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Dynamic Core Provisioning for Quantitative
Differentiated Services
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Abstract— Efficient network provisioning mechanisms that
support service differentiation and automatic capacity dimen-
sioning are essential to the realization of the Differentiated
Services (DiffServ) Internet. Building on our prior work on
edge provisioning, we propose a set of efficient dynamic node
and core provisioning algorithms for interior nodes and core
networks, respectively. The node provisioning algorithm prevents
transient violations of service level agreements by predicting the
onset of service level violations based on a multi-class virtual
queue measurement technique, and by automatically adjusting
the service weights of weighted fair queueing schedulers at core
routers. Persistent service level violations are reported to the
core provisioning algorithm, which dimensions traffic aggregates
at the network ingress edge. The core provisioning algorithm is
designed to address the difficult problem of provisioning DiffServ
traffic aggregates (i.e., rate-control can only be exerted at the
root of any traffic distribution tree) by taking into account
fairness issues not only across different traffic aggregates but
also within the same aggregate whose packets take different
routes through a core IP network. We demonstrate through
analysis and simulation that the proposed dynamic provisioning
model is superior to static provisioning for DiffServ in providing
quantitative delay bounds with differentiated loss across per-
aggregate service classes under persistent congestion and device
failure conditions when observed in core networks.

Index Terms— Virtual Queue, Point-to-Multipoint Congestion,
Service Differentiation, Capacity Dimension.

I. I NTRODUCTION

EFFICIENT capacity provisioning for the Differentiated
Services (DiffServ) Internet [1] appears more challenging

than in circuit-based networks such as the Asynchronous
Transfer Mode (ATM) networks for two reasons. First, there
is a lack of detailed control information (e.g., per-flow states)
and support mechanisms (e.g., per-flow queueing) in the
network. Second, there is a need to provide increased levels
of service differentiation over a single global IP infrastruc-
ture. In traditional telecommunication networks, where traffic
characteristics are well understood and well controlled, long-
term capacity planning can be effectively applied. We argue,
however, that in a DiffServ Internet more dynamic forms of
control will be required to compensate for coarser-grained
state information and the lack of network controllability, if
service differentiation is to be realistically delivered.

There exists a trade-off intrinsic to the DiffServ service
model (i.e., qualitative vs. quantitative control). DiffServ aims
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to simplify the resource management problem thereby gaining
architectural scalability through provisioning the network on
a per-aggregate basis, which results in some level of service
differentiation between service classes that isqualitative in
nature. Although under normal conditions, the combination of
DiffServ router mechanisms and edge regulation of service
level agreements (SLA) could plausibly be sufficient for ser-
vice differentiation in an over-provisioned Internet backbone,
network practitioners need to usequantitative provisioning
rules to automatically re-dimension a network that experiences
persistent congestion or device failure while attempting to
maintain service differentiation [2], [3]. Therefore, a key
challenge for the emerging DiffServ Internet is to develop
solutions that can deliver suitable network control granularity
with scalable and efficient network state management.

In this paper, we propose an approach to provisioning
quantitative differential services within a service provider’s
network (i.e., the intra-domain aspect of the provisioning
problem). Our SLA provides quantitative per-class delay guar-
antees with differentiated loss bounds across core IP networks.
We introduce a distributednode provisioning algorithmthat
works with class-based weighted fair (WFQ) schedulers and
queue management schemes. This algorithm prevents transient
service level violations by adjusting the service weights for
different classes after detecting the onset of SLA violations.
The algorithm uses a simple but effective approach (i.e.,
the virtual queue method proposed in [4], [5]) to predict
persistent SLA violations from measurement data and sends
alarm signals to our networkcore provisioning algorithm. Our
stress test results for both bursty On-Off and TCP application
traffic show that the node provisioning algorithm alone can
guarantee the delay and loss bounds when there is a low
frequency (below 10%) of alarms raised. When there is a
SLA violation, the algorithm will first meet the delay bound
sacrificing the loss bound. For adaptive applications such
as TCP which respond to packet losses, this approach has
shown to be effective even without the involvement of core
provisioning algorithms.

