate since many factors influence it, such as, the load

on the client/server machines, load on the providers network, and larger oscilla-

tions in available resources. As a result, the General MSMT updates its “centers

of gravity” to reflect the expected download bandwidth that is used to calculate

the chunks, as per Equation (3.8). The Simple MSMT algorithm continues to

represent a simpler setup that assumes that the bandwidth measured is an integer

fraction of the total bandwidth that its serving nodes offer. Such an estimation

112

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

N
um

be
r

of
 U

pd
at

es
 p

er
 F

ile

Number of Requests

Simple MSMT, 4MB files
General MSMT, 4MB files

Simple MSMT, 600MB files
General MSMT, 600MB files

Figure 3.16: Update per Object vs. Number of Requests in the Network Under

Loaded Conditions

does not take into consideration the background traffic, however. Thus, under

these conditions, the Simple MSMT offers predictions that will often vary from

the actual measured throughput, as is observed in Figure 3.16.

Note, that both the Simple and General MSMT algorithms require a substan-

tially smaller number of signaling messages in comparison to any of the current

peer-to-peer systems that are based on parallel downloads. For example, Overnet

divides a file into equal chunks of 9.27 MB and issues at least 1 request for ev-

ery chunk from any serving node. This translates to a minimum of 65 signaling

messages for an object of 600 MB in size. While we can observe from figures

3.15 and 3.16 that the General MSMT algorithm requires a maximum of 28 (7

signaling messages x 4 serving nodes) messages for worst case scenario for a file

of 600 MB in size, which represents a savings of 43% in signaling messages in

comparison to Overnet [61].

113

Prediction

In this section, we attempt to measure how well our prediction mechanism per-

forms by measuring the percentage of correct predictions. Throughout this sec-

tion, we assume that the estimated download bandwidth at any step n is correct if

it is within 5% of the measured average bandwidth from a specific serving node.

We then report the total percentage of correct prediction that a node makes while

downloading a certain object. We again consider two file sizes of 4 MB and 600

MB, separately.

In Figure 3.17, we show the percentage of correct predictions for low-load

networks. We can see that the General MSMT algorithm predicts the average

download bandwidth of nodes with a higher accuracy than the Simple MSMT

algorithm. What is unexpected here is that the percentage of correct predictions

does not deteriorate with the increase in the number of requests. This behavior is

due to the fact that the General MSMT updates the centers of gravity and adapts to

observed network changes. Figure 3.18 shows that the gap in correct predictions

between the Simple MSMT and the General MSMT widens for small files of 4

MB in size. The reason for this is that for unloaded networks the Simple MSMT

algorithm is able to provide better predictions than under loaded conditions. In

the latter case, the estimates represented by the centers of gravity are based on the

download of the first set of chunks Oij[0]. Because the conditions of the network

are quite stressed, the values of the initial estimates represented by the centers

of gravity are no longer close to the actual download bandwidth. However, the

General MSMT, by continuously updating these estimates, offers predictions that

114

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 C

or
re

ct
 P

re
di

ct
io

n

Number of Requests

Simple MSMT, 4MB files
General MSMT, 4MB files

Simple MSMT, 600MB files
General MSMT, 600MB files

Figure 3.17: Correct Prediction vs. Number of Requests in the Network Under

Light Conditions

are closer to the measured bandwidth.

3.6.3 Existing Systems

In this section, we compare the General MSMT algorithm to Limewire [53] and

eMule [28]. We base our choice of Limewire and eMule on the fact that both are

open source applications and can be adapted to our environment. While Limewire

is a gnutella-like application, eMule is related to other popular applications such

as Overnet [61], Kademlia [56], and eDonkey [26]. Thus, we conjecture that the

benefits that the General MSMT provides nodes will hold true when compared to

other applications as well.

Limewire classifies chunks as “black” when it has finished downloading, “grey”

when it is being downloaded, and “white” as long as it has not started download-

ing yet. In addition, Limewire uses a “split/steal” swarming algorithm where it

attempts to find a region of the file to download. Thus, if there is a “white” re-

115

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 C

or
re

ct
 P

re
di

ct
io

n

Number of Requests

Simple MSMT, 4MB files
General MSMT, 4MB files

Simple MSMT, 600MB files
General MSMT, 600MB files

Figure 3.18: Correct Prediction vs. Number of Requests in the Network Under

Loaded Conditions

gion, it sends a request for it, otherwise, it will “steal” part of a grey region from

an on-going download and sends a request for it to another serving node. The

documentation of Limewire [53] states that “if two threads A & B are swarm-

ing from uploaders at the same speed, the incomplete file will be downloaded

in the order ABABAB... ”. This means that the number of signaling messages

sent is dependent on the smallest possible size that the swarm algorithm can

steal. Inspecting the open source code that we downloaded on Oct 31, 2005

from http://www.limewire.org/, the smallest chunk that the swarming algorithm

can “steal” is 16 KB. As for eMule, it basically divides a file into equal chunks

and attempts downloads in a round robin fashion, where it waits until the down-

load of a chunk ends to send a request for another chunk to the same serving node.

According to the documentation of eMule v0.46c, a chunk is 9.28 MB.

In this set of experiments, we compare the signaling overhead of eMule, Limewire

and the General MSMT algorithms, while the setup is the one detailed in Section

116

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

N
um

be
r

of
 U

pd
at

es
 p

er
 F

ile

Number of Requests

General MSMT, 4 MB files
General MSMT, 600 MB files

eMule, 4 MB files
eMule, 600 MB files
Limewire, 4 MB files

Limewire, 600 MB files

Figure 3.19: Comparing General MSMT to Existing Systems (Signaling Mes-

sages)

3.6.2. The results are depicted in Figure 3.19.

Since, eMule decides on a constant size of chunks up-front, we notice that

the number of signaling messages sent does not change for the whole experiment,

and increases linearly with the increase in file size. Note that the low number of

signaling messages for small files (4 MB in our experiment) seems deceptively

desirable. In fact, eMule downloaded the file from 1 single serving node instead

of taking advantage of all nodes that carry the file, which contradicts the whole

idea of parallel downloads.

Limewire, on the other hand, has a different behavior, where as the load in the

system increases the number of signaling messages starts to decrease. However,

after a certain point, the number of signaling messages increases at a fast rate.

Also, note that for either file sizes (4 MB and 600 MB), Limewire seems to have

the highest cost among the algorithms in terms of signaling messages.

Figure 3.20 shows the comparison among the algorithms for the average through-

117

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100
A

ve
ra

ge
 T

hr
ou

gh
pu

t (
K

bp
s)

Number of Requests

General MSMT, 4 MB files
eMule, 4 MB files

Limewire, 4 MB files

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

K
bp

s)

Number of Requests

General MSMT, 600 MB files
eMule, 600 MB files

Limewire, 600 MB files

Figure 3.20: Comparing General MSMT to Existing Systems (Throughput)

put as perceived by the client nodes. Note that we measure the average throughput

as the size of the file divided by the time to download all the chunks of that file.

As expected, eMule offered the lowest average throughput, especially for small

files since it is not taking advantage of the offered bandwidth of all serving nodes,

which changes when the size of the file increases but remains far from the optimal

case. Limewire offers download speeds slightly lower that those of the General

MSMT, mainly due to the considerable higher amount of signaling messages and

smaller sizes for the chunks. And, again the throughput of Limewire deteriorates

as the load increases considerably due to the fact that the swarming algorithm is

stealing smaller chunks and increasing the signaling overhead. In conclusion, the

General MSMT seems to offer a balance between lower signaling messages and

higher average throughput satisfying Equation (3.4).

118

3.7 Summary

In this chapter, we have shown that because of selfish nodes, the current imple-

mentations of parallel downloads in peer-to-peer networks provide far from opti-

mal download performance. We formulated the optimal solution for the division

of objects into chunks for simple networks with static nodes and uncongested

connections. We discussed how such an optimal decision might lead nodes to un-

truthful declarations whether on the client or serving side. We defined a number of

strategies to discourage nodes from such behavior and proposed the MSMT algo-

rithm to provide nodes with a solution as close to the optimal division of objects

into chunks, under realistic network conditions. We designed the MSMT algo-

rithm to provide the maximum download speed to client nodes, by downloading

objects as fast as possible. At the same time the MSMT algorithm maintains a low

signaling overhead. We evaluated the effects of different parameter settings on in-

dividual nodes, as well as the network as whole, using simulations and results

from an medium-scale experimental testbed running on the PlanetLab platform

[66]. Our results show that our strategies and algorithms offer increased down-

load performance and decreased signaling cost in comparison to other existing

parallel download approaches.

119

Chapter 4

A Learning Based Approach for

Network Properties Inference

4.1 Introduction

A number of emerging popular applications require the creation and maintenance

of on-demand overlay networks of end systems. Such applications benefit from

connecting to nodes that meet certain criteria, instead of choosing a random set of

server nodes on the network. For example, a streaming media client would benefit

by connecting to a media server that is lightly loaded and has high downstream

available bandwidth and low latency. More sophisticated applications and services

would use dynamic service composition in which the problem entails the compu-

tation of a service overlay path with the necessary service components, matching

the required QoS criteria.

Finding the node or subset of nodes that meet some criteria of QoS metrics, us-

120

ing an exhaustive search, could translate to every node conducting measurements

to every other node on the network. This approach is, at best, not scalable as the

order of these extensive measurements is O(N2), where N is the number of nodes

in the system. Previous work [22], [30], [31], [39], [59], [65], [80], [84], [89],

[92] have looked at the problem of estimating one criterion, being the latency,

and proposed conducting a smaller number of measurements, and estimating the

closest node or subset of nodes to a specific node on the network, in terms of

the round trip delay. All of these methods use some heuristics based model, and

have different degrees of success in estimating network metrics, depending on the

specifics of the network topology and structure. In fact, these existing system do

not consider time as building component for their solution and instead force nodes

into repeating their measurements continuously in order to adapt to the network

dynamics with respect to changes over time. Thus, these methods lack the ability

to learn and adapt to the changes in the underlying structure and dependencies

between different components. A more general method that can adapt dynami-

cally to the changes in network structure and provide high estimation accuracy is

required.

