
A Continuous Media Transport and Orchestration Service

Andrew Campbell, Geoff Coulson, Francisco Garcia and David Hutchkon

Computing Department

Engineering Building

Lancaster University

Lancaster LAl 4YR, UK

E.mail: mpg@comp. lanes.ac. uk

ABSTRACT

The desire lo transfer continuous media such a.r digital audio
and video across packet switched networks imposes a number

of new requirements on transport level communication

services. This paper identifies a number of these requirements
in the context of an experimental distributed multimedia

infrastructure, and reports on research which addresses some of

the associated issues. Particular attention is paid to two areas:

(i) extended Quality of Service (QoS) provision; and (ii)

support for the co-ordination of multiple related connections.

We then describe an application level service, known as an

orchetstrator, which performs synchronisation functions over

multiple related transport connections. We also outline the

design and implementation of a continuous media transport
service which meets the identljled requirements. Finally, we

outline the way in which the orchestrater and transport
services are integrated into an object-based distributed
multimedia application platform.

1. Introduction

The evolution of multimedia computing is being
influenced both by the requirements of the new application
areas and by the increasing capabilities of high-performance

multiservice networks. Multiservice communications
technology is evolving rapidly in high bandwidth MANs, such

as DQDB and FDDI-11, and in broadband ISDN. Currently,
broadband transport mechanisms such as ATM are capable of

supporting a wide range of multimedia platforms with diverse

QoS requirements, from low speed voice (32 Kbit/s)
transmission, to very high speed HDTV (100-150 Mbit/s).

There are many application areas where the need for

distributed multimedia capabilities is central. A recent survey
[Williams,91] characterises such application areas as: office

automation, service industry applications, retail applications,

domestic applications, science and engineering, and cultural

activities. The single most significant attribute of such
applications is the incorporation of continuous media,
particularly audio and video, although the transmission of
other data types such as image, text and graphics is usually
also involved. The significance of continuous media

communications lies in the real-time, isochronous nature of

the traffic which is not adequately supported by existing
communications sub-systems [Blair,92].

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwisa, or to rapublish, raquiras a fee

and/or specific permission.

COMM’92-8/92/MD, USA

~ 1992 ACM 0-89791 -526 -71921000810099 . ..$1 .50

This paper reports on work which addresses the need for

specialised transport services for continuous media traffic. We
also highlight the need for co-ordination, or orchestration, of

multiple related continuous media streams. A familiar example

of this is the support of lip synchronisation of video and
sound-track components of a film which are stored and

transmitted as separate items.

The paper is structured as follows. We first describe, in

section 2, the Lancaster experimental distributed multimedia

platform. Then we present, in section 3, specific requirements

which have arisen from our experiences with the platform, and

also from studies of both contemporary and projected
multimedia applications. In section 4, we detail our design for

a continuous media transport service interface. This is followed

by a description of our orchestration architecture in section 5,
and a detailed presentation of the lowest level of the
architecture in section 6. Finally, in section 7 we offer our

conclusions.

2. An Experimental Distributed Multimedia

Infrastructure

2.1 Overview of the Infrastructure

The work described in this paper was carried out in the

context of an experimental distributed multimedia

infras~ucture which we have built over the past two years. The
work has been carried out partly within the MNI project (funded

under the UK SERC Specially Promoted Programme in

Integrated Multiservice Communication Networks and co-
sponsored by British Telecom Labs), and partly within the

European Commission funded 0S1 95 project. The ultimate aim

of the latter project is to help develop new, 0S1 standard,

transport protocols suited to the new environment of high-

speed networks and distributed multimedia applications. In this

paper we express our proposals for transport services in an

OSI-compatible form. However, the 0S1 conventions do not

imply that the results of our work are applicable only to 0S1;
in particular, they may also be applied in the TCPAP world.

Our infrastructure is built around the architecture shown in
figure 1. In this model, distributed multimedia applications
view an object-based distributed application platform

[Coulson,90] based on the Advanced Networked Systems

Architecture (ANSA) [APM,89], with extensions for handling

continuous media (CM) developed at Lancaster University. The

platform isolates applications from the complexities of

multimedia devices and CM communications. In our current

configuration the platform runs transparently over two
heterogeneous environments. One is a standard Ethernet/UNIX
environment with Sun Sparcstations with digital audio and
video boards, and the other is an experimental transputer based

99

environment consisting of multimedia workstations and a real-

time high-speed network emulator. The Ethernet environment

is used for prototypirrg and application development, but is
unable to provide the necessary real-time performance. Once

applications have been developed in this environment they are

simply moved over to the transputer based system without

requiring any changes.

As shown in figure 1, the transport sub-system supports

the application platform. The orchestration services, which

permit the co-ordination of related transport connections, are
layered on top of the transport sub-system, but also extend up

into the application platform. In the Ethernet environment the

transport sub-system is TCPAP, but in the transputer based
environment it is an experimental CM protocol [Shepherd,91]

with rate-based flow control [Cheriton,86], [Chesson,88],

[Clark,88].

I DISTRIBUTED MULTIMEDIA
APPIJCATtONS I

‘Ubsystemi=Transport

Figure 1: The Lancaster multimedia architecture.

The transputer based infrastructure consists of PCs and
Sun/UNIX machines augmented with Multimedia Network

Int e ~face (MNI) units [B all,90]. These units attach to

conventional workstations and are responsible for interfacing

the workstation to the high-speed network. In addition, they

transform the host machine into a multimedia workstation by

managing all CM sources and sinks at that workstation.
Applications run on the host machine, and interface via RPC to

the object-based platform which runs on the MNI unit.

Each MNI unit is composed of a cluster of six transputers.
Two of these are respectively dedicated to audio and video A/D
and D/A conversion. Of the remaining four transputers in the

configuration, one runs the object-based platform, another
interfaces to the network, and the remaining pair run the rate-
hased transport protocol. In our experimental network

configuration we have two PC based multimedia workstations,

a Sun 4/UNIX based multimedia workstation and a PC based
storage server.

2.2 The Distributed Multimedia Platform

Distributed multimedia applications do not interact

directly with the transport service interface. Instead, all
communications services are viewed through two
complementary abstractions: -

Invocation

At the platform level, remote interaction is modelled as
the invocation of named operations in abstract data type
(ADT) interfaces which are accessed in a location

independent fashion. Invocation is implemented by
means of an RPC protocol known as REX [APM,89]

extended to provide the delay bounded communication

required for the real-time control of multimedia

applications [Coulson,90]. The invocation style of
communication is typically used for control and event

information. All CM communications are provided by the

Stream abstraction described next.