One challenge facing DiffServ network provisioning is the
rate control of traffic aggregates that comprise flows exiting the
core network at different network egress points. A rate control
function includes traffic policing (i.e., packet dropping) and/or
traffic shaping. This problem occurs when rate control can only
be exerted on a per traffic aggregate basis, (i.e., at the root
of a traffic aggregate’s point-to-multipoint distribution tree).
Under such conditions, any rate reduction of an aggregate
would penalizes traffic flowing along branches of the point-
to-multipoint distribution tree that are not congested. We
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call such a penaltybranch-penalty. Branch-penalty exists in
DiffServ networks because rate control is performed at the
ingress edge of the network instead of in the core of the
network. Existing flow control algorithms have focused on
fairness across different traffic aggregates while overlooking
the effect of branch-penalty, which can lead to severe band-
width reduction on traffic aggregates whose portion of traffic
flowing through a congested link is small, and resulting in
unnecessary under-utilization of network links that are not
congested. Our approach, in contrast, comprises a suite of
policies that minimize branch-penalty, deliver fairness with
equal reduction across traffic aggregates, or extend the max-
min fairness for point-to-multipoint traffic aggregates.

In summary, this paper makes two contributions. First,
our node provisioning algorithm prevents transient service
level violations by dynamically adjusting the service weights
of a weighted fair queueing scheduler. The algorithm is
measurement-based and effectively uses the multi-class virtual
queue technique to predict the onset of SLA violations. Sec-
ond, our core provisioning algorithm is designed to address the
unique difficulty of provisioning DiffServ traffic aggregates.
We proposed an algorithm that balances the trade-off between
fairness and minimizing the branch-penalty. Collectively, these
algorithms contribute toward a more quantitative differentiated
service Internet, supporting per-class delay guarantees with
differentiated loss bounds across core IP networks.

This paper is structured as follows. In Section II, we
discuss related work. In Section III, we introduce a dynamic
provisioning architecture and service model. Following this,
in Section IV, we present our dynamic node provisioning
mechanism, which monitors buffer occupancy, self-adjusts
scheduler service weights and packet dropping thresholds
at core routers. In Section V, we describe our core provi-
sioning algorithm, which dimensions bandwidth at ingress
traffic conditioners located at edge routers taking into account
the fairness issue of point-to-multipoint traffic aggregates
and SLAs. In Section VI, we discuss our simulation results
demonstrating that the proposed algorithms are capable of
supporting the dynamic provisioning of SLAs with guaranteed
delay, differential loss and bandwidth prioritization across per-
aggregate service classes. We also verify the effect of rate
allocation policies on traffic aggregates. Finally, in Section VII,
we present some concluding remarks.

II. RELATED WORK

Dynamic network provisioning algorithms are complemen-
tary to scheduling and admission control algorithms. The
provisioning algorithms introduced in this paper operate on
a medium time scale, as illustrated in Fig. 1. In contrast,
packet scheduling and flow control operate on fast time
scales (i.e., sub-second time scales); admission control and
dynamic provisioning operate on medium time scales in the
range of seconds to minutes; and traffic engineering, including
rerouting and capacity planning, operate on slower time scales
on the order of hours to months. Significant progress has
been made in the area of scheduling and flow control, (e.g.,
dynamic packet state and its derivatives [6], [7]). In the area of

traffic engineering, solutions for circuit-based networks have
been widely investigated in literature (e.g., [8], [9]). There has
been recent progress on developing measurement techniques
for IP networks [10]–[12]. In contrast, for the medium time
scale mechanisms, most research effort has been focused on
admission control issues including edge [13] and end host
based admission control [14]. However, these algorithms do
not provide fast mechanisms that are capable of reacting to
sudden traffic pattern changes. Our dynamic provisioning algo-
rithms are capable of quickly restoring service differentiation
under severely congested and device failure conditions.

Delivering quantitative service differentiation for the Diff-
Serv service model in a scalable manner has attracted a lot of
attentions recently. A number of researchers have proposed
effective scheduling algorithms. Stoica et. al. propose the
Dynamic Packet State [6] to maintain per-flow rate information
in packet headers leading to fine-grained per-flow packet-
dropping that is locally fair (i.e., at a local switch). However,
this scheme is not max-min fair due to the fact that any
packet drops inside the core network wastes upstream link
bandwidth that otherwise could be utilized. In [7], Stoica and
Zhang extend the solution of [6] to support per-flow delay
guarantees in a DiffServ network. Our work operates on top
of per-class schedulers with emphasis on bandwidth allocation
and the maintenance of service differentiation and network-
wide fairness properties. The proportional delay differentiation
scheme [15] defines a new qualitative “relative differentiation
service” as oppose to quantifying “absolute differentiated
services”. The node provisioning algorithm presented in this
paper also adopts a self-adaptive mechanism to adjust ser-
vice weights at core routers. However, our service model
differs from [15] by providing delay guarantees across a core
network while maintaining relative loss differentiation. The
work discussed in [16] has similar objectives to our node
provisioning algorithm. However, it is motivated by a more
comprehensive set of objectives in comparison to our work
because it attempts to support optimization objectives that
include multiple constraints for both relative and absolute loss
and delay differentiation.