In this chapter, we propose to apply a learning based Bayesian network ap-

proach to the problem of inferring network properties that is adaptive and does

not depend on specific heuristics. The Bayesian approach is very powerful and

has been applied in multiple technology domains with great success [21]. To as-

sess viability of the proposed method, we present results related to node proximity

presented by round trip delay and hop numbers. In the future, we plan to inves-

tigate other metrics such as uptime, bandwidth, interests (or communities), and

121

fluctuation in performance.

We require the presence of landmarks that all nodes conduct traceroute mea-

surements to. Note that landmarks are defined as special nodes where each node in

the system performs its measurements to these landmarks. Using the outcome of

these measurements, we keep track of routers that appear more than once, which

we denote as milestones, as was suggested in [92]. We use this information to

further infer the topology of the network. We approach the problem by extract-

ing signature-like profiles for nodes from the acquired information, including dis-

tances to milestones and landmarks. An important characteristic of these profiles

is the fact that they can be anonymous making the system more scalable, as it uses

a subset of nodes to generalize behavior and detect similar behavior among, oth-

erwise, totally different nodes. When estimating the distance between two nodes

in the system, we use their respective signatures to infer the answer. Our estima-

tion approach then relies on probabilistic techniques based on Bayesian Networks

[42]. Our obtained results are quite promising and provide a considerable gain

when compared to existing systems.

Our contribution lies in dividing the node metrics estimation problem into two

modules: profiling of nodes and then, accordingly, estimating the metrics in ques-

tion. In doing so, we introduce the idea of signature-like anonymous profiles that

make our system more scalable. In addition, we use machine learning techniques,

more specifically Bayesian networks, in order to estimate the required metrics.

We show through experimental results that such a probabilistic approach provides

superior results when compared to existing systems.

This chapter proceeds with the Related Work presented in Section 4.2. We

122

then present the system in Section 4.3. In Sections 4.4 and 4.5, we discuss the

data collected and the results obtained. We finally summarize in Section 4.6.

4.2 Related Work

Several schemes have been proposed to estimate Internet path properties. In this

section, we review only the techniques to estimate network distances and proxim-

ity since we apply the learning based approach to estimate these metrics. Internet

Distance Maps (IDMaps) [31] places tracers at key locations in the Internet. These

tracers measure the latency among themselves and advertise the measured infor-

mation to the clients. The distance between two clients A and B is estimated as

the sum of the distance between A and its closest tracer A′, the distance between

B and its closest tracer B′, and the distance between the tracers A′ and B′.

M-coop [79] utilizes a network of nodes linked in a way that mimics the au-

tonomous system (AS) graph extracted from BGP reports. Each node measures

distances to a small set of peers. When an estimate between two IP addresses is

required, several measurements are composed recursively to provide an estimate.

King [39] takes advantage of the existing DNS architecture and uses the DNS

servers as the measurement nodes.

King, M-coop, and IDMaps all require that the IP addresses of both the source

and the destination are known at the time of measurement. Therefore, they cannot

be used when the IP address of the target node is unknown.

There are schemes that use landmark techniques for network distance estima-

tion. Landmark schemes [59, 70] use a node’s distances to a common set of land-

123

mark nodes to estimate the node’s physical position. In these schemes the nodes

conduct measurements to every landmark node. The intuition behind such tech-

niques is that if two nodes have similar latencies to the landmark nodes, they are

likely to be close to each other. One such technique, called Landmark ordering,

is used in topologically-aware Content Addressable Network (CAN) [70]. With

landmark ordering, a node measures its round-trip time to a set of landmarks and

sorts the landmark nodes in the order of increasing round-trip time (RTT). There-

fore, each node has an associated order of landmarks. Nodes with the same (sim-

ilar) landmark order(s) are considered to be close to each other. This technique

however, cannot differentiate between nodes with the same landmark orders.

GNP (Global Network Positioning) [59] is another landmark based scheme. In

this scheme, landmark nodes measure RTTs among themselves and use this infor-

mation to compute the coordinates in a Cartesian space for each landmark node.

These coordinates are then distributed to the clients. The client nodes measure

RTTs to the landmark nodes and compute the coordinates for themselves, based

on the RTT measurements and the coordinates of the landmark nodes it receives.

The Euclidean distance between nodes in the Cartesian space is directly used as

an estimation of the network distance.

GNP requires that all client nodes contact the same set of landmarks nodes,

and the scheme may fail when some landmark nodes are not available at a given

instant of time. To address this problem, Lighthouse [65] allows a new node

wishing to join the network to use any subset of nodes that is already in the system

(i.e., lighthouses) as landmarks to compute a global network coordinate based on

measurements to these lighthouses.

124

Despite the variations, current landmark techniques share one major problem.

They cause false clustering where nodes that have similar landmark vectors but

are far away in network distance are clustered near each other.

Vivaldi [22] is another scheme that assigns a coordinate space for each host,

but it does not require any landmarks. Instead of using probing packets to mea-

sure latencies, it relies on piggybacking when two hosts communicate with each

other. With the information obtained from passively monitoring packets (e.g.,

RPC packets), each node adjusts its coordinates to minimize the difference be-

tween estimates and actual delay. Although Vivaldi is fully distributed, it takes

time to converge, requires applications to sample all nodes at relatively same rate

to ensure accuracy, and expects packets to add Vivaldi-specific fields.

Netvigator [92] is an attempt to leverage triangular inequality and improve the

performance of landmark-based measurements. Instead of ping measurements,

each node conducts traceroutes to selected landmark nodes. It performs triangular

inequality based clustering heuristic, called min sum, using the distance informa-

tion not only between the nodes and landmarks but also between nodes and the

intermediate routers. Hence, Min Sum is an upper bound on the distance between

the various nodes. While the performance results from PlanetLab measurements

are promising, the tightness of this upper bound is dependent on the coverage of

the underlying topology by the traceroute measurements. In this chapter, we use

Min Sum as a candidate for comparing the performance of our approach.

In addition, all of these techniques lack adaptability and require nodes to re-

peat their measurements, continuously, to ensure accurate results for the estima-

tions.

125

Node

Profiling

Bayesian Network

Classifier

i to landmarks
 landmarks to j

Measurements

[p
0
, p
1
, p
2
, p
3
, ..., p
n-1
, p
n
]

profiles of

i & j

Figure 4.1: System Block Diagram

4.3 Profiling and Learning-based Estimation Tech-

niques

In this chapter, we propose a new approach to infer and predict network properties

based on machine learning techniques, such as Bayesian Networks. The goal of

learning based prediction is to build a system that can learn from the profiles

of nodes and, eventually, achieve a degree of “expertise” where changes in the

metrics of existing nodes can be predicted. We believe that such a system will

provide nodes with better predictions of changes in metrics and can achieve this

goal in a scalable fashion.

Figure 4.1 shows the two basic components of our approach:

126

• Profiler: The profiler creates signature-like profiles for nodes, which basi-

cally capture the characteristics of the nodes, as well as the typological rela-

tionship between different nodes in the network. The profiling mechanism

is primarily based on the knowledge about the known relationships between

different nodes and how it might affect the metrics being estimated. As a

rule, the signatures do not carry the explicit identity of the node in ques-

tion. By doing so, we aim at creating an inference engine that scales with

the dynamics of the network related to nodes joining and leaving, where

signatures can sufficiently reflect nodes behavior without attaching an iden-

tity of a specific node to a profile, thus creating a general profile. This idea

draws similarity from the approach used in detecting worms on the Internet

by creating signatures of their behavior.

• Learning-based Prediction Engine: The profiles generated by the profiler

are used as input to the prediction module. Initially, the prediction mod-

ule undergoes a training period where a subset of true values of the metrics

of interest are provided to the learning engine. In this chapter, we focus

on Bayesian networks as a learning mechanism for the prediction engine.

Based on the training, the prediction engine can learn about the latent de-

pendencies in the system. A trained prediction engine, then, takes node

profiles as input to provide a final estimate for the metrics in question.

Our proposed system can be used for estimating different parameters, how-

ever, in this chapter, we limit the metrics to the number of hops and latency among

nodes. Studying and evaluating other metrics is part of on-going research. In the

127

example we show in Figure 4.1, the output is a vector, labeled [p0, ..., pn], repre-

senting the probability distribution for the different classes, since the estimation

in here is done using classification. For example, if we are targeting hop number

estimation, the output is a probability distribution of the hop numbers between

two nodes. The maximum number of hops is assumed to be 32 hops, thus, in the

output vector pi−1 represents the probability of the number of hops being i.

Similar to landmark-based approaches, such as [92], in our system each node

conducts traceroute measurements only to a set of selected landmarks. Before de-

scribing our algorithm, we proceed with a brief description of the Min-Sum [92]

algorithm so as to introduce various terms. We then describe our profiling tech-

niques and discuss our estimation algorithm based on Bayesian networks.

Many systems target latency estimation, as we describe in Section 4.2, how-

ever, we are not aware of any mechanism or algorithm proposed for hop number

estimation. Thus, we modify the Min-Sum algorithm, used for latency estima-

tion in [92], in order to estimate hop number in addition to latency and use it for

comparison purposes. When we evaluate our algorithm for latency estimation, we

compare it also to Vivaldi [22].

4.3.1 Min-Sum Algorithm

As mentioned earlier, the Min-Sum algorithm proposes estimating network la-

tencies among nodes using heuristics based on triangular inequality. In here, we

provide a short summary of its operation.