Streams

Streams are the primary extension we have made to the
basic ANSA model. They represent underlying CM

connections but, in keeping with the ANSA philosophy,

they appear as ADT services with first class status at tbe

programming language level. In the supporting layers,

CM connections are provided by the protocol service

described in this paper, but users at the platform level are
isolated from the complexity of the protocol service

interface. Streams contain operations to manipulate QoS

in media specific terms, and also permit complex

connection topologies to be established. Further details
of Stream services are presented in [Coulson,9 1].

We have built a number of applications which run on this

platform. The largest is a microscope controller developed in

collaboration with a large multi-national chemical company.

This provides groups of scientists with remote access to any

one of a number of electron or optical microscopes located on a

network. Each microscope can send its video output to a

number of user workstations, and users can also create

multimedia documents containing video sequences and voice
annotation. In addition to the microscope application, several

other test applications have been implemented including an

audiovisual telephone and a video disc jockey console.

3. Requirements of Continuous Media
Communications

This section summarises requirements for CM

communications which were derived from the design of the

Lancaster application platform. We have also gathered

requirements from a wide ranging survey of both current and

projected distributed multimedia applications. Further details

of this survey are presented in [Williams,91]; in this paper, we
concentrate exclusively on the implications of the survey for

tbe design of CM transport services.

3.1 Simplex Connections

It is preferable in CM transport systems to provide

unidirectional (simplex) virtual circuits rather than the more
conventional full duplex VCS. This follows from the

inherently unidirectional nature of many CM transmissions;

for example, a remote camera to local video monitor

connection is typical in a multimedia conferencing

environment. The Stream abstraction at the platform level is

also unidirectional. As resources must be explicitly reserved

for CM VCS (see later), it is wasteful of network capacity to

support a duplex VC if only unidirectional transfer is required,
and if full duplex communication is required, it is always
possible to establish a second VC. An additional disadvantage
of full duplex VCS for CM transfers is that, in the general case,

the quality of service required of the two directions will be
different. For example it may be desired to send colour video in
one direction and monochrome in the other: again the more

general solution is to use two separate simplex VCS.

100

3.2 QoS Support

Quality of Service (QoS) parameters in current

communications infrastructures allow the specification of user
requirements which may or may not be supported by underlying

networks. In the 0S1 framework, parameters dealing with

connection establishment, release, and data transfer may be

specified, but the required encc~ding necessary to allow a
transport user to access them is not typically provided by

transport protocols. Usually, these values are agreed between
the carrier and the customer at the time the customer subscribes

to a particular network service. Another function of these

parameters is to form a basis for charging customers for pre-
specified services.

With the emergence of digital video, audio, and other CM

types, increased requirements are placed upon QoS support. For

example, to support video connections high throughput is

required and therefore high bandwidth guarantees will have to

be made. Audio, on the other hand, will not require such a high
bmdwidth. Additionally, both video and audio data can tolerate
some percentage loss of packets and bit errors, this of course

being dependent on the encoding techniques employed for the

individual media.

End-to-end delay and delay jitter (i.e. variance in delay) are
new factors which must be taken into account for CM transfers.

In particular, interactive CM connections impose stringent
delay constraints, derived from human perceptual thresholds,
which must not be violated. Delay jitter must also be kept

within rigourous bounds to preserve the intelligibility of audio

and voice information.

Because of the above requirements, future communication
infrastructures must be enhanced to support more flexible and

dynamic QoS selection so that transport users are able to

precisely tailor individual transport connections to particular
requirements. A set of suitable QoS parameters [Hehmann,90]

which are meaningful to the trwrsport level and the levels
below, and which may be employed in characterizing
individual CM connections, is as follows :-

. Throughput

. End-to-end delay

, Delay jitter

. Packet Error Rates

. Bit Error Rates

At connection establishment time it should be possible to

quantify and express preferred, acceptable and unacceptable
tolerance levels for each of these parameters, The requested

parameters should then undergo full end-to-end option

negotiation. The finally agreed on tolerance levels should then
be guaranteed for the duration of the connection (or at least an
indication should be provided if the contracted values are

violated: this is known as a soft guarantee).

3.3 Dynamic QoS Control

In distributed multimedia systems it is not sufficient to
specify a QoS level, protocol profile and service class at
connection time which will statically remain in force for the
lifetime of the connection. A more flexible interface is needed
whereby users can dynamically alter the QoS of a VC while it is

active. This is required because CM information has extremely

diverse QoS demands and because these demands frequently
vary during the course of a single session. Such dynamicity is

illustrated in the following examples:-

. if ‘soft’ guarantees of QoS level are selected at connection

time, the QoS level may degrade, and this will result in the

transport user being informed of the degradation. Rather
than simply closing the VC down or accepting the

degradation, the user may want to re-assess his priorities

and, for example, close down another VC to save resources
and then upgrade the first VC.

. the user may use the same VC successively for different

purposes at different times. Examples are the transmission
of full motion video interspersed with intervals of slow

motion, or upgrading from monochrome to colour video,

or telephone quality to CD quality audio. Another

possibility is the in-service insertion of a compression
module which may reduce the bandwidth requirement but

increase the susceptibility to errors.

Of course, to permit QoS negotiation at the transport
service interface, the necessmy support must be provided either
within or below the transport protocol itself. Thus

mechanisms are required to alter link-level bandwidths and/ or
processing and buffering resources on intermediate nodes. One
possibility is the use of re-configuration at the network level

in the context of network layer resource reservation protocols
such as the real-time channel administration protocol
[Banerjea,91] or ST-II [Topolcic,90] where resource

reservations are made at intermediate nodes. Even when a

connection must be torn down and re-established in order to

achieve an alteration in QoS level, there are strong arguments

for doing this transparently behind the transport service

interface. It allows the maintenance of buffers and protocol
state over the successive connections which may minimise the

delay before data flow may resume; it also eases the

management burden on the transport user.

3.4 Profile and Class of Service Selection

Although we advocate the use of QoS parameterisation of
connections, we do not envisage a single fully generic

transport protocol that can cater for all types of traffic equally
well. Instead, due to the diverse nature of distributed multimedia

applications, different protocols will be required for different
types of traffic and control data. We thus envisage that

communication sub-systems of the future will be composed of

horizontal and vertical subdivisions in a protocol matrix. The

user will be required to select a protocol profile that will

provide a suitable service for each traffic type without
duplication of functionality at the various protocol layers.

In addition to the provision of profile selection, we see

the need for an extension of the more traditional notion of

class of service selection employed in current 0S1 standards. In
the current 0S1 framework, classes of transport service are

selected according to the network service over which

connections are to operate; that is whether the network is
connectionless, connection oriented, reliable, unreliable etc..

For future multimedia applications, the notion of class of
service selection could be extended to encompass more user
oriented functions. For example, to provide the required

flexibility in the area of error control, it should be possible for
transport users to select from a set of options such as (i) error

101

detection and indication, (ii) error detection and correction, and

(iii) error detection, correction, and indication.