The idea of using virtual queues in scheduler design is a well
accepted technique. For example, in [17] a duplicate queue is
constructed to support two “Alternative Best-Effort” services
(viz. low delay vs. high throughput). In our work, we use
virtual queues to predict the onset of SLA violations. The idea
was originally proposed in [4], [5] as a good traffic prediction
technique for traffic with complex characteristics, such as, self
similarity, because its stochastic properties share the same
dominant time scale with the original queue. Our algorithm
extends this work by dynamically adjusting the virtual queue
scaling parameter with respect to queueing conditions.

Our approach to dynamic provisioning is complementary
to the work on edge/end-host based admission control [13],
[14], with admission control at the edge of core networks
and provisioning algorithms operating inside core networks.
An alternative approach that solely uses admission control for
a DiffServ network can support stricter QoS guarantee but
also lead to more complexity in the QoS control plane. For
example, in [18] a complex bandwidth broker algorithm is
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Fig. 1. Network Provisioning Time Scale

presented to maintain the control states of core routers and
perform admission control for the whole network. In contrast,
our provisioning algorithm uses a distributed node algorithm
to detect and signal the need for bandwidth re-allocation. The
centralized core algorithm only maintains the network load
matrix and coordinates the allocation algorithm for fairness
purposes.

One could argue that this problem could be resolved by
breaking down a customer’s traffic aggregates into per ingress-
egress pairs and provisioning these pairs in a similar manner
to circuit-based Multi-Protocol Label Switching (MPLS) [19]
tunnels. However, such an approach would only work if
the tunnel topology of virtual private networks (VPN) is
a mesh. It would not work if a more scaleable hub-and-
spoke topology is used for deploying VPNs because hub-
and-spoke topologies lead to point-to-multipoint distribution
trees. In addition, this approach would not work when the
number of tunnels exceeds the number of shaper queues
supported in edge routers. Our approach does not exclude
support for MPLS tunnels, but benefits from any availability
of MPLS tunnels because MPLS per-tunnel traffic accounting
statistics will improve the measurement accuracy of our traffic
matrix, as discussed in Section V-A. As a result, our approach
improves the scalability of per-MPLS-tunnel traffic shaping by
supporting traffic regulation for MPLS aggregates.

Currently network service providers use rerouting based
traffic engineering approaches to cope with network traffic
dynamics on slow time-scales. In the inter-domain case where
one provider has no direct control of its peering networks, ab-
sence of direct control leads to the use of intra-domain routing
policy as the only viable technique, with potential solutions
ranging from optimal planning of routes for circuits/virtual
paths [20], to traffic measurement based adjustment on OSPF
weights and BGP route policies [10]. In the intra-domain case
where direct control is possible, dynamic provisioning can
offer faster response to service degradation.

Our provisioning method bears similarity to the work on
edge-to-edge flow control [21] but differs in that we provide
a solution for point-to-multipoint traffic aggregates unique to
a DiffServ network rather than the point-to-point approach
discussed in [21]. In addition, our emphasis is on the delivery
of multiple levels of service differentiation.

III. D YNAMIC NETWORK PROVISIONING MODEL

A. Architecture

We assume a DiffServ framework where edge traffic condi-
tioners perform traffic policing/shaping. Nodes within the core
network use a class-based weighted fair (WFQ) scheduler and

various queue management schemes for dropping packets that
overflow queue thresholds.

The dynamic capacity provisioning architecture illustrated
in Fig. 2 comprises dynamic core and node provisioning
modules for bandwidth brokers and core routers, respectively,
as well as the edge provisioning modules that are located at
access and peering routers. The edge provisioning module [22]
performs ingress link sharing at access routers, and egress
capacity dimensioning at peering routers.