In a system with N nodes and L landmarks, each node conducts traceroute

128

measurements to every landmark. We refer to these measurements as the dis-

covery of the uplink routes. In addition, if we are considering the asymmetric

Min-Sum algorithm where routes on the network can be asymmetric, then each

landmark will also conduct traceroute measurements to every node on the net-

work. We refer to this set of measurements as the discovery of the downlink

routes. The result is 2 ∗N ∗ L measurements. Every time a router is encountered

more than once, then its status is “promoted” to milestone. Note that the defini-

tion of a router includes the landmarks themselves, even if they are, physically,

servers or end-nodes, thus all landmarks are milestones by definition. We denote

the set of common milestones encountered on the uplink routes from node i and

the downlink routes to node j as L(i, j). The min-sum algorithm then estimates

the distance between a node i and a node j as:

min(dist(i, l) + dist(l, j)),∀l ∈ L(i, j) (4.1)

In fact, considering the intuition of triangular inequality, the min-sum algorithm

provides an upper-bound estimate for network latency among nodes.

4.3.2 Profiling Techniques

In here, we present the four profiling techniques that we explored. Based on the

results of comparing the performance of the four techniques, detailed in Section

4.5, the Node Histogram provides the best performance. Hence for sake of brevity,

we only provide extensive results for the Node Histogram Profiling Algorithm, in

this chapter. We now describe the operation of the algorithms, a summary of their

pseudocode is presented in Figure 4.2.

129

Calculate m-Closest Profile { // from i to j

obtain Mi,up & Mj,down;

calculate distances Di,up from i to Mi,up;

calculate distances Dj,down from Mj,down to j;

Pi,j = [Di,up[1..m],Dj,down[1..m]];

}
Calculate m-Closest with Counter Profile { // from i to j

obtain Mi,up & Mj,down;

calculate distances Di,up from i to Mi,up;

calculate distances Dj,down from Mj,down to j;

Mi,j = Mi,up[1..m] ∩Mj,down[1..m];

C =| Mi,j |;
Pi,j = [Di,up[1..m],Dj,down[1..m], C];

}
Calculate Node Histogram Profile { // from i to j

obtain Mi,up & Mj,down;

calculate distances Di,up from i to Mi,up;

calculate distances Dj,down from Mj,down to j;

map Di,up to a histogram Hi,up;

map Dj,down to a histogram Hj,down;

Pi,j = [Hi,up,Hj,down];

}
Calculate Milestone Histogram Profile { // from i to j

obtain Mi,up & Mj,down;

Mi,j = Mi,up ∩Mj,down;

Pi,j = φ;

for every ms ∈Mi,j

obtain Ims,up (nodes that pass ms on uplink);

calculate distances Dms,up from Ims,up to ms;

obtain Ims,down (nodes that pass ms on downlink);

calculate distances Dms,down from ms to Ims,up;

map Dms,up to a histogram Hms,up;

map Dms,down to a histogram Hms,down;

Pi,j = [Pi,j ;Hms,up,Hms,down];

}

Figure 4.2: Bayesian Profiling Algorithms Pseudocode

130

m-Closest

In order to estimate the distance in terms of number of hops from node i to node

j using the m-Closest profiling algorithm, a node starts with the set of milestones

that it encounters when running traceroute measurements to the landmarks. Of

course, this set includes the landmarks themselves. We denote this set of mile-

stones by Mi,up. The profiling module then builds a vector that we denote by

Di,up that contains the distances from node i to every milestone msi ∈ Mi,up.

The profiling module then sorts the vector Di,up in ascending order, and truncates

the first m values. Thus, the signature-like profile of a node i becomes the dis-

tances from i to the m-Closest milestones that it encounters. Similarly, for the

destination node j, the profiling module considers the traceroutes from the land-

marks to j, extracts the encountered milestones that we denote byMj,down, builds

the distances vector Dj,down of the milestones to j in ascending order, and trun-

cates the first m values. The resulting vector that feeds into the Bayesian network

has a dimension of 2m.

m-Closest with Counter

The m-Closest with Counter algorithm operates in a similar fashion to the m-

Closest algorithm. The profiling module builds the same vector as the m-Closest

consisting of distances to the m-Closest milestones to the nodes in question. In

addition, a counter is added that represents the number of common milestones

whose distances are included in the m-truncated vectors.

We present an example of the operation of the m-Closest and m-Closest with

131

Counter algorithms. Assume that we have the case presented in Figure 4.3 with

three nodes and three landmarks. We would like to estimate the distance in terms

of number of hops from Node 1 to Node 2. Inspecting the traceroute measure-

ments from Node 1 to the three landmarks reveals that two milestones were dis-

covered along the routes, namely Milestone 1 and Milestone 2, with distances

from Node 1 of 3 and 2 hops, respectively. Similarly, analyzing the traceroute

measurements on the downlink from the landmarks to Node 2, we encounter three

milestones, namely Milestone 1, 2 and 3 with distances of 5, 4 and 2 hops, re-

spectively. Applying the m-Closest algorithm with m=2, we obtain the following

vector profiles representing the distances to the 2-closest milestones for each node:

Node 1: [2, 3]

Node 2: [2, 4]

Thus, the input to the Bayesian module becomes the concatenation of these 2

profiles: [2, 3, 2, 4].

As for the m-Closest with Counter, we add a counter, that we denote by C,

indicating how many of the milestones whose distances are presented in the m-

Closest vector are in common. In our example of Figure 4.3, we only have 1

milestone in common (Milestone 2), so we set C = 1. The input to the Bayesian

module becomes: [2, 3, 2, 4, 1].

With the m-Closest and the m-Closest with Counter algorithms, we create, as

desired, anonymous profiles for the nodes, that do not hold the specific identities

of the nodes. The signature-like profiles for the nodes created by these algorithms

capture the connectivity of the nodes by registering number of milestones at differ-

ent hops numbers from the node. As the computation overhead of the prediction

132

Landmark 1

Landmark 3

Landmark 2

Node 1

Node 2

Node 3

Milestone 2

Milestone 1

Milestone 3

2

3

2

4

5

Figure 4.3: Example of m-Closest Algorithms

module depends on the length of the input vectors, both of these algorithms trun-

cate information about the milestones to consider only the m-Closest milestones.

Node Histogram

The Node Histogram profiling algorithm is designed to retain topological infor-

mation about the position of nodes with respect to all milestones encountered with

traceroute measurements. When conducting measurements to landmarks, a node

i encounters a set of milestones that we denote by Mi,up. The distances to these

milestones is represented by the vector Di,up. Node i converts Di,up into a his-

togram that we denote by Hi,up. As an example of this, consider Node x with the

following distances to milestones vectorDi,up = [2, 2, 3, 5, 6, 6, 6, 8, 10]. Mapping

this vector into a 12-dimensional histogram, we obtainHi,up = [0, 2, 1, 0, 1, 3, 0, 1, 0,

133

1, 0, 0]. Note that the histogram starts with 1 as the minimum distance. In the

above example, since we had no milestone that is 1 hop away from Node x, we

set the first value to 0. However, we have two milestones that are each 2 hops

away, thus we set the second value to 2, and so on. Note that in our implemen-

tation, Hi,up is a 32-dimensional vector, representing the maximum number of

hops as defines in traceroute measurements. Similarly, a histogram is built for

the downlink measurements for every node denoting the distances from the mile-

stones to the node. We denote the downlink histogram vector by Hi,down. Thus,

the input to the Bayesian module consists of [Hi,up,Hj,down] when estimating the

distance from node i to node j.

Visualizing the Node Histogram profiling algorithm, if a node sits in the center,

the algorithm builds a vector that includes all milestone information for a node.

It aggregates these milestones as concentric circles. The circles have increasing

order radii and different “intensities” corresponding to the number of milestones

that are at a certain distance from the node. Just like the m-Closest algorithms, the

Node Histogram algorithm generates an anonymous profile that does not carry the

specific node’s identity.

As a reminder, the network comprises of N nodes and L landmarks. Every

node i conducts traceroute measurements to every landmark discovering the up-

link routes, and every landmark l conducts traceroute measurements to every node

in the system discovering the downlink routes. As a result, and whenever a router

appears on at least one uplink and one downlink route, then it is considered a mile-

stone. In addition, all landmarks, by default, are considered milestones. Thus,

after collecting all of these measurements, the network discovers M milestones.

134

Milestone Histogram

The Milestone Histogram profiling algorithm looks at the network from the mile-

stones’ perspective. In fact, this algorithm is similar to the Node Histogram in the

sense that it builds the circle around a specific node. However, instead of using an

end-node as the center, it builds the circle around a milestone.

Every milestone ms in the system is encountered by a set of nodes on the

uplink measurements that we denote by Nms,up and a set of nodes on the down-

link measurements denoted by Nms,down. The distance vectors from the nodes in

Nms,up to ms is denoted by Dms,up, while the distance vector from the milestone

ms to all nodes in Nmsdown is Dms,down. Similarly to the Node Histogram, we

map the distance vectors Dms,up and Dms,down into distance histograms Hms,up

and Hms,down, respectively.

When estimating the distance from a node i to a node j, the Milestone His-

togram algorithm will inspect the traceroute measurements from node i to the

landmarks and those from the landmarks to node j. The first set of measurements

yields a set of milestones Mi,u, while the second set reveals a set of milestones

Mj,down. We define Mi,j = Mi,up ∩ Mj,down as the set of common milestones.

Then, we use the uplink and downlink histograms [Hms,up,Hms,down] of every

milestone msx ∈ Mi,j . This means that the Bayesian module is going to be

queried for an estimation | Mi,j | times corresponding to every milestone in Mi,j .

In the evaluation, we present in Section 4.5, we average all the estimates in order

to obtain one final estimate of the distance in terms of number of hops between

node i and node j. Note that the Milestone Histogram algorithm is more computa-

135

tionally intensive than the Node Histogram algorithm, since for every estimation

we are querying all milestones. Also note that the set of landmarks is included in

every Mi,j∀i, j following the definition of a milestone that includes all landmarks

in the system. This basically means that any pair of nodes have at least L (the

set of landmarks) milestones in common, which means will have to run at least L

different estimations.