3.5 Remote Connection Facility

In computer supported cooperative work (CSCW) and

multimedia conferencing applications, it is natural to structure

programs in terms of multiple co-operating modules which

communicate via inter-process communication techniques. In
this sort of environment it is often convenient for

management objects (e.g. Stream services in our application

platform) to request that transport services be instantiated for

transport service access points (TSAPS) used by other parts of
the application [Davies,91]. For example, such a management
entity may request that a display device’s TSAP be connected to

a remote video server, camera, etc..

CEt-tKl
Host 1

“b

Host 2
Key:

n

Conne (A, B) ~ Transport‘,,
~~; layer

.,
.,

Host 3
@ ‘I&I:~;iyrvice

Figure 2: Remote connect scenario.

A similar remote connect requirement may arise where a
multimedia workstation is composed of multiple loosely

coupled processor memory pairs [Ball,90]. In such an

environment it is likely that a management object running on
one processor may ask for transport services to be instantiated

at TSAPS on other processors. It is even possible that such

managers may request transport services to be instantiated for
TSAPS located on remote end-systems. In this case, initiator
and sourcef sink addresses will all be completely distinct. See

figure 2 which illustrates a management object on host 3
making a request to connect TSAP A on host 1 to TSAP B on

host 2. In all such cases, it is necessary that the transport

service passes all management responses, such as connects or
disconnects, to both the initiator and source addresses.

3.6 Synchronisation

There is no support in current transport service

architectures for co-ordinating multiple related transport VCS.

Transport VCS are seen as being entirely distinct from one
another, and any relationship must be formed in an application

dependent way in the 0S1 application layer. However, in

distributed multimedia systems there is frequently a need to
form such relationships between VCS. The prime requirement is
in the area of CM synchronisation, although there are other
possibilities such as linking QoS degradations on one VC to
corresponding compensations on another.

To begin to address the requirements in the area of CM
synchronisation, we identify two categories of

synchronisation as follows:-

. event-driven synchronisation is the act of notifying that a
event or set of events has taken place, and then causing an

associated action or actions to take place. This must all be
done in a timely manner due to the real-time nature of CM
communication, For example, a user clicking on the stop

button relating to a video play-out should cause the play-

out to stop instantaneously.

. continuous synchronisation is an on-going commitment

to a repetitive pattern of event driven synchronisation

relationships such as the ‘lip sync’ relationship between

the individual frames in an audio and video components of

a play-out.

An example application scenario where it is required to
form a continuous synchronisation relationship is a language

laboratory where separate audio tracks in different languages

are stored on a single server but are to be distributed to different
workstations in a real-time interactive language lesson.

Another example arises where it is required to associate
captions from a text file with an on-going video play-out. In
both of these scenarios there is a need to maintain a tight on-
going linkage between real-time CM information streams.

We refer to these sorts of linkage as orchestration, and

have developed an architecture to model and realise such
relationships. We employ the term ‘orchestration’ rather than

‘synchronisation’ for two reasons. Firstly, as just stated, cross-

stream relationships may encompass more than just temporal
co-ordination, and secondly the term synchronisation is

already overloaded and given a different emphasis in current

0S1 usage (the 0S1 concept pertains to checkpointing and state
synchronisation between peer entities).

Although it is possible in some situations to support

continuous synchronisation simply by multiplexing the

different media onto a single VC in the correct ratios, there are
strong arguments against this solution [Tennenhouse,90]:-

.

.

.

.

the overhead and complexity of multiplexing/

demultiplexing is significant, especially when different

encodingl compression schemes are used for different
media; this can lead to excessive real-time delays,
especially where it would otherwise be possible to

interface direetly to hardware such as frame grabbers etc.

the opportunity to process separate VCS in parallel is
lost, thus reducing potential performance;

multiplexing leads to a combined QoS which must be
sufficient for the most demanding medium; this may be

both expensive and unsuited to some component media

types;

multiplexing is not an option where media originate from
differ~nt sources.

An analysis of the continuous synchronisation problem
suggests that the following support should be provided by the
infrastructure. Section 6 illustrates how our design satisfies

these requirements.

. the ability to start related CM data flows precisely
together. If the relationship is not correctly initiated,
there is no possibility of maintaining a correct temporal

relationship.

. the ability to start and stop the flow of CM information

on sets of related connections in an atomic and near

instantaneous manner. Also, if the data flow on a
connection is stopped and the source is, say, fast

forwarded to another point in the stored media, the play-

102

●

✎

out should resume from the new position on re-start

without old data being left in the communications buffers.

the ability to create related VCS with the same QoS. This

is so that the connections will maintain a compatible
temporal transmission rate in the required ratio. For

example, it may be required to associate ten sound samples

with each video frame in the above mentioned scenario to

maintain lip-sync.

the ability to monitor the on-going temporal relationship

between related VCS, and to regul~te the VCS to perfofi
fine grained corrections if synchronisation is being lost.

It is almost inevitable that related connections will

eventually drift out of synchronisation. This is due to such
factors as the potentially long duration of CM
connections in typical applications, the inevitable

discrepancies between remote clock rates, and temporary
‘glitches’ occuring in individual VCS.

Finally, note that the need for continuous
synchronisation support is only required when all the CM

sources to be orchestrated are stored. Whenever live sources,

such as the output from a camera of a microphone, are
involved, it is only necessary to ensure that the latency of the

VC is compatible over related VCs. This is because with live

media, there is no control over when the information flow
starts (it depends when the camera is switched on!), and no

possibility of altering the speed ofalive media flow. Evenon

a low grade connection, live media with constant logical rates
will always play out in real-time albeit with varying degrees of

delay, jitter and packet loss.

3.7 Continuous Media Data Transfer

Conventional data transfer interfaces to transport

services, such as the sendo and recvo systems calls found in
interfaces such as TLI [Olander,86] and Berkeley sockets
[Berkeley,86], or the data. request and data. indication

primitives in 0S1, are not optimal for CM transmissions. This
is because such interfaces have no model of an on-going

commitment to service isochronous CM information. Each

buffer of data to be transferred is treated as a separate entity
with no particular temporal relationship to its successors and

predecessors.

The conventional interfaces are also inefficient in a CM

context. Each time a system call such as sendo or recvo is
issued, three pieces of information are passed [Govindan,91]:

synchronisation information (i.e. it is implicit that the data

transfer should commence ‘now’), dafa location (i.e. the

location of the data to be transferred), and data transfer
(perhaps involving a copy to or from system space). However,

it is possible in a CM systems to avoid specifying all this
information for each unit of CM information. This is because

the isochronous characteristics of application transport data
transfers are implicitly known and thus the repetitive sequence
of calls becomes unnecessary.