B. Control Messaging

Dynamic core provisioning sets appropriate ingress traffic
conditioners located at access routers by utilizing acore traffic
load matrix to apply rate-reduction (via aRegulateIngress
Down signal) at ingress conditioners, as shown in Fig. 2.
Ingress conditioners are periodically invoked (via theReg-
ulate Ingress Upsignal) over longer restoration time scales
to increase bandwidth allocation restoring the max-min band-
width allocation when resources become available. The core
traffic load matrix maintains network state information. The
matrix is periodically updated (viaLinkStateUpdate signal)
with the measured per-class link load. In addition, when there
is a significant change in the rate allocation at egress access
routers, a core bandwidth broker uses aSinkTreeUpdatesignal
to notify egress dimensioning modules at peering routers when
renegotiating bandwidth with peering networks, as shown in
Fig. 2. We use the term “sink-tree” to refer to the topological
relationship between a single egress link (representing the root
of a sink-tree) and two or more ingress links (representing the
leaves of a sink-tree) that contribute traffic to the egress point.

Dynamic core provisioning is triggered bydynamic node
provisioning (via a CongestionAlarm signal as illustrated in
Fig. 2) when a node persistently experiences congestion for a
particular service class. This is typically the result of some
local threshold being violated. Dynamic node provisioning
adjusts service weights of per-class weighted schedulers and
queue dropping thresholds at local core routers with the goal of
maintaining delay bounds and differential loss, and bandwidth
priority assurances.

C. Service Model

The proportional delay differentiation service proposed in
[15] defines the relative service differentiation of a single node
and not a path through a core network. In contrast, our work
produces service assurances that are quantitative in terms of
delay bound and loss differentiation, and support bandwidth
allocation priorities across service classes within a DiffServ
core network.
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Fig. 2. Dynamic Capacity Provisioning Model

Our SLA comprises:

• a delay guarantee: where any packet delivered through
the core network (not including the shaping delay of edge
traffic conditioners) has a delay bound ofDi for network
service classi;

• a differentiated loss assurance: where network service
classes are loss differentiated, that is, for traffic routed
through the same path in a core network, the long-term
average loss rate experienced by classi is no larger than
P ∗loss,i. The thresholds{P ∗loss,i} are differentiated, i.e.,
P ∗loss,(i−1) < P ∗loss,i;

• a delay bound precedence over loss bound: when both
the delay and loss bounds can not be maintained for class
i, the loss bound will be revoked first before the delay
bound;

• a bandwidth allocation priority: where the traffic of class
j never affects the bandwidth/buffer allocation of class
i, i < j, that is, the delay and loss bounds of classi will
be revoked only after there is no bandwidth available
(excluding the minimum bandwidth for each class) in
classesj, j > i ; and

• a bandwidth utility function: which provides an applica-
tion programming interface (API) for edge service differ-
entiation. The utility function serves as a user-approved
per-class QoS degradation trajectory used by network
provisioning algorithms under network congestion or
failure conditions.

We design the service model such that maintaining a
quantitative delay bound takes precedence over maintaining
the packet loss bound. This precedence helps to simplify the
complexity of jointly maintaining both loss and delay bounds
at the same time. In addition, such a service is suitable for
TCP applications that need packet loss as an indicator for flow
control while guaranteed delay performance can support real-
time applications. The precedence to delay bound does not
mean that the loss bound will be ignored. For a service class
with higher bandwidth allocation priority, its loss bound will
be maintained at the cost of violating lower priority classes’

loss and delay bounds.
In addition, the CongestionAlarm signal from the node

provisioning algorithm will give an early warning to the core
provisioning algorithm, which can work with the admission
control algorithm and edge-based traffic regulation algorithm
to remove congestion inside the core network. One benefit of
our dynamic provisioning algorithm is its ability to maintain
service differentiation under unavoidable prediction errors
made by the admission control algorithm.

The granularity of per-node delay boundsDi is limited
by the nature of slow time scale aggregate provisioning. The
choice ofDi has to take into consideration the sum of a single
packet transmission time at the link rate and a single packet
service time through various fair queue schedulers [23]. This
is in addition to the queueing delays due to traffic aggregates
inside the core network.