4.3.3 Bayesian Techniques

The block diagram of our proposed estimation Bayesian algorithm is depicted in

Figure 4.4. In describing the Bayesian algorithm, with a slight abuse of notation,

we are going to refer to the Bayesian network nodes as components in order to

avoid confusion with the use of the word node to denote participating machines

on the physical network. Thus, expanding the Bayesian network, as shown in

Figure 4.4, Block 3 has the profiles of the nodes as input, and is a continuous

Gaussian component. In addition, Block 2 is a hidden binary component, and

Block 1 is the output component acting as a T -class classifier. Thus, the output

of the Bayesian network is a T -dimensional vector representing the probability

distribution of the T different classes. In the case of hop numbers estimation

T = 32 corresponding to the hop numbers between the two input nodes. Note that

this Bayesian network structure is quite simple where we have one component for

each of the input and output and one hidden node. The goal of hidden component

is to capture the latent relationships. We also experiment with a more complex

structure.

136

Block 1:

Class 0 - 31

Block 2:

Component 1/2

Block 3:

Gaussian

mu, sigma

Figure 4.4: Simple Bayesian Network Structure

For example, if we need to estimate the distance between node i and node j,

we use the measurements from i to the landmarks and those from the landmarks to

j as an input to the profiling module. This first module will create the respective

profiles of i and j to feed into the Bayesian estimation algorithm, and the second

module of our system will output a decision vector. We choose to use the median

of the output probability distribution as the value of the estimation. Thus, the

estimated distance is actually the position (or index) of the maximum value in the

T -dimensional output vector.

We also modify the Bayesian network as presented in Figure 4.5 where we

divide the input into two vectors corresponding to the profiles of the two nodes in

question. We also add another hidden block for the newly introduced input node.

This modification of the structure of the Bayesian network takes into consideration

the fact that the input consists of two independent vectors, being the two profiles of

the two nodes in question. We compare the performance of both Bayesian network

137

Block 1:

Class 0 - 31

Block 2':

Component 1/2

Block 3':

Gaussian

mu, sigma

Block 2:

Component 1/2

Block 3:

Gaussian

mu, sigma

Figure 4.5: Modified Bayesian Network Structure

structures in Section 4.5. In our implementation of these Bayesian networks, we

used the Bayes Net Toolbox (BNT) [11] on Matlab 7.0.1 [55].

4.4 Measurement Setup

In order to test our proposed algorithms, we collected measurements on the Plan-

etLab platform that involved all 580 machines participating in the network as of

August 2005. We deployed a modified version of the scriptroute suite of tools

[76], where we removed the restrictions on the number of simultaneous measure-

ments that exist in the default distribution. Our measurements engine, on every

node, runs once every 8 hours collecting information using 3 tools, namely ping,

traceroute and rockettrace (a modified version of traceroute that ships with scrip-

troute), targeted towards all other nodes on PlanetLab. Collecting such data is

essential for testing the correctness of the estimates that the algorithms will pro-

vide in a real system. We also used a very small subset of these measurements for

138

training the Bayesian network. The engine collected data from August 1 through

August 10, 2005. While conducting these measurements, each engine on every

node, independently chooses a random starting point from the list of the PlanetLab

nodes; this was essential so that our massive measurements will not be mistaken

for a DDOS (Distributed Denial of Service) attack and ensure that nodes are not

in sync when sending their probing packets to any specific node.

When considering hop numbers, the data that we collected turned out to be

time-insensitive, where, with few exceptions, the number of hops between pairs

of nodes did not vary over time. The few exceptions included nodes that were not

responsive either due to a problem on the node itself or due to a restart, where

traceroutes to these nodes were unsuccessful. Other exceptions seemed due to

some loops in the network or to other strange behavior where the final destination

of a traceroute seems to repeat few times before the measurement ends. These

problems were mainly apparent when one of the end nodes was an alpha Planet-

Lab node (an alpha node means a node that is still under development and unre-

liable). Thus, when presenting and testing the proposed algorithms below, we do

not include any time component in our studies of hop numbers estimation.

In addition, the results presented test the validity of the system for different

subsets of the collected data in terms of number of nodes as well as landmarks. We

also study the sensitivity of the system to different parameters including training

set, measurement overhead, and size of network.

139

4.5 Evaluation

In this section, we present the results of evaluating and tuning the parameters of

our system. Our system comprises of the profiling module and the Bayesian Net-

work estimator. We use the estimation accuracy of a given metric as the primary

parameter to evaluate the performance of our system. We first define this metric,

which we refer to as Accuracy in the rest of the chapter. We then present the re-

sults of the implementation of our system to estimate two metrics: (1) number of

hops and (2) latency between any two nodes in the network.

The importance of accurately and efficiently estimating locality of services

and computing network distances between different nodes has significantly in-

creased due to proliferation of p2p networks and is also evident from the abun-

dance of latency estimation schemes. Similar to applications’ use of network

latency to improve the download performance, the number of hops between nodes

can be potentially used as a measure for path reliability.

4.5.1 Accuracy

The accuracy metric captures how well the system can rank nodes in terms of their

proximity (either using number of hops or latency) to a specific node. Assuming

that an algorithm returns a set of k nodes as the closest estimates (we use the term

”closest” when dealing with latency or hop number proximity) for a certain node i

that we denote by Si
k. Let the closest node to node i be node j. Thus, the accuracy

is 1 if j ∈ Si
k and 0 otherwise.

The k-accuracy of an algorithm is computed as the presence of the closest

140

node j to a certain node i in the set of the k closest nodes as returned by the

estimation system. More formally, it is defined as follows:

a(i) =





1, j ∈ Si
k

0, otherwise
(4.2)

The accuracy metric measures how well a system ranks nodes in terms of respec-

tive distances from a certain node. It is a valid measure, since, in many practical

applications, nodes are interested in the closest candidate(s) to them rather than

the actual number of hops or the actual latency.

Note that in many practical situations, a node i will query the estimation sys-

tem for the k closest nodes. Then, node i will perform its own measurements to

this set of nodes. The reasoning behind this is that the estimation mechanism is

basically providing the k possible candidates of closest nodes and it is up to the

node i to perform its own measurements to determine the actual closest among

this set. Thus, it is essential for the estimation system to provide the querying

node i with its actual closest node among the returned k nodes while maintaining

k << N . Note that if k is comparable in magnitude to N then the whole purpose

of an estimation system is defeated since the node i is launching k additional mea-

surement on the network and the system cannot scale. Note that as k increases, by

definition, the accuracy increases. The goal is to achieve as high an accuracy with

as low k as possible.

141

4.5.2 Estimation of Number of Hops

In this section, we compare the accuracy obtained by our proposed system com-

prised of the profiling and estimation modules, as presented in Section 4.3, to the

min-sum algorithm for the hop number estimation between node pairs. We start

by choosing a subset of our PlanetLab measurements consisting of 113 nodes and

11 landmarks distributed as follows: 2 in Europe, 2 in Asia, 1 in South America, 4

on the East coast, 1 on the West coast and 1 in the Middle of the US. We also use

the simple Bayesian network structure presented in Figure 4.4. We use a modest

number of measurements for training the Bayesian network, corresponding to 500

sample random measurements, which adds up to 3.95% of all possible measure-

ments of N(N − 1) for N = 113, in order to keep the overhead for measurements

at a minimum. Note that 113 nodes represents a high percentage of all Planet-

Lab sites. We want to test the effect of using a heterogenous and diverse set of

nodes, thus we start with these 113 nodes and increase the number to include all

PlanetLab nodes.

We start by evaluating the different profiling algorithms presented in Sec-

tion 4.3.2 and compare them to the Min-Sum algorithm. We present the accuracy

in Figure 4.6. We observe that for only K = 2, the accuracy of the Node His-

togram algorithm reaches 81.25%. With this superior performance of the Node

Histogram, we pursue to evaluate only the Node Histogram algorithm, and study

its behavior as we tune and test against the different parameters of the system.

We also plot the cumulative distribution of the absolute error as presented in

Figure 4.7. At a first glance, Figure 4.7 seems to suggest that the min-sum algo-

142

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

A
ve

ra
ge

 A
cc

ur
ac

y

K

Min-Sum
Node Histogram

Milestones Histogram
m-closest (m=5)

m-closest (m=5) with Counter

Figure 4.6: Average Accuracy for the Different Profiling Algorithms

rithm offers a better estimate with a lower absolute error then the Node Histogram

profiling algorithm with the Simple Bayes Network Estimation module. In fact,

the figure shows that only around 20% of the estimation output had an error of

less than 10 hops using the Node Histogram profiling algorithm and the Bayesian

Network estimation module. At the same time, Min-Sum had around 58% of the

estimation output with 10 hops or less in terms of absolute error. However, Fig-

ure 4.6 tells a different story which looks counter-intuitive, as the Node Histogram

algorithm shows a superior performance. The reason behind this result is due to

the fact that the Node Histogram algorithm orders the nodes correctly in terms of

their hop number distances from a specific node; a trait captured by the accuracy

metric. However, the actual estimations were shifted by a constant, as can be seen

in the absolute error. Looking closer into this shift, it averages, in this example, at

15.498.

Next, we evaluate the dependence of the Node Histogram and the Bayesian

Network Estimation system on various parameters; namely the number of nodes,

143

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
of

 th
e

A
bs

ol
ut

e
E

rr
or

Number of Hops

Min-sum
Node Histogram

Figure 4.7: Cumulative Distribution of the Absolute Error

the number of landmarks, the use of the two proposed Bayesian network struc-

tures, and the amount of training used in the Bayesian module.

We study now the effect of the number of landmarks over the performance. We

increase the number of landmarks while maintaining the same number of nodes.