Our experiments in this area favour the adoption of a data

transfer interface based around shared circular buffers with
access contention between separate application and protocol

threads controlled by semaphores. The advantages of such a
scheme are as follows:-

. data location is implicit in the value of pointers
associated with the shered buffers, and no data copying is

.

.

.

involved (especially in situations where the shared

memory may be mapped directly into frame buffers etc.);

as long as the application and the protocol are running at

compatible rates no explicit producer/ consumer
synchronisation need take place;

the state of the shared buffers can be used by specialised

real-time operating system schedulers [Govindan,91] to

ensure that applications processing CM respect the
isochronous nature of the data;

the time spent blocking by both the application and the

transport entity can be measured by monitoring the state
of the synchronisation semaphores. These statist ics are
used by the orchestration service as will be described in

section 6.

At the data transfer interface we support the notion of
logical data units for structuring CM. The boundaries of these
units are preserved irrespective of their size in bytes. We apply

the principle that at each time period there will always be

something to transmit (i.e. one logical unit) even when CM

data is variable bit rate encoded.

3.8 Group and Multicast Communications

The requirement for multicast arises from the nature of
projected multimedia applications, many of which will be in

the area of CSCW. In such applications a multicast facility is

required for both transactional communication (RPC), and for
CM connections. In transactional multicasts, it may be

required that any member of the multicast group should be
capable of transfeming information to all other members at any
time. However, in a CM based multicast session a simple 1:N

topology is usually all that is required. Appropriate support for
group addressing must be provided in the transport layer, but
multicast support will be the responsibility of the underlying

communications sub-system.

4. Design of the Continuous Media Transport

Service

We now detail the design of the CM transport service used
in the Lancaster experimental infrastructure. Details of the

underlying transport protocol may be found in [Shepherd,9 1].

Because the emphasis of this paper is orchestration, we do not
discuss all the issues raised in section 3: in particular multicast

issues are not discussed further. We also omit discussion of

some of the more traditional constituents of a complete

transport system such as TSAP allocation, datagram services

and priority mechanisms. We do, however, assume that such

features will be available in the standard protocol matrix that
we have proposed.

4.1 Connection Management Services

Connection management services deal with the
establishment, release, and management of transport VCS. In

the Lancaster architecture, these services are used by Stream

objects and are not directly seen by applications.

4.1.1 Connection Establishment

Connection establishment is a fully confirmed service
similar in nature to that employed in the 0S1 reference model.
Full option negotiation of QoS is performed on connection,

and in keeping with the requirements for CM VCS, the

103

negotiated QoS represents the required characteristics of the

media in one direction only, from source to sink.

Three addresses are provided with each primitive to cater

for remote connects as discussed in section 3.5. The initiator
address represents the caller of the service and the destination

and source addresses represent the two end-points which are to
be connected. The addresses contain a network address to
identify the end-system, and a TSAP to identify a unique

endpoint within the addressed end-system. The primitives

employed for connection establishment and release, together
with their associated parameters, are outlined in Table 1. The

QoS tolerance levels are expressed in terms of upper, lower and

preferred limits of the QoS parameters described in section 3.2
and the protocol and class of service parameters are as

discussed in section 3.4.

Primitives

T-Connect. request

T-Connect. indication
T-Connect. response

T-Connect. confirm

T-Disconnect. request

T-Disconnect. indication

Parameters

initiator-address, src-

address, dest-address,

protocol, class-of-
service,

QoS-tolerance-levels, vc-

id
,,

,,
,,

initiator-address, vc-id

initiator-address, vc-id,

reason

Table I: Connection establishment and
relea.re primitives and their associated

parameters.

We now illustrate the implementation of the remote

connect facility. Note that where it is required to form a VC in
the conventional sense (i.e. where th~ initiator is also the

sender), the caller simply sets the initiator to be the same as

the source address.

When the initiating application generates a T-
Connect. request primitive, this is relayed to the source entity,

where on arrival a T-Connect. indication is issued to the

application attached to the addressed TSAP. The source
application can then accept the call with a T-

Connect. response, or reject it with a T-Disconnect. request. If

the request is accepted, the transport entity generates a T-
Connect. request and from this point onwards the conventional

connect protocol is followed. The outcome of this is

eventually relayed back to the application which initiated the
call. If the call is rejected then the initiating application

receives a T-Disconnect. indication. A successful remote
connect is illustrated in figure 3. Note that the request may be
rejected by the source, the destination or the network provider.

Inittitor

T-Connect,
requ=t ~

T-Connect,
confirm

Source

T-Connect.

--

B-
indicad on

T-Connect.

response

T-Connect. -

request

.4 T-Connect.

confirm

Desttluztwn

T-Connect.
~ indication

~ T-Connect

reqmnse

Figure 3: Successful remote connection
establishment.

It is also possible, of course, for an initiator to request
that a VC be remotely released. A T-Disconnect.request is sent

to the source or destination where on arrival a T-

Disconnect. indication is issued to the attached application.
The application may then issue a T-Disconnect. request which

will be relaved to the other end-Doint. and on arrival will

generate a T“-Disconnect.indication~

Primitive Parameters

~-QoS.indication initiator-address, src -

dest-address, initial-QoS-

tolerance-levels,

sample-period, vc-id,
cnrrent-QoS-tolerance-

Table 2: Primitive issued by transport
service to notfj transport user of

degradation of negotiated QoS.

4.1.2 Notification of QoS Degradation

If the class of service selected from the transport protocol
for a particular VC incorporates the error indic~tion- facilitv

(see s~ction 3.4), a primitive is required to convey to th~

transport user any errors or QoS degradations which may have

occurred. This primitive is generated by the transport entity
monitoring the VC over a suitable sample period. The

primitive and its parameters are set out in Table 2. The
primitive will identify the VC, provide the negotiated QoS
tolerance levels, the sample period, the measured performance

of the negotiated QoS tolerance levels within that sample
period, and an error number to identify which of the tolerance

levels have suffered degradation.

4.1.3 QoS Re-negotiation

For QoS re-negotiation, a fully confirmed service with full
option negotiation similar to that used for connection
establishment is employed. The primitive is detailed in Table
3. The time sequence diagram in figure 3 above is also

applicable to the T-Renegotiate service.

104

Primitives

T-Renegotiate. request

T-Renegotiate. indication

T-Renegotiate. response
T-Rene~otiate.confirm

Parameters

initiator-address, src-
address,

dest-address, new-QoS-
tolerance-levels, vc-id

,,

,,
,,

Table 3: Primitives employed for the re-

negotiation of QoS. The primitives may
be initiated by a transport protocol user,

or by the transport protocol itself

The transport protocol may need to tear down a VC and

open a new one in order to supply the required QoS. Thus it
should be capable of sustaining state so that it can re-

synchronise once the new VC is established. If for some reason
a modified service cannot be provided, the service request will

be rejected with a T-Disconnect.request, and the transport user
will receive a T-Disconnect. indication. However, in this latter

case, the existing VC is not torn down; the T-

Disconnect. indication simply indicates that the new service
level requested can not be supported. Note that the T-

Renegotiate service allows the QoS of a VC to be modified but
not its protocol type or class of service.