The choice of the loss thresholdP ∗loss,i in an SLA also needs
to consider the application behavior. For example, a service
class intended for data applications should not specify a loss
threshold that can impact steady-state TCP behavior. Studies
[24] indicate that the packet drop thresholdP ∗loss,i should
not exceed0.01 for data applications to avoid the penalty of
retransmission timeouts.

We define a service model for the core network that in-
cludes a number of algorithms. A node provisioning algorithm
enforces delay guarantees by dropping packets and adjusting
service weights accordingly. A core provisioning algorithm
maintains the dropping-rate differentiation by dimensioning
the network ingress bandwidth. Edge provisioning modules
perform rate regulation based on utility functions. Even though
these algorithms are not the only solution to supporting the
proposed SLA, their design is tailored toward delivering quan-
titative differentiation in the SLA with minimum complexity.

Note that utility function based edge dimensioning has been
investigated in our prior work [22]. In the remaining part of
this paper we focus on core network provisioning algorithms
that are complementary components to the edge algorithms of
our dynamic provisioning architecture shown in Fig. 2.
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IV. DYNAMIC NODE PROVISIONING

The design of the node provisioning algorithm follows the
typical logic of measurement based closed-loop control. The
algorithm is responsible for two tasks: (i) to predict SLA
violations from traffic measurements; and (ii) to respond to
potential violations with local reconfiguration. If violations are
severe and persistent, then reports are sent to the core provi-
sioning modules to regulate ingress conditioners, as shown in
Fig. 2.

The detection of SLA violation is triggered by the virtual
queue method proposed in [4], [5]. A virtual queue has exactly
the same incoming traffic as its corresponding real queue but
with both the service rate and buffer size scaled down by
a factor ofκ ∈ (0, 1). The virtual queue technique offers a
generic and robust traffic control mechanism without assuming
any traffic model (e.g., the Poisson arrivals, etc.). It performs
well under complex traffic arrival processes including self
similarity [5]. In our node provisioning algorithm, we extend
this technique to queues with multiple classes served by a
weighted fair queueing scheduler by dynamically adjusting the
scaling parameterκi for each class.

The algorithm is invoked either by the event of detect-
ing the onset of an SLA violation, or periodically over an
update interval interval. The value of theupdate interval
does not effect the detection of SLA violations because the
virtual queue mechanism can trigger the algorithm execution
immediately without the constraint of theupdate interval.
However, theupdate interval will effect the speed to detect
the system under-load, and the measurement of traffic statis-
tics. In Section VI-B.2, we investigate the appropriate choice
of the update interval value.

The SLA service model introduced in Section III-C is
intended to be simple for ease of implementation. However,
it still requires non-trivial joint control of both service weight
allocation and buffer dimensioning to maintain the delay and
loss boundsDi andP ∗loss,i, respectively.

A. Loss Measurement

When P ∗loss,i is small, solely counting rare packet loss
events can introduce a large bias. Instead, the algorithm works
with the inverse of the loss rate which essentially tracks the
number of consecutively accepted packets. For each class, a
target loss control variablelossfree cnti is measured upon
each update epochtn. Denote cntaccepted the number of
accepted packets during the interval(tn−1, tn], andcntdropped

the number of dropped packets in the same interval, then we
have

lossfree cnti(tn) = (cntdropped + 1)/P ∗loss,i − cntaccepted.
(1)

In other words,lossfree cnti represents the number of pack-
ets that have to be accepted consecutively under theP ∗loss,i

bound before the next packet drop.lossfree cnti ≤ 0 signi-
fies that thePloss,i bound is not violated;lossfree cnti >
1/P ∗loss,i indicates the opposite; whilelossfree cnti ∈
(0 1/P ∗loss,i] indicates that there have not been sufficient
packet arrivals yet.

The measurement ofcntaccepted and cntdropped uses a
measurement windowτl, which is one order of magnitude
larger than the product of1/P ∗loss,i and the mean packet
transmission time in order to have a statistically accurate
calculation of the packet loss rate. In the simulation section,
we useτl ≥ 10 s. However, a largeτl means that a currently
partial measurement sample has to be considered for the
instantaneous packet loss. To improve statistical reliability, we
also use the complete sample in the preceding window for
calculation, that is:

cntaccepted = accept count(prev)+
accept count partial(now)

cntdropped = drop count(prev)+
drop count partial(now).