The results presented in Figure 4.8 show an interesting behavior. First of all, as

we increase the number of landmarks from 11 to 13, we notice a slight improve-

ment in the accuracy for smaller value of k; namely for k < 5. However, this

improvement does not seem to be consistent for larger values of k. Looking at the

cause of this behavior, we observe that, sometimes, an increase in the number of

landmarks does not necessarily results in an increase in the number of milestones,

thus no increase in the information provided in the histograms of the nodes. How-

ever, the distances to the landmarks themselves get incorporated in the histograms

of the nodes, since we assume that a landmark is also a milestone, by definition.

This additional information (the distances to the newly added landmarks) does

not always translate into more information that the Bayesian network classifier

144

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30

A
cc

ur
ac

y

k

11 landmarks
13 landmarks
15 landmarks
25 landmarks

Figure 4.8: Accuracy vs. Number of Landmarks

can use for more accurate results. Later in this section, we will re-visit the idea of

increasing the number of landmarks as the number of nodes increases.

When we switch from the simple Baysian Network classifier presented in Fig-

ure 4.4 to the Modified Bayesian Network classifier of Figure 4.5, we notice that

the accuracy improves. In fact, looking at Figure 4.9, we can see how the Mod-

ified Bayesian Network is able to characterize the nodes with a higher accuracy.

The reason behind this lies in the fact that the two input histograms represent two

different nodes and treating them as separate input variables makes it easier for

the Bayesian network classifier to characterize them.

As in any learning-based system, we need to train the Bayesian Network clas-

sifier. This training is quite costly in terms of computation resources, and requires

end-to-end measurements to be used for training. Thus, for the system to be scal-

able, we need to keep this training to a minimum versus the dynamics of the

network as a whole such as the addition of nodes to the system, since we want a

system that does not need to be re-trained every time a node joins or leaves.

145

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30

A
cc

ur
ac

y

k

113 Nodes - Bayes Structure I
113 Nodes - Bayes Structure II

Figure 4.9: Effect of Bayesian Network Structure on Accuracy

In what follows, we study the effect of increasing the network size on the

accuracy. We consider two scenarios: at first, we increase the number of nodes

and measure the accuracy of the system, then we re-train the system in order to

include the newly added nodes and compare the results. Figure 4.10 depicts the

accuracy of the tested networks for both scenarios of re-train and no re-train. We

observe that re-training indeed does improve the accuracy. However, as we will

see next, this is mainly due to the fact that the network that we used for the initial

training (113 nodes) was too small to yield information that can be used for other

nodes. As the initial network size that is used for training increases further, we

can see that we can continue to use the obtained Bayesian Network classifier for

larger networks, since the data was enough to capture the specifics of the topology

of the network as a whole.

Note that as nodes are added to the network, new milestones might emerge.

These can be either routers that never appeared before or routers that had appeared

only once before the new addition of nodes, thus did not qualify prior to this

addition to become milestones. In this case, we update the histograms of the

146

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30

A
cc

ur
ac

y

k

113 Nodes
135 Nodes - retrain
155 Nodes - retrain

135 Nodes - no training
155 Nodes - no training

Figure 4.10: Effect of Initial Training Set and Number of Nodes on Accuracy

affected nodes to reflect the new milestones, despite the fact that we may have

used the old histograms of these nodes for the training of the Bayesian Network

classifier. In fact, we argue in here that this change does not affect the classifier

since the signature-like profiles of our system does not contain the identity of the

respective nodes and is meant to capture a snapshot of the network characteristics;

in the case of the hop number, the characteristics, we are interested in, describe

the topology of the network.

In this set of experiments, we start with a subset of the network of 200 nodes,

15 landmarks, and the Modified Bayesian Network classifier. We extract the sig-

natures of the nodes and use 2000 samples for training the Bayesian Network

classifier. Note that we increase the number of samples used for training as we

increase the number of nodes, however, the percentage is still modest compared

to the full N2 measurements of 40000. Figure 4.11 shows the accuracy of the

classifier versus k. Then we increase the number of nodes in the network and re-

measure the accuracy of the classifier without re-training the classifier. We show

the results in Figure 4.11. We also show the accuracy for the nodes that were

147

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 5 10 15 20 25 30

A
cc

ur
ac

y

k

200 Nodes
250 Nodes
300 Nodes

Figure 4.11: Accuracy for the Same Initial Set of 200 Nodes

added in each experiment to the initial network of 200 nodes. By measuring the

accuracy of these nodes, we are, actually, testing how well the Bayesian Network

classifier is able to generalize rules from the initial observed data (i.e. that of

the initial 200 nodes) and use these observations to predict the behavior of other

nodes.

We now increase the number of nodes in our set and re-train for every set

of experiments. We plot the results of the accuracy in Figure 4.12 showing that

the accuracy does not deteriorate as we increase N and with a slight increase

in the number of landmarks L the percentage of correct classification depicted

in the accuracy remains in the same range showing that the algorithm is able to

characterize the topology correctly.

By definition, the Bayesian Network algorithm relies on likelihood maximiza-

tion leading to the use of iterative approximation techniques [42]. We test the

performance of the whole system of profiling and estimation as we change the

number of iterations allowed during the training stage of the Bayesian Network

estimator. Figure 4.13 shows the accuracy plotted for the different values of k as

148

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30

A
cc

ur
ac

y

K

113 Nodes, 11 landmarks
135 Nodes, 11 landmarks
155 Nodes, 11 landmarks
200 Nodes, 15 landmarks
250 Nodes, 15 landmarks
300 Nodes, 15 landmarks

Figure 4.12: Accuracy vs. Number of Nodes in the system

we vary the number of iterations. The network used for this experiment consists

of 552 nodes and 22 landmarks. We evaluate the accuracy for 2, 4, 8 and 15 it-

erations during the training stage. We observe that for this larger set of nodes, a

small number of iterations does not provide a high accuracy for a small value of k.

In fact, the accuracy for k = 2 was below 15% for the 2, 4 and 8 iterations. How-

ever, as we increase the number of iterations to 15, the accuracy jumped to around

80%, a major improvement. What happens in here is due to the fact that Bayesian

Network maximum likelihood is trying to maximize its function and, just like any

other learning mechanism, uses these iterations to refine its parameters. Note that

this behavior is not an artifact of our proposed system, but is a normal behavior of

any system that relies on Bayesian Networks.

4.5.3 Latency Estimation

When it comes to latency, defining the histogram of nodes requires us to take a

closer look into the data as the measurements are not discrete values as was the

149

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

A
cc

ur
ac

y

K

2 iterations
4 iterations
8 iterations

15 iterations

Figure 4.13: Accuracy vs. Number of Iterations During Training

case of the hop numbers. Plotting the distribution of the latencies from nodes to

routers and from routers to nodes obtained from our studied system of 113 nodes

presented in Section 4.5.2, is presented in Figure 4.14. Figure 4.14 shows that the

latencies can be grouped into 3 groups; less than 50 msec or very close by routers,

between 50 msec and 500 msec or moderately close routers, and larger than 500

msec or far off routers. For the first range (less than 50 msec), we use a granularity

of 1 msec among the different intervals of the histogram. While, between 50 msec

and 500 msec, the step becomes 10 msec and over 500 msec, it becomes 50 msec

with a maximum of 1200 msec. This results in a vector whose dimension is 111

points. Note that deciding on each group and its granularity is tunable and can be

modified if the application requires so.

Comparing the accuracy for the Node Histogram profiling algorithm and the

Modified Bayesian Estimation module to Min-Sum and Vivaldi, we observe the

results in Figure 4.15. It is, in here, worth noting that the subset of 113 nodes

and 11 landmarks that we used was not ideal. In other words, some of the nodes

150

0 200 400 600 800 1000 1200 1400
0

50

100

150

200

250

300

350

400

450

latency (msec)

Figure 4.14: Distribution of Latencies

were not responsive most of the time, if not always. Such a situation is typical

of PlanetLab as the nodes are often under heavy load and sometimes sporadically

disconnected from the network or remain unusable for an extended period of time.

For Vivaldi and Min-Sum, we disregard these unreliable nodes and omit them

altogether from the analysis. By doing this, we assume that there is a filtering

mechanism that analyzes the data before submitting it to Vivaldi or Min-Sum and

throws away unreliable data. However, we do not offer the same filtering for the

Bayesian Network estimator, since we assume that this system is able to recognize

such nodes on its own. This hypothesis is tested in this experiment.

The results shown in Figure 4.15 demonstrate clearly that the Bayesian Net-

work estimator is able to predict distance among nodes and pick closest nodes

much more precisely than Vivaldi and Min-Sum. In fact, for a small value of

k = 1, the Bayesian Network system provides an accuracy of more than 70%,

while Vivaldi is at 1.6% and Min-Sum at 13%; a clear advantage of the Bayesian

Network system. In addition, for k = 10, the Bayesian Network accuracy is

151

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Vivaldi
Min-Sum

Node Histogram

Figure 4.15: Comparison of the Algorithms for Latency Estimation

at 88.9% compared to 16.4% for Vivaldi and 70.5% for Min-Sum. One point,

though, worth noting, is that as k goes over 50, this advantage seems to switch

and the Bayesian Network system seems to behave the worst among the three al-

gorithms. This is due to the fact of the advantage we gave Min-Sum and Vivaldi

by performing the filtering described earlier. However, we argue that, for most

practical applications, choosing a high value of k such as 50 or more is not de-

sirable, since the list returned to node i of possible candidates will be too long

to provide a useful answer and will force node i to conduct a high number of

measurements; thus an over-use of network resources.