5. Orchestration Architecture

This section presents an architecture which addresses the

need for the co-ordination of multiple related CM transport
streams as identified in section 3.6. We distribute the

functionality of the orchestrater over three architectural

regions:-

. the distributed application platform,

. an area corresponding to the 0S1 upper layer architecture

(uLA), and

. an area closely associated with the transport layer
interface (see figures 1 and 4).

It can be seen from figure 4 that orchestration is a multi-

layered activity. Each layer provides policy to its lower

neighbour and mechanism to its upper neighbour. This design
provides both flexibility and efficiency because the lower

layers are simply provided with targets, and all exceptions,
error handling and re-structuring are handled in the layers
above.

In essence, the operation of the three orchestration layers

is as follows. The high level orchestrater (HLO) provides the

view of orchestration seen by users of the application

platform. It is a location independent ADT service interface

which contains orchestration related named operations.

Applications pass Stream interfaces to these operations and
the HLO arranges to have the required continuous

synchronisation performed by the lower layers according to a
policy specified by the application. Policies include
constraints on how ‘strict’ the continuous synchronisation
should be and actions to take on failure.

Key

~OHigh level
Orcbesmtor

WO Low level
Oraleskdor

u 0s1upper
Layer
Archikchue

Single Single
node node

Figure 4: Three level orchestration
architecture.

The HLO is responsible for finding the physical locations

of the connections underlying the given Stream interfaces, and
thus choosing the node from which the lower levels of

orchestration will be co-ordin ated. The node selected, known

as the orchestrating node, is that common to the greatest

number of VCst (see figure 5). For example, if it was required to
orchestrate separate video and audio tracks of a film stored on

separate storage servers, the common sink would be designated
as the orchestrating node by the HLO. Having identified the

orchestrating node, the HLO creates an ADT interface onto the
selected HLO agent. This is passed back to the initiating
application, and enables the application to control the on-
going orchestration session via invocation.

‘“’ : F
orchestrating

Q</’
9~Lo-Q &--LLo l;~.wfHLO Agent’%

Figure 5: Orchestrating at the common
node.

Below the platform level, the remaining two orchestration
components are responsible for realising the behaviour and
policy required by the HLO. At this level, the orchestration

process is realised as HLO agents which monitor and regulate

multiple transport VCS via a low level orchestrater (LLO)

interface in a continuous feedback loop. For each orchestrated
group of connections, a single HLO agent runs on the

orchestrating node, and an LLO instance runs on all source and
sink nodes of all the orchestrated VCS. The HLO only interacts

with its local LLO instance (see figure 5), but the multiple LLO

instances interact with each other via Orchestrater PDUS
(OPDUS), on out of band connections. These connections must

t In our initial implementation we make a restriction that

groups of orchestrated connections must have a common node,
either at the source or the sink. With this restriction in force,

we are able to use the clock at the common node as the datum

for continuous synchronisation across connections, and use a
simple clock synchronisation scheme. It should, however, be
possible to lift this restriction without changing the basic
architecture by including a general purpose clock

synchronisation function (e.g. NTP [Mills,89]) within the
orcheatrstor protocol=. At the present time, however, it is not
fully clear whether such a generalised facility is either required

in practice or realistic in implementation.

105

have guaranteed bandwidth to support the necessary real-time

communication of orchestration primitives. In our system, we

use a special internal control VC associated with each transport
connection [Shepherd,91].

High Level Orchestrater Agent

+ -----
Interval

------------b
Interval Interval

---- ---- -
TfME LINE

-+

Figure 6: [nterimtion between HLO Agent
atrd LLO.

Figure 6 illustrates the interaction between the HLO agent
and the local LLO (note that figure 6 only illustrates the

interaction required for a single orchestrated connection; in

general multiple connections will be involved). The HLO agent
supplies the LLO with rate targets for each orchestrated VC
over specified inrervals. These targets ensure that each

orchestrated VC runs at the required rate, relative to the master
reference clock maintained at the orchestration node, for the

required synchronisation relationship between the orchestrated
VCS to bemaintained (for brevity, wedonot discuss our clock
synchronisation scheme in this paper). The LLO attempts to

meet therequired rate target over each interval foreach VC, and

reports back at the end of the interval on its actual success or

failure. Then, on the basis of these reports, the HLO agent sets

new targets for the next interval which compensate for any

relative speed up or slow down among the orchestrated
connections. The LLO operates on a best effort principle; it is

the responsibility of the HLO agent to take appropriate action
(e.g. setnewtargets orre-negotiate theconnection QoS) if the
LLO consistently fails to meet targets.

The small numbered arrows in figure 6 represent the

delivery of quanta of CM information which are released by the
sink LLO instance to the application thread at times determined
by the HLO initiated targets. These quanta are known as

OSD Us, and are the units of CM information meaningful to

applications (e.g. video frame or text paragraph).

The orchestration services maintain a special O SD U
sequence number field for each OSDU, which starts from zero

from when the connection is first used; a second such field,
known as an event field, is employed for use by the Orch.Event
primitiye (m. later). Both them. fieldfi form part of m OPDU
which is sent along with each OSDU. OSDU and OPDU
boundaries are maintained by the transport service. This is
possible in our system because, at connection establishment
time, the application passes the maximum size of an OSDU as a

QoS parameter, and this (plus the size of the OPDU) is
interpreted as a lower bound on buffer size allocation.

When applications write/ read OSDUS into/ from the
transport system’s circular shared buffers, they write/ read from

the beginning of a buffer, and may also writel read the current

OSDU size to/ from an auxiliary memory location.

In this paper we are mainly concerned with the lowest

level orchestration functionality associated with the transport
layer, as this level provides the fundamental orchestration

mechanism. Therefore we do not present the orchestration

functionality at the application platform or 0S1 application
layer in any more detail, but concentrate instead on the LLO
interface and functionality.

6. The Low Level Orchestrater

The LLO orchestration interface consists of two sets of

OSI-like primitives as follows:-

. primitives for priming, starting and stopping orchestrated
groups of connections, and

. primitives for controlling and monitoring individual
orchestrated connections

The first set operates over a grouping of transport

connections. The primitives provide the ability to atomically
prime, start and stop the flow of data in these connections both

atomically and instantaneously as required by the analysis in

section 3.6. By ‘priming’ we mean that the receiver’s buffers

are initially filled with the required data for a particular

connection, in preparation for a subsequent start ~ommand.