(2)

B. Delay Constraint

Our algorithm controls delay by buffer dimensioning and
service weight adjustment. Exact calculation of the maximum
delay of all enqueued packets is expensive since it requires
tracking the queueing delay incurred by every enqueued
packet. Instead, we calculate the current maximum queueing
delay with its upper bound:

di ≤ d̄i
4
= di(HOL) + Nq/µi, (3)

wheredi(HOL) is the queue delay of the head-of-line (HOL)
packet,Nq is the queue size, andµi is the lower bound of the
packet service rate calculated from the proportion of service
weights in a WFQ scheduler.µi is a lower bound because the
actual service rate will be higher when some of the other class
queues are idle. The benefit of Eq. 3 is that we only need to
calculate the delay of the HOL packet. The downside of this
is that d̄i becomes an approximation of the current maximum
queueing delay. In fact, it represents an upper bound of the
current maximum queueing delay because the first portion of
Eq. 3 represents the maximum queueing delay incurred by
any of the enqueued packets handled so far. The bound can
be reached when all the enqueued packets arrived at the same
time. Note that the same technique is used in [16] to measure
the maximum queueing delay.

Now with d̄i ≤ Di, and Ineq. 3, we obtain a lower bound
for the service rateµi:

µi(new) ≥ Nq/(Di − di(HOL)). (4)

This means thatµi(new) needs to be above the lower bound
in order to meet the delay bound of the enqueued packets.
Subsequently, the dimensioning of buffer sizeQi for the ith
class queue can be derived as:

Qi(new) = D̃i, where

D̃i =
{

Di − di(HOL) if Di > di(HOL),
Di otherwise, delay bound violated

(5)



LIAO AND CAMPBELL: DYNAMIC CORE PROVISIONING FOR QUANTITATIVE DIFFERENTIATED SERVICES 105

C. Virtual Queue Scaling

The virtual queue technique proposed in [4], [5] needs to be
extended for a WFQ scheduler with multiple queues. Denote
wi the service weight of classi, then the minimum service
rate is:

µi =
wi∑
i wi

linerate. (6)

Denoteκi the scaling parameter for theith queue, then the
buffer size of each class queue is scaled down byκi. For the
total service rate of the WFQ scheduler, we have:

linerateV Q =
∑

i

κi µi =
∑

i κi wi∑
i wi

linerate. (7)

The scaling parameter for the total service rate is∑
i κi wi/

∑
i wi, which is the weighted average of the

individual scaling parameters.
The setting ofκi takes into consideration the speed mis-

match between the instantaneous arrival rate and service rate,
and the response time of the queueing system to the adjustment
of service weights. The purpose is to chooseκi such that
the early warning generated from the virtual queue will give
enough time for the WFQ scheduler to react.

Since the node provisioning algorithm targets operating at
the buffer half-full point to counter both queue under-load
and overload, we can assume that the available buffer space
at the beginning of anupdate interval is Qi/2. In addition,

we focus on the case where the traffic loadρi
4
= λi/µi >

1, which represents the extend of the rate mismatch between
queue arrival and departure. Therefore, the time that it takes
to fill the real queue buffer is:

tRQ =
Qi/2

(ρi − 1)µi
. (8)

For the virtual queue, withκi scaling downQi and µi, we
have the time that takes to fill the virtual queue buffer as:

tV Q =
κi Qi/2

(ρi − κi)µi
. (9)

For a WFQ style (e.g., Weight Round Robin) scheduler, we
estimate the system response time to the change in service
weights asi/λi; that is, the response time is proportional
to the number of queueing classes that have higher or equal
allocation priority thani, and inversely proportional to the line
rate. Here we useλi to approximate the line-rate. Therefore,
we have the following inequality in order to achieve the early
warning of buffer overflow:

tRQ − tV Q =
Qi

2µi

ρi(1− κi)
(ρi − 1)(ρi − κi)

≥ i

ρi µi
. (10)

Solving this inequality, we have the upper bound for setting
κ as:

κi =
Qi

2i ρ2
i − ρi(ρi − 1)

Qi

2i ρ2
i − (ρi − 1)

. (11)