When dealing with latency, we notice that the measurements show clear vari-

ations with time. Thus, we expand the profiling vectors of nodes to include two

flags: the first indicating whether the day of that specific measurement was a week

day or a weekend day, the second indicating the time period when the measure-

ment was taken as morning, afternoon, or night. This translates into an expanded

profile vector of 113 values corresponding to the 111 vector, presented above, and

152

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0 20 40 60 80 100

A
cc

ur
ac

y

K

Node Histogram
Node Histogram - Time-Varying

Figure 4.16: Predicting Latencies Over Time

the 2 flags. Since the first flag is mainly binary and the second one can take one of

three possible values, we end up with 6 combinations. We repeat the training of

the Bayesian Network estimation module using 3000 samples. We start with the

same set of 500 samples used in the experiment where time variations were not

considered and use six measurements corresponding to the six different combina-

tions. We then test the estimation for the whole network by studying the accuracy.

The results in Figure 4.16 show that our Bayesian Network estimator with the help

of the Node Histogram can estimate latencies and predict their changes with time,

with a high accuracy, a feature that other latency and distance estimators do not

consider. Note that the flags can be different and can include further details of the

latency changes such as hourly, if the need be.

4.5.4 Scalability and Other Practical Considerations

In this section, we look at the practical consideration of implementing a real sys-

tem based on the proposed approach. The primary focus is on the computation

153

and measurement overhead needed when a new node joins a network of N exist-

ing nodes. We believe that this kind of scalability is essential for the usage of such

prediction and estimation system.

Assuming a network of N initial nodes, a system that has complete informa-

tion requiring each node to make its own measurements to every other possible

node on the network, requires N(N − 1) measurements; thus is in the order of

O(N2). However, our system assumes that we have L landmarks where L << N

and requires 2NL measurements (note that the factor 2 is added since we assume

asymmetric links and require each node to make measurements to every landmark

and every landmark to make measurements to every node). This measurement

overhead is same as the overhead incurred by other landmark-based proximity

estimation techniques. Also, our system requires an additional θ random mea-

surements to be used for the initial training data.

In addition, when we consider the addition of nodes to the network, we note

that in a system that relies on actual complete measurements, 2N measurements

are required for every new node: N measurements from the new node to every

existing node and N measurements from every existing node to the new node. On

the other hand, assuming no re-training, our proposed estimation system requires

2L measurements: L measurements from the new node to the landmarks and L

measurements from the landmarks to the new node. This considerable decrease in

the required measurements makes such an estimation mechanism quite attractive

for applications.

The inference mechanisms should only incur incremental overheads when

nodes join or leave the system. It is important to only consider profiling mech-

154

anisms that do not require recomputation of signatures of already existing nodes

and complete re-training of the Bayesian network as nodes join or leave the sys-

tem. Similary, the known properties of different metrics should be leveraged to

restrict the dimensionality of the signatures. For instance, the dimensions of pro-

files for hop count inference was set to 32 based on the diameter of the network.

In case of latency, the distribution of the latency between different nodes was used

as a guide for marking the bins for Node Histogram algorithm. Similarly some

knowledge about the underlying network might be used to tune the value of m in

m-Closest algorithm.

4.6 Future Work & Summary

In this chapter, we have presented a learning based estimation approach for net-

work and node metrics that relies on probabilistic techniques, more specifically

Bayesian Networks. Our approach creates signature-like profiles for nodes that

help presenting and defining their characteristics. We evaluated our approach for

two network metrics (number of hops and latency) using data collected from the

PlanetLab platform as an initial proof of concept. However, we would like to test

out our system on a bigger set of data in order to support the claim of feasibility

of its implementation, as part of our future work.

In addition, we would like to study more metrics than the ones presented here

(namely hop numbers and latency), such as available bandwidth, uptime, network

connectivity and interest communities. Our results are encouraging and moti-

vate us to investigate further features, such re-enforcement learning in the system,

155

where after being presented with an estimate, nodes can feed-back into the system

in case of an error. This will help tune the system as time goes and can contribute

to more accurate estimates.

156

Chapter 5

Conclusion

Peer-to-peer networks break the classical networking architecture of client-server

relationship. By eliminating the server, or in general, the central point of authority,

reliability in the system becomes a major challenge. In this thesis, we presented

our contributions by adding reliable components and features to peer-to-peer net-

works. The algorithms described attempt to address several issues in peer-to-peer

networks including topologies, throughput, and network metrics. The problems

that we addressed are of complex nature, requiring us to reach into different areas

for possible solutions with satisfactory results.

In typical peer-to-peer networks, end nodes have no guarantee in terms of con-

nectivity. This often translates into the forming of “islands” where sub-networks

start to form that are highly connected, however, nodes within a sub-network, typ-

ically, are restricted to their immediate neighbors within the same sub-network.

In Chapter 2, we address this issue by proposing algorithms that can provide low-

diameter connectivity to the participating nodes. By doing so, however, we main-

157

tain the resilience of the network where an attacker has to invest a huge number

of nodes and resources in order to break the network into totally disconnected

sub-networks. Our algorithm, Phenix, borrows from the area of social networks,

where resilience and connectivity have been studied, defined and proven.

Phenix leverages the strengths of existing unstructured peer-to-peer networks

without inheriting their weaknesses and is capable of building topologies of nodes

that follow a power-law while being fully distributed requiring no central server,

thus, eliminating the possibility of a single point of failure in the system. We pre-

sented the design and evaluation of the algorithm and showed through extensive

analysis, simulation, and experimental results obtained from an implementation

on the PlanetLab testbed that Phenix is robust to network dynamics such as boot-

strapping mechanisms, joins/leaves, node failure and large-scale network attacks,

while maintaining low overhead when implemented in an experimental network.

From the application-level perspective, end-nodes often are involved in down-

loading objects or accessing resources. In Chapter 3, we optimize this download

process by taking advantage of the availability of multiple serving nodes. Our

contributions lie in looking at the problem from a game theory perspective, an

essential tool for defining the competitive nature of peer-to-peer nodes. We define

the utility of the client nodes and the serving nodes. We show the lack of Nash

equilibrium, which has the negative effect of driving the network into oscillation.

We then propose a set of strategies for the client and serving nodes designed to

maximize their respective utilities, while at the same time offering incentives for

nodes to be truthful.

In addition, and in order to provide stable and reliable throughput for client

158

nodes, we propose an algorithm based on Bayesian theorem [42] that would opti-

mize throughput based on the uncertainties of the network. We show the increase

in performance provided by our algorithm when compared to existing peer-to-

peer systems. In fact, our algorithm (labeled MSMT) provides reliability facing

changes in the networks as well as the dynamic nature of nodes. We achieve

such a behavior by building probabilistic profiles for nodes that get updated based

on previous observations. Such profiles are efficient, in terms of computational

resources, and sufficient when it comes to overall performance.

Since peer-to-peer networks lack a central point of authority by definition,

end-nodes have to rely on local information based on their partial view of the

network. However, in order to create reliable connections to their peer nodes, it is

often quite a complex problem, for nodes, to decide which subset of existing nodes

meet their requirements for reliability. Thus, the final contribution of this thesis,

as presented in Chapter 4, looked into providing estimates of network metrics in

peer-to-peer networks.

Since networks are quite complex, we argue that estimating any metric re-

lated to them, such as hop numbers or latency, cannot be carried on with a deter-

ministic approach. Thus, we propose a learning approach for scalable profiling

and predicting node metrics. Partial measurements are used to create anonymous

signature-like profiles for the participating nodes. These signatures are later used

as input to a trained Bayesian network module to estimate the different network

properties.

As a proof of concept for our proposed learning based techniques, we de-

signed a system for inferring the number of hops and latency among nodes. Each

159

node conducts measurements of their performance metrics to known pre-defined

landmarks. These measurements are typical of existing estimation techniques and

algorithms. However, our contribution to the field was two-fold. First, we used

the obtained measurements in order to create an anonymous signature-like profile

for each node. We showed that these profiles capture the behavior and character-

istics of the nodes and can be used to infer metrics. This, basically, allows us to

use these profiles by a Bayesian network estimator in order to provide nodes with

estimates of the proximity metrics to other nodes on the network. Our approach

for estimation constitutes an additional novel contribution to the field.

In Chapter 4, we presented our proposed system and performance results from

real network measurements obtained from the PlanetLab platform. We also stud-

ied the sensitivity of the system to different parameters including training sets,

measurements overhead, and network dynamics. Though the focus was mainly

on proximity metrics, our approach is general enough to be applied to infer other

metrics and benefit a wide range of applications.

Last but not least, in proposing all the above mentioned systems and algo-

rithms, we relied heavily on testing our ideas on a realistic environment, in order

to ensure their validity. In order to achieve this, we implemented them on the

PlanetLab platform [66]. As a result, we dealt with the errors, uncertainties, and

failures of PlanetLab, demonstrating that the proposed systems will be able to

deal with such realistic environments, and leading us to conclude that we have

contributed to improving the reliability of peer-to-peer networks where our algo-

rithms can work and have been studied under realistic conditions.

160

Chapter 6

My Publications as a Ph.D.

Candidate

In here, I list my publications during my years at Columbia University. The list

includes as well collaborations with industry researchers that either took place or

started during my internships.

6.1 Patents

• Rita H. Wouhaybi and John Vicente. Cognitive Peers. Intel Corporation.

• Puneet Sharma, Rita H. Wouhaybi and Sujata Banerjee. Bayesian Network

Metric Estimation. Hewlett Packard Company.

161

6.2 Journal Papers

• Rita H. Wouhaybi R. H., and Andrew T. Campbell, ”Building Resilient

Low-Diameter Peer-to-Peer Topologies,” Under submission to IEEE JSAC.

• Rita H. Wouhaybi, and Andrew T. Campbell, A Minimum-Signaling, Maximum-

Throughput Algorithm for Parallel Downloads in P2P Networks, Under

submission.

• Jeff Sedayao, John Vicente, Rita H. Wouhaybi, Hong Li, Manish Dave, San-

jay Rugta, and Stacy Purcell, ”PlanetLab and its Applicability to the Proac-

tive Enterprise,” Intel Technical Journal (ITJ), Volume 8, Issue 4, November

2004.