This allows related media flows to be started simultaneously,
which is a fundamental requirement for subsequent continuous

synchronisation.

The second set of primitives operate on single transport
connections in an orchestrated grouping. They enable the
controlling HLO agent to set and monitor the above mentioned

flow rate targets. As stated above, connections will attempt to
meet these targets on a best effort basis. Primitives are also
provided to report back to the HLO agent on the actual

performance achieved at the end of each interval.

6.1 LLO Instantiation

We assume that before an HLO agent attempts to

instantiate an LLO orchestrating service, the VCS to be
orchestrated have already been established. It is also assumed

that the initiator of the LLO service (i,e, an HLO agent) resides
on the common orchestration node.

Table 4 summarizes the primitives involved and their
parameters. The initiator issues a Orch.request which causes an
OPDU to be passed to the LLO instance at each source and sink

of all VCS in the orchestrated group. This OPDU contains an
orch-session-id supplied by the HLO. Each source and sink

determines whether or not it is able to support the requested

orchestration request, and replies to the initiating LLO, If
accepted by all the remote LLO services, the HLO will receive a

Orch.confirm, or if rejected a Orch.Release.indication giving a
reason why orchestration was rejected. Rejection may occur

because some LLO instance has no table space available, or
because one or more of the specified VCS do not exist etc..

106

=:=

Table 4: Orchestration request and release

primitives together with their associtied
parameters.

Orchestration is released by issuing a
Orch.Release.request. Orchestration will also be released

implicitly if all the VCS in an orchestrated session are closed.

6.2 Group 1: Primitives for Priming, Starting and

Stopping

The primitives to prime connections, and atomically start

and stop the data flow on groups of orchestrated VCS are

illustrated in Table 5.

6.2.1 Orch. Prime

The Orch.Prime primitive is used to ensure that multiple
streams of remotely stored CM data can be started together in a

synchronised way. It is also useful in ensuring that time

critical data can be pre-fetched and made available when

required. A third application of C)rch .Prime arises when it is
required to clean out the buffers in an end to end connection.

This need arises when a user stops a media play-out and then
wishes to seek to another part of the media before resuming. If

the buffers were not flushed in this situation, a short burst of

media buffered from the previous play would be discernible.

The time sequence operation of the Orch.Prime primitive
is shown in figure 7. Orch.Prime.indication primitives are

passed to the application threads associated with each end of
each orchestrated VC. On receipt of the Orch.prime.indication,
each application thread is expected to respectively start

generating data for transmission or preparing to accept data. If

any application thread is not in a position to do this it can

reply with a Orch.Deny rather than a Orch.Prime.response. In
either case, the result is passed back to the LLO at the

orchestration node.

Initiating HLO Agent Source/ Sink Application Threads
N.B. This

II interaction occurs

=+-+

Orch.Pri . /
for each involved

request source/ sink

Orch.Prime.

Orch.Prime.
?

indication

confhm Orch.Prime.response
OR OR

Orch.Deny.
Orch.Deny.request

indication

Figure 7: Orch.Prime.

As data begins to arrive at the sinks, the sink LLOS allow
the receiver’s communications buffers to fill, but prevent the

data from being delivered to the receiving application threads.

Note that this implies a close implementation relationship
between the LLO and the transport service. When the receive

buffers are eventually full, each sink LLO notifies the LLO,
which eventually relays either a Orch .Prime confirm or a

Orch.Deny.indication to the originating HLO. At this point,

the source will also be blocked by the protocol’s flow control

mechanism, but the pipeline is filled and ready to go.

Primitives

Orch.Prime.request

Orch.Prime,indication

Orch.Prime.response

Orch.Prime.confirm

Orch.Start.request
Orch. Start. indication
Orch.Start.response

Orch.Start.confirm

Orch.Stop.request
Orch.Stop.indication

Orch.Stop.response

~

Orch.Add.request

Orch.Add.indication

Orch.Add.response

Orch.Add.confirm

Orch.Remove.request

Orch.Remove.indication
Orch.Remove.response
Orch.Remove.confirm

Orch.Deny.request
~

Parameters

orch-session-id
,,
,,
,,

orch-session-id
,!

!!

!,

orch-session-id
,,
,!

u

orch-session-id, vc-id
,,

,,
,,

orch-session-id, vc-id
,!

!!

!!

orch-session-id, reason
!,

Table 5: Orchestration primitives for

priming, starting and stopping.

6.2.2 Orch.Start

Having primed an orchestrated set of connections, the

HLO will eventually issue a Orch.Start.request. “Ilis re-starts
the transport protocol and unblocks the previously filled

receive buffers so that they may be emptied by the sink

application thread. As data is waiting at all the sinks, all the
receiving application threads in the orchestrated group will

start to receive data at (almost) the same instant. A
Orch. Start. indication will be sent to each source and sink

application thread as a result of the Orch. Start. request in an

analogous manner to that illustrated in figure 7. However, if

the system is in a primed state, these threads will not need to

take any special action as they are already set up to produce/

consume data, but are blocked by the protocol.

6.2.3 Orch.Stop

Orch.Stop instantaneously freezes the flow of data in the

specified VCS. Note, however, that the flow of data can not
actually be stopped until the underlying protocol’s flow

control mechanism can take effect. As with the Orch.Prime

primitive, the receive buffers are made unavailable to the
application sink thread before they are drained so that data is

available for a subsequent primed start. Also, the underlying

protocol’s flow control mechanism will eventually block the
source application threads in the same way as Orch.Prime.

6.2.4 Orch.Add and Orch.Remove

The Orch.Add and the Orch.Remove primitives are
employed to either add or remove a particular VC or VCS from

an orchestrated group. Tire time sequence operation is again
similar to figure 7. Note that when VCS are removed from an
orchestrated group they are not disconnected and thus data may
still be flowing.

107

6.3 Group 2; Primitives for Regulating and
Monitoring

Primitives

Orch.Regulate.request

Orch.Regulate.indication

Orch.Delayed.request

Orch.Delayed.indication
Orch.Delayed.response
Orch.De~

Orch.Event.request

Orch.Event.indication

Parameters

orch-session-id, vc-id,
target-OSDU#, max-
drop#, interval-length,

interval-id
orch-session-id, vc-id,

interval-id, OSDU#,

dropped#,

proto-block-times, app-
block-times

orch-session-id. vc-id.

source-or-sink, interval-
length, OSDUs-behind

,,
,,
!!

orch-session-id, vc-id, ~
event-pattern

1,

Table 6: Orchestration Primitives for

Regulation and Monitoring

The primitives used to implement the regulation and

monitoring functions on orchestrated VCS are illustrated in

Table 6 and described in the following sub-sections. For
brevity, we do not discuss the time sequence operation of these

primitives.