• R. R.-F. Liao, Rita H. Wouhaybi, and Andrew T. Campbell, ”Incentive En-

gineering in Wireless LAN Based Access Networks”, IEEE Journal of Se-

lected Areas in Communications (JSAC), Special Issue on Recent Advances

in Multimedia Wireless, Vol 21, No. 10, December 2003.

6.3 Conference Papers

• Rita H. Wouhaybi, Puneet Sharma, Sujata Banerjee, and Andrew T. Camp-

bell, A Learning Based Approach for Network Properties Inference, Under

submission.

• Rita H. Wouhaybi, and Andrew T. Campbell, ”Phenix: Supporting Resilient

Low-Diameter Peer-to-Peer Topologies”, IEEE Infocom 2004, Hong Kong,

162

March 7-11, 2004.

• R. R.-F. Liao, Rita H. Wouhaybi and Andrew T. Campbell. Incentive Engi-

neering in Wireless LAN Based Access Networks, Proc. 10th International

Conference on Network Protocols (ICNP 2002), Paris, France, November

12-15, 2002.

6.4 Workshops, Panels and Technical Reports

• Rita H. Wouhaybi, and Andrew T. Campbell, ”Building Resilient Low-

Diameter Peer-to-Peer Topologies,” Technical Report, December 2005.

• Panel: Knowledge Plane: Hype or Breakthrough in Managing Internet Net-

works, David Clark, Simon Crosby, Bob Briscoe, John Strassner, Bob Braden,

Dave Lewis, and Rita H. Wouhaybi, MMNS 2004, San Diego, October 3-6,

2004.

• Rita H. Wouhaybi, and Andrew T. Campbell, Keypeer: A Scalable, Re-

silient Distributed Public-Key System Using Chord, Technical Report.

• Jonathan Clemens, Rita H. Wouhaybi, and Hong Li, ”The Internet as a

Network of Fully-Connected Networks,” Adaptive and Resilient Comput-

ing Security (ARCS) Workshop, Santa Fe Institute, November 2004.

• Workshop Presentation: Rita H. Wouhaybi, ”Incentive Engineering in Wire-

less LAN-based Access Networks”, Dagstuhl Seminar on Quality of Ser-

163

vice in Networks and Distributed Systems, Dagstuhl, Germany, October

2002.

164

Bibliography

[1] L. A. Adamic. “The small world web,” Proceedings of the 3rd European

Conf. On Digital Libraries, vol. 1696 of Lecture notes in Computer Science,

Springer, 1999, pp. 443-452.

[2] L. A. Adamic, R. M. Lukose, and B. A. Huberman, “Local search in un-

structured networks,” Review chapter to appear in Handbook of Graphs and

Networks: From the Genome to the Internet, S. Bornholdt and H.G. Schuster

(eds.), Wiley-VCH, Berlin, 2003.

[3] D. Adkins, K. Lakshminarayanan, A. Perrig, and I. Stoica, “Towards a more

functional and secure network infrastructure,” UCB Technical Report No.

UCB/CSD-03-1242.

[4] M. Adler, R. Kumar, K. Ross, D. Rubenstein, D. Turner, D. Yao. “Optimal

Peer Selection in a Free-Market Peer-Resource Economy,” Second Work-

shop on the Economics of Peer-to-Peer Systems (P2P ECON), Cambridge,

Massachusetts, June 2004.

165

[5] L. A. N. Amaral, A. Scala, M. Barthelemy, and M. Stanley, “Classes of

small-world networks,” Proceedings of the National Academy of Sciences,

vol. 97, no. 21, October 2000.

[6] D. G. Andersen, “Mayday: distributed filtering for Internet services,” Pro-

ceedings of 4th Usenix Symposium on Internet Technologies and Systems,

Seattle, WA, 2003.

[7] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient over-

lay networks,” Proceedings of the 18th ACM Symposium on Operating Sys-

tems Principles (SOSP), 2001.

[8] S. Androutsellis-Theotokis and D. Spinellis. “A survey of peer-to-peer con-

tent distribution technologies,” ACM Computing Surveys, 36(4):335371,

December 2004.

[9] A-L Barabsi, and R. Albert, “Emergence of scaling in random networks,”

Science, 286:509, 1999.

[10] A-L Barabsi, and R. Albert, “Statistical mechanics of complex networks,”

Center for Self-Organizing Networks, University of Notre Dame, Notre

Dame, Indiana.

[11] Bayes Net Toolbox (BNT). http://bnt.sourceforge.net/.

[12] D. S. Bernsteing, Z. Feng, B. N. Levine, and S. Zilberstein. “Adaptive Peer

Selection,” Proceedings of the 2nd International Workshop on Peer-to-Peer

Systems (IPTPS), Berkeley, California, February 2003.

166

[13] BitTorrent. http://www.bittorrent.com/.

[14] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. “Feasibility of a

Serverless Distributed File System Deployed on an Existing Set of Desktop

PCs,” ACM SIGMETRICS 2000.

[15] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost. “Informed Content

Delivery Across Adaptive Overlay Networks,” ACM SIGCOMM 2002.

[16] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker, “Mak-

ing Gnutella-like P2P systems scalable,” Proceedings of the 2003 confer-

ence on Applications, technologies, architectures, and protocols for com-

puter communications (ACM Sigcomm 2003), pp. 407-418, 2003.

[17] Y. Chen, R. H. Katz and J. D. Kubiatowicz. “Dynamic Replica Placement for

Scalable Content Delivery.” In Proceedings of the First International Work-

shop on Peer-to-Peer Systems (IPTPS 2002), March 2002.

[18] N. Christin, A. S. Weigend, J. Chuang, “Content Availability, Pollution and

Poisoning in File Sharing Peer-to-Peer Networks,” ACM Conference on

Electronic Commerce 2005: 68-77.

[19] I. Clarke, O. Sandberg, and B. Wiley. “Freenet: A distributed anonymous

information storage and /etrieval system.” In Proceedings of the Workshop

on Design Issues in Anonymity and Unobservability, Berkeley, California,

June 2000.

167

[20] E. Cohen and S. Shenker. “Replication Strategies in Unstructured Peer-to-

Peer Networks.” Proceedings of the 2002 conference on Applications, tech-

nologies, architectures, and protocols for computer communications (ACM

Sigcomm 2002), pp. 61-72, 2002.

[21] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, J. Chase, “Correlating instru-

mentation data to system states: A building block for automated diagnosis

and control,” Operating Systems Design and Implementation (OSDI), San

Francisco, December 2004.

[22] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. “Vivaldi: A Decentralized

Network Coordinate System,” In the Proceedings of the ACM SIGCOMM

’04 Conference, Portland, Oregon, August 2004.

[23] L. Dairaine, L. Lancerica, and J. Lacan. “Enhancing Peer to Peer Parallel

Data Access with PeerFecT,” Networked Group Communication 2003: 254-

261.

[24] R. Diestel, Graph Theory. Springer 2000.

[25] R. Dornfest, “Email: A P2P Enabler?” O’Reilly OpenP2P,

http://www.oreillynet.com/pub/wlg/42.

[26] eDonkey. http://www.edonkey2000.com/.

[27] S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi, “Efficient broadcast

in structured P2P networks,” 2nd International Workshop on Peer-to-Peer

Systems (IPTPS ’03), Berkeley, CA, February 2003.

168

[28] eMule. http://www.emule.org/.

[29] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships

of the Internet topology,” Proceedings of the 1999 conference on Applica-

tions, technologies, architectures, and protocols for computer communica-

tions (ACM Sigcomm 1999), pp. 251-262, 1999.

[30] R. Fonseca, P. Sharma, S. Banerjee, S.J. Lee, S. Basu, “Distributed Query-

ing of Internet Distance Information,” IEEE Global Internet Symposium (in

conjunction with InfoCom 2005), Miami, Florida March 2005.

[31] P. Francis, S. Jamin, C. Jin,, D. Raz, Y. Shavitt, L. Zhang, “IDMaps: A

Global Internet Host Distance Estimation Service,” IEEE/ACM Trans. on

Networking, Oct. 2001.

[32] A. C. Fuqua, T. Ngan, and D. S. Wallach. “Economic Behavior of Peer-to-

Peer Storage Networks,” Workshop on Economics of Peer-to-Peer Systems

(Berkeley, California), June 2003.

[33] T.J. Giuli, P. Maniatis, M. Baker, D. S. H. Rosenthal, and M. Roussopou-

los, “Attrition Defenses for a Peer-to-Peer Digital Preservation System.”

Proceedings of the USENIX Annual Technical Conference, Anaheim, CA,

USA, April 2005.

[34] C. Gkantsidis, M. Ammar, and E. Zegura. “On the Effect of Large-Scale

Deployment of Parallel Downloading,” IEEE Workshop on Internet Appli-

cations (WIAPP’03), 2003.

169

[35] Gnucleus. The Gnutella Web Caching System.

http://gnucleus.sourceforge.net/.

[36] Gnutella Development Group. http://groups.yahoo.com/group/ gnutella-

dev/.

[37] The Gnutella RFC. http://rfc-gnutella.sourceforge.net/.

[38] K.P. Gummadi, R.J. Dunn, S. Saroiu, S.D. Gribble, H.M. Levy, and J Zahor-

jan. “Measurement, Modeling, and Analysis of a Peer-to-Peer File-Sharing

Workload,” Proceedings of the 19th ACM Symposium on Operating Sys-

tems Principles (SOSP-19), Bolton Landing, NY, USA, October 2003.

[39] K. P. Gummadi, S. Saroiu, S. D. Gribble., “King: Estimating latency be-

tween arbitrary Internet end hosts,” Proceedings of SIGCOMM IMW 2002,

November 2002, Marseille, France.