6.3.1 Orch. Regulate

6.3.1,1 Orch.Regulate. request

This primitive is issued by the HLO agent to set a flow rate
target for the forthcoming interval for individual VCS in an

orchestrated group as explained in section 5. Parameters

include the orchestration session ID, the ID of the VC to be

controlled, the length of the forthcoming interval, and an

interval-id to identify the corresponding

Orch. Regulate. indication. The target-OSDU# parameter
denotes the OSDU sequence number which should ideally be
delivered to the sink application thread at precisely the end of

the interval. This is the way in which the required flow rate

target is specified: the required rate is calculated as ((target-
OSDU# - current-OSD U#) I interval-length).

When the LLO is attempting to meet the requested flow

rate target for a connection, there are three possible cases: it

may be on target, behind target or ahead of target. If the
connection is on target, no special action need be taken. If,

however, either of the other cases is true, the following
compensatory strategies are available to the LLO: -

● if a connection is behind, its sole compensatory strategy
is to drop OSDUS. The final parameter, max drop#, states
the maximum number of OSDUS which the VC may discard

in order to achieve its flow rate target. All such discards

are performed at the source by incrementing the source

shared buffer pointer. This permits the source application

thread to immediately insert another OSDU and thus

overwrite the previous one before it is sent, This strategy

may help a delayed VC to catch up and meet the link
delivery target in the case that it is lack of transport
bandwidth which is causing the delay.

. if, on the other hand, a connection is ahead of schedule,

the compensatory action is simply to block. Note that, as
with the Orch. Stop primitive, the flow control mechanism

of the underlying transport protocol must be capable of

rapid adaptation for this to be feasible. The rate based
mechanism used in our protocol [Shepherd,91], has

proved to be adequate for this purpose. Note also that, for
both these compensatory actions, the LLO must take

responsibility for attempting to spread compensatory

actions over the length of the target interval to avoid

unnecessary jitter.

If these compensatory actions are not available to the LLO

(e.g. a max-drop# of zero will often be chosen where a no-loss

medium such as voice is involved), then the necessary
corrections must be taken by the HLO agent on the basis of the
information gathered via the Orch. Regulate .indication
primitive.

6.3.1.2 Orch. Regulate .indication

This primitive is used to report back to the HLO agent on

the performance actually achieved by each orchestrated
connection in comparison to the targets set by the HLO for the

interval just completed. The interval-id parameter is used to

match the indication to a prior request. The LLO will

continuously generate Orch.Regulate,indications at the end of

each interval length as established by the last
Orch.Regulate.request. The statistics reported include the
OSDU# actually delivered at the end of the interval, the number

of OSDUS actually dropped, and the times spent blocking by
both the application and protocol threads at both the source
and sink ends of the VC. This blocking time information is

gathered by associating timers with the shared circular buffer
semaphores described in section 3.7.

The blocking time information is used by the HLO agent

to determine which part of the system was responsible for any

failure to meet the flow rate target. Based on this information,

the HLO can take compensatory action if required. For
example, if the application threads spent an excessive amount

of time blocked, the protocol throughput was presumably too

low and the HLO may re-negotiate the QoS of the VC.
Alternatively if the protocol threads were blocked, the

application threads were presumably slow in producing/
consuming data. In this latter case the HLO will probably issue
a Orch, Delayed primitive.

6.3.3 Orch.Delayed

This primitive is issued by the HLO in response to the

situation described above. The effect is to cause an indication

to be delivered to the application thread(s) causing the delay.
The intended interpretation of a Orch.Delayed.indication is
that the thread is not running sufficiently fast to produce/
consume data at a rate required by the client of the location

independent orchestration service. Applications so informed
may take any appropriate action such as requesting more
processor resources, or they may merely give up by replying
with a Orch. Deny. request.

6.3.4 Orch. Event

This primitive is used to register an interest in a particular

application defined event associated with some OSDU; it thus

provides support for event-driven synchronisation.

108

To register an interest in some application defined event,

a Orch.Event.request is issued to an LLO instance at the sink

end of an orchestrated VC, together with a value representing

the event. Subsequently, the sink LILO instance will match this

value, which is not interpreted in any way by the LLO, against

the values in the event fields of the OPDUS associated with

incoming OSDUS (see section 5) on the set of orchestrated
VCS. If the event in the OSDU matches the registered bit

pattern, a Orch.Event.indication is raised. To actually cause an
event to be initiated, the event fields of OSDUS may optionally

be set by the source application thread when writing an OSDU.

An example of use of the event mechanism is when a
change of encoding is being signalled in the data stream such

as the introduction of a particular compression scheme, It

would obviously be possible to implement such a scheme in an
ad-hoc manner in the application layer, but this would require
that application threads examine each incoming OSDU. The

present scheme avoids complicating application code, permits

system dependent optimisations to be made, and also permits

OSDUS to be dumped directly into, say, a video frame buffer.

7. Conclusions

We have outlined the design of a CM transport service and

an associated orchestration service which permits real-time co-
ordination between distinct transport connections. Our

transport service has simplex VCS with flexible QoS

configuration, including re-negotiation, and a facility for
establishing connections remotely. Details of related work in

the field of CM transport protocols may be found in

[Wolfinger,91] and [Hehmann,91]. Our work is notable for the
close integration of protocol concerns with those of the

distributed application platform that we consider an essential

part of future systems building.

We also describe an orchestration architecture consisting
of three components: a high leve i orchestrater which makes

HLO services available from our object-based application
platform, HLO agents which control and monitor orchestrated
connections, and low level orche strators which sample and

regulate the flow of CM information over intervals as directed

by the HLO agent. The orchestration system is architecturally
separate from the transport sub-system although the two

components must be intimately related in implementation.

We make an assumption in the design of our transport
service and orchestrater that the underlying transport protocol
employs rate -ba~ed flow control [Cheriton,86], [Chesson,881,

[Clark,88] as opposed to a traditional window based technique

[Postel,81], [Stallings,87]. This assumption has emerged from
our experimentation with real-time CM, where we have found

rate-based flow control to be admirably suited for transporting
CM. Attractive characteristics include the de-coupling of flow
control from the error control mechanism, and the natural

correspondence between the notions of continuous data flow

and rate controlled transmission, In the future, we aim to
experiment with other types of buffer management and flow

control schemes to determine pragmatically to what extent

they are suitable for the support of CM transmissions and
orchestration. A second assumption is that when the protocol
is operating in an internet environment, a network level

resource reservation protocol such as ST-II [Topolcic,90] or
SRP [Anderson,91] will need to be used to guarantee resources
in intermediate nodes.