[40] M. Gupta, P. Judge, and M. Ammar. “A Reputation System for Peer-to-Peer

Networks.” In Proceedings of the NOSSDAV’03 Conference, Monterey, CA,

June 1-3 2003.

[41] G. Hardin. “The Tragedy of the Commons,” Science 162, 1243-1248 (1968).

[42] G. R. Iversen, Bayesian Statistical Inference. Sage University Papers Series,

Quantitative Applications in the Social Sciences ; No. 07-043. Beverly Hills,

Calif. Sage Publications, Inc., 1984.

[43] M. Jovanovic, Modeling Large-scale Peer-to-Peer Networks and a Case

Study of Gnutella. Master’s thesis, University of Cincinnati, 2001.

170

[44] JTella. http://jtella.sourceforge.net/

[45] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. “The Eigentrust Al-

gorithm for Reputation Management in p2p Networks.” In Proceedings of

the twelfth international conference on World Wide Web, pages 640-651.

ACM Press, 2003.

[46] A. D. Keromytis, V. Misra, and D. Rubenstein, “SOS: secure overlay ser-

vices,” Proceedings of the 2002 conference on Applications, technologies,

architectures, and protocols for computer communications (ACM Sigcomm

2002), pp. 61-72, 2002.

[47] B. J. Kim, C. N. Yoon, S. K. Han, and H. Jeong “Path finding strategies in

scale-free networks,” Phys. Rev. E., 65:027103, 2002.

[48] S. G. M. Koo, C. Rosenberg, and D. Xu. “Analysis of Parallel Downloading

for Large File Distribution,” Proceedings of IEEE International Workshop

on Future Trends in Distributed Computing Systems (FTDCS 2003), San

Juan, PR, May 2003.

[49] P. L. Krapivsky, G. J. Rodgers, and S. Redner, “Degree distributions of grow-

ing random networks,” Phys. Rev. Lett., 86:5401, 2001.

[50] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R.

Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.

“OceanStore: An Architecture for Global-Scale Persistent Storage,” Pro-

ceedings of the Ninth international Conference on Architectural Support for

171

Programming Languages and Operating Systems (ASPLOS 2000), Novem-

ber 2000.

[51] J. Lacan, L. Lancérica, and L. Dairaine. “Speedup of Data Access Using Er-

ror Correcting Codes in Peer-to-Peer Networks,” Proceedings of IEEE Inter-

national Symposium on Information Theory (ISIT-2003), p. 471, Yokohama,

Japan, June 2003

[52] J. Lacan, L. Lancérica, and L. Dairaine. “When FEC Speed up Data Access

in P2P Networks,” IDMS/PROMS 2002: 26-36.

[53] Lime Wire LLC. LimeWire. http://www.limewire.com/.

[54] Q. Lv, S. Ratnasamy and S. Shenker. “Can Heterogeneity Make Gnutella

Scalable?” In Proceedings of the First International Workshop on Peer-to-

Peer Systems (IPTPS 2002), March 2002.

[55] Matlab. http://www.mathworks.com/products/ matlab/.

[56] P. Maymounkov and D. Mazières. “Kademlia: A Peer-to-peer Information

System Based on the XOR Metric,” Proceedings of 1st International Work-

shop on Peer-to-peer Systems, Cambridge, Massachusetts, March 2002.

[57] Merriam-Webster online. http://www.m-w.com/cgi-

bin/dictionary?book=Dictionary&va=resilience

[58] Napster Inc. (Formerly Roxio, Inc.). Napster. http://www.napster.com/.

172

[59] T. S. E. Ng, H. Zhang, “Predicting Internet Network Distance with

Coordinates-Based Approaches”, Proceedings of IEEE INFOCOM’02, New

York, June 2002.

[60] A. Oram (Ed), Peer-to-Peer:Harnessing the Power of Disruptive Technolo-

gies. Oreilly 2001.

[61] Overnet. http://www.overnet.com/.

[62] V. Padmanabhan, L. Qiu, and H. Wang, “Server-based Inference of Internet

Link Lossiness,” In Proceedings of IEEE INFOCOM’03, San Francisco, CA,

USA, April 2003.

[63] G. Pandurangan, P. Raghavan, and E. Upfal, “Building low-diameter P2P

networks,” IEEE Journal on Selected Areas in Communications, Vol. 21, pp.

995-1002, Aug. 2003.

[64] G. Pandurangan, P. Raghavan, and E. Upfal, “Building P2P networks with

good topological properties,” Technical Report, 2001.

[65] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, S. Bhatti, “Lighthouses for Scal-

able Distributed Location,” IPTPS ’03.

[66] PlanetLab. http://www.planet-lab.org/

[67] D. Qiu and R. Srikant. “Modeling and Performance Analysis of BitTorrent-

Like Peer-to-Peer Networks,” Proceedings of ACM SIGCOMM, Portland,

Oregon, September 2004.

173

[68] Query Routing for the Gnutella Network, Version 1.0,

http://www.limewire.com/developer/query routing/keyword %20rout-

ing.htm

[69] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scal-

able content-addressable network,” Proceedings of the 2001 conference on

Applications, technologies, architectures, and protocols for computer com-

munications (ACM Sigcomm 2001), pp. 161-172, 2001.

[70] S. Ratnasamy, M. Handley, R. Karp, S. Shenker, “Topologically-Aware

Overlay Construction and Server Selection,” Proceedings of Infocom 2002.

[71] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and J.

Kubiatowicz. “Maintenance-Free Global Data Storage,” IEEE Internet Com-

puting, pp. 40-49, 2001.

[72] J. Ritter, “Why gnutella can’t scale. no, really,”

http://www.darkridge.com/ jpr5/doc/gnutella.html, 2001.

[73] P. Rodriguez, A. Kirpal, and E. W. Biersack. “Parallel-Access for Mirror

Sites in the Internet,” IEEE Infocom 2000, March 2000.

[74] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object Lo-

cation, and Routing for Large-Scale Peer-to-Peer Systems.” In proceed-

ings Middleware 2001 : IFIP/ACM International Conference on Distributed

Systems Platforms. Heidelberg, Germany, November 12-16, 2001. Lecture

Notes in Computer Science, Volume 2218, Jan 2001, Page 329.

174

[75] S. Saroiu, P. K. Gummadi, S. D. Gribble, “A Measurement Study of Peer-

to-Peer File Sharing Systems,” Proceedings of Multimedia Computing and

Networking (MMCN) 2002, San Jose, CA, USA, January 2002.

[76] Scriptroute. http://www.cs.washington.edu/ re-

search/networking/scriptroute/.

[77] S. Sen, and J. Wang, “Analyzing peer-to-peer traffic across large networks,”

Proceedings of the second ACM SIGCOMM Workshop on Internet mea-

surement workshop, Marseille, France, pp. 137-150, 2002.

[78] Sharman Networks LTD. KaZaA Media Desktop. http://www.kazaa.com/.

[79] S. Srinivasan and E. Zegura, “M-coop:A Scalable Infrastructure for Network

Measurement,” Third IEEE Workshop on Internet Applications (WIAPP

’03).

[80] S. Srinivasan, and E. Zegura, “Network Measurement as a Cooperative En-

terprise,” IPTPS ’02.

[81] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,

“Chord: a scalable peer-to-peer lookup service for internet applications,”

Proceedings of the 2001 conference on applications, technologies, architec-

tures, and protocols for computer communications (ACM Sigcomm 2001),

pp. 149-160, 2001.

[82] StreamCast. Morpheus. http://www.morpheus.com/.

175

[83] T. Sundsted, “The practice of peer-to-peer computing: Trust and se-

curity in peer-to-peer networks,” IBM DeveloperWorks, http://www-

128.ibm.com/developerworks/java/library/j-p2ptrust/.

[84] L. Tang, and M. Crovella, “Virtual Landmarks for the Internet,” Internet

Measurement Conference Oct 2003.

[85] Ultrapeers: Another Step Towards Gnutella Scalability.

http://groups.yahoo.com/group/the gdf/files/Proposals/Ultrapeer/ Ultra-

peers 1.0.htm

[86] M. Waldman, A. D. Rubin, and L. F. Cranor, “Publius: A robust, tamper-

evident, censorship-resistant web publishing system,” In Proceedings of the

9th USENIX Security Symposium, August 2000.

[87] D. J. Watts, and S. H. Strogatz, “Collective dynamics of ‘small-world’ net-

works,” Nature 393, 440-442, 1998.

[88] H. Weatherspoon, and J. Kubiatowicz. “Erasure Coding vs. Replication: A

Quantitative Comparison,” Proceedings of the First International Workshop

on Peer-to-Peer Systems (IPTPS 2002), March 2002.

[89] B. Wong, A. Slivkins, and E.G. Sirer, “Meridian: A Lightweight Net-

work Location Service Without Virtual Corrdinates,” In the Proceedings of

the ACM SIGCOMM ’05 Conference, Philadelphia, Pennsylvania, August

2005.

176

[90] R. H. Wouhaybi, and A. T. Campbell, “Phenix: Supporting Resilient Low-

Diameter Peer-to-Peer Topologies,” IEEE INFOCOM’2004, Hong Kong,

China, March 7-11, 2004.

[91] L. Xiong and L. Liu. “Building Trust in Decentralized Peer-to-Peer Commu-

nities.” In Proceedings of the International Conference on Electronic Com-

merce Research, October 2002.

[92] Z. Xu, P. Sharma, S.J. Lee and S. Banerjee, “Netvigator: Scalable Network

Proximity Estimation,” HP Labs Technical Report, HPL-2004-28.

[93] X. Yang, and G. de Veciana. “Service Capacity of Peer to Peer Networks,”

IEEE Infocom 2004, Hong Kong, China, March 2004.

[94] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubi-

atowicz, “Tapestry: A Resilient Global-scale Overlay for Service Deploy-

ment,” IEEE Journal on Selected Areas in Communications, Vol. 22, pp.

41-53, Jan 2004.