The context of our work is that it forms part of the 0S195

project in which the Lancaster role is to develop new transport

and higher level communications protocols suited to the new

environment of high-speed multiservice networks and

distributed multimedia applications. 0S1 95 is participating in
an initiative to introduce a New Work Item into 1S0/0S1 on

High-Speed Transport Service and Protocol. The 0S1 95 project

is not the only international attempt to introduce a new high-
speed transport protocol: ANSI X3S3.3 has recently issued

draft descriptions of a new high speed transport service (HSTS)

and protocol (HSTP), which are for further study within 0S1 95.
A further issue currently being studied is the generalisation of
our transport and orchestration model to multicast

applications.

Finally, a number of practical issues remain to be more
fully investigated. These include the orchestration of VCS with

no common node, the coupling between the orchestration

layers and the transport system, the efficient handling of

multicast orchestration, and the use of other transport

protocols in our architecture. Also, further experimentation
with applications in the field needs to be conducted to provide
proof by experience of the value of the work described here.

Acknowledgements

Part of this work was carried out within the MNI project

(funded under the UK SERC Specially Promoted Programrne in

Integrated Multiservice Communication Networks (grant
number GR/F 03097) and co-sponsored by British Telecom
Labs), and part within the 0S1 95 project (ESPRIT project

5341, funded by the European Commission).

References

[Anderson,91] Anderson, D. P., R.G. Herrtwich, and C.
Schaefer. “SRP: A Resource Reservation Protocol for
Guaranteed Performance Communication in the Internet”,

Internal Report University of California at Berkeley, 1991.

[APM,89] APM Ltd. ‘The ANSA Reference Manual Release

01.01”, Architecture Projects Management Ltd., Poseidon

House, Castle Park, Cambridge, UK, July 1989.

[Ba11,90] Ball, F., D. Hutchison, A.C. Scott, and W.D.

Shepherd. “A Multimedia Network Interface. ” 3rd IEEE
COMSOC International Multimedia Workshop (Multimedia

‘9(I), Bordeaux, France, Nov 1990.

[Banerjea,91] Banerjea, A., and B.A. Mah. “The Real-Time

Channel Administration Protocol. ” Second International
Workshop on Network and Operating System Support for

Digital Audio and Video, IBM ENC, Heidelberg, Germany,
Springer Verlag, 1991.

[Berke1ey,86] Berkeley. “UNIX Programmer’s Reference

Manual, 4.3 Berkeley Software Distribution”, Computer
Systems Research Group, Computer Science Division, Univ. of

California at Berkeley, CA, USA. April 1986.

[Blair,92] Blair, G. S., F. Garcia, D. Hutchison and W.D.
Shepherd. “Towards New Transport Services to Support
Distributed Multimedia Applications”, Presented at Multimedia
’92: 4th IEEE COMSOC International Workshop, Monterey,

USA, April 1-4, 1992.

[Cheriton,86] Cheriton, D.R. “VMTP: A Transport

Protocol for the Next Generation of Communication Systems.”
ACM SIGCOMM ’86 Aug 1986,

109

[Chesson,88] Chesson, G. “XTP/PE Overview,” Proc. 13th

Conference on Local Computer Networks, Minneapolis,
Minnesota, Ott 1988.

[Clark,88] Clark, D., et al. “NETBLT A High Throughput
Transport Protocol,” ACM SIGCOMM, Pages 353-359, 1988.

[Coulson,90] Coulson, G., G.S. Blair, N. Davies, and A.

Macartney. “Extensions to ANSA for Multimedia Computing”,
To appear in Computer Networks and ISDN Systems MPG-90-

11, Computing Department, Lancaster University, Bailrigg,
Lancaster LA1 4YR, UK. Ott 251990.

[Davies,91] Davies, N., G. Coulson, N. Williams, and G.S.

Blair. “Experiences of Handling Multimedia in Distributed

Open Systems”, Presented at SEDMS ’92, Newport Beach CA,
April 1992; also available from Computing Department,
Lancaster University, Bailrigg, Lancaster LA1 4YR, UK.

November 1991.

[Govindan,91] Govindan, R., and D.P. Anderson,

“Scheduling and IPC Mechanisms for Continuous Media.”

Thirteenth ACM Symposium on Operating Systems Principles,

Asilomar Conference Center, Pacific Grove, California, USA,

SIGOPS, Vol 25, Pages 68-80.

[Hehmann,90] Hehmann, D. B., M.G. Salmony, and H.J.

Stuttgen. “Transport services for multimedia applications on
broadband networks.” Computer Communications Vol 13 No.
4, 1990, Pages 197-203.

[Hehmann,91] Hehmann, D. B., R.G. Herrtwich, W. Schulz,
T. Schuett, and R. Steinmetz. “Implementing HeiTS:

Architecture and Implementation Strategy of the Heidelberg

High Speed Transport System” Second International Workshop
on Network and Operating System Support for Digital Audio

and Video, IBM ENC, Heidelberg, Germany, 1991,

[Mi11s,89] D.L. Mills, “Internet Time Synchronisation: the
Network Time Protocol”, Internet Request for Comments No.

1129 RFC-I 129, October 1989.

[01ander,86] Olander, D. J., G.J. McGrath, and R.K. Israel.
“A Framework for Networking in System V.” Proceedings of
the 1986 Summer USENIX Conference, Atlanta, Georgia, USA,
Pages 38-45.

[Postel,81] J. Postel. “Transmission Control Protocol”,

Internet Request for Comments No. 793 RFC-793, September

1981.

[Shepherd,91] Shepherd, W. D., D. Hutchison, F. Garcia and

G. Coulson. “Protocol Support for Distributed Multimedia
Applications. ” Second International Workshop on Network
and Operating System Support for Dig ital Audio and Video,

IBM ENC, Heidelberg, Germany, Nov 18-191991.

[Stall ings,87] W. Stallings. “Handbook of Computer
Communications, Volume 1: The Open systems

Interconnection (0S1) Model and OSI-Related Standards.”,

Macmillan, New York, 1987.

[Tennenhouse,90] Tennenhouse, D. L., “Lay~red

Multiplexing Considered Harmful”, Protocols for High-Speed
Networks, Elsevier Science Publishers B.V. (North-Holland),
1990.

[Topolcic,90] Topolcic, C. “Experimental Internet Stream
Protocol, Version 2 (ST-II)”, Internet Request for Comments

No. 1190 RFC-I 190, October 1990.

[Williams,91] Williams, N., G.S. Blair. “Distributed

Multimedia Application Survey”, Internal Report N. MPG-91 -

11. Computing Department, Lancaster University, Bailrigg,
Lancaster LA1 4YR, UK. April 1991.

[Wolfinger,91] Wolfinger, B., and M. Moran. “A

Continuous Media Data Transport Service and Protocol for
Real-time Communication in High Speed Networks.” Second
International Workshop on Network and Operating System

Support for Digital Audio and Video, IBM ENC, Heidelberg,

Germany, 1991.

110