Fig. 3 shows some typical values ofκ as a function ofρi,
Qi and i. The value ofκi is sensitive to the buffer sizeQi

and the number of higher or equal priority queueing classesi.
However, the value ofκ does not vary much for large values of
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ρi, which represents extremely bursty traffic conditions. This
indicates that the dynamic adjustment of the virtual queue
scaling parameter is applicable to a wide range of traffic
conditions. Indeed, taking the limit ofρi in Eq. 11, we have:

lim
ρi→∞

κi = 1− 2i

Qi
. (12)

This limit is also the lower bound ofκi. It is desirable to
keep the scaling parameter of a virtual queue not too small
otherwise the virtual queue will generate a lot of false positive
alarms. That is, 2i

Qi
should remain close to zero. Because

2i
Qi

increases asQi decreases, a smallQi ≈ µi Di also
means smaller delay requirements usually for higher allocation
priority classes, thereforei is necessarily small as well. As a
result,κi will stay away from values close to zero.

D. Control Action

The control action is to adjust the service rate (weight)
as well as buffer size based on the short-term measurement
of the traffic arrival rateλ̄i and the queue length̄Nq,i.
The measurement method is the same as the dual-window
averaging method used for loss measurement in Section IV-A,
except that the window size is much smaller, set to be the
same as theupdate interval (i.e., the samples are averaged
over an interval between 1 to 2 times theupdate interval).
We find that this dual-window measurement is better than the
widely used exponentially-weighted moving-average method
for closely tracking the short-term variations in the sampled
statistics.

The baseline assignment of the service rate uses the
measured arrival rateµi(new) = λ̄i. In addition to this,
we decrease/increase the service rate based on the under-
load/overload conditions, respectively.

We determine that a queue is overloaded when the
lossfree cnti > −burst loss/p∗loss,i. Here the meaning of
a negative target loss-free count−loss burst/P ∗loss,i provides
an early response when the loss rate is within an additional
burst loss packet drops away fromP ∗loss,i. In this work, we
set burst loss = 5 to account for simultaneous packet drops
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resulting from simultaneous arrivals at a full queue. In the case
of queue overload,µi(new) has an additional increment from

queue-length adjustment:
(

N̄q,i−Qi/2
update interval

)+

. The purpose of
this is to use an additional workload to bring the queue length
down to the half-point of the buffer size when̄Nq,i > Qi/2.
After replacingQi with µi(new) D̃i based on Eq. 5, we have:

µi(new) = λ̄i +

(
N̄q,i − µi(new) D̃i/2

update interval

)+

(13)

The solution is:

µi(new) =

{
λ̄i+N̄q,i/update interval

1+D̃i/(2 update interval)
if N̄q,i ≥ λ̄iD̃i/2

λ̄i otherwise
(14)

Similarly, we determine a queue is under-loaded when
lossfree cnti ≤ −burst loss/p∗loss,i. In this case, we set

µi(new) = max{µi(perv) , λ̄i}, (15)

The calculatedµi(new) is then checked against the con-
straint of Eq. 4 and we have:

µi(new) = max{µi(new) , N̄q/D̃i, µmin}, (16)

whereµmin is the minimum service rate reserved for each class
to avoid starving a traffic class particularly when it transitions
from idle to active.

The service rateµi(new) is then converted to service
weight wi(new) for a WFQ scheduler. Note thatµi(new)
is the minimum service rate in a WFQ style scheduler be-
cause the unused service rate (weight) for some temporally
idle classes will be proportionally allocated to busy classes.
When there is congestion, i.e., not enough bandwidth to
satisfy everyµi(new), we use a strict priority in the service
weight allocation procedure; that is, higher priority classes can
“steal” service weights from lower priority classes until the
service weight of a lower priority class reaches its minimum
(µi(min)). We always change local service weights first before
sending a CongestionAlarm signal to the core provisioning
module (discussed in Section V) to reduce the arrival rate
which would require a network-wide adjustment of ingress
traffic conditioners at edge nodes.

Similarly, when there is a persistent under-load in the
queues, an increasing arrival rate is signaled (via the
LinkStateUpdate signal) to the core provisioning module. An
increase in the arrival rate is deferred to a periodic network-
wide rate re-alignment algorithm which operates over longer
time scales. In other words, the control system’s response
to rate reduction is immediate, while, on the other hand, its
response to rate increase to improve utilization is delayed
to limit any oscillation in rate allocation. In general, the
timescale of changing ingress router bandwidth should be
one order of magnitude greater than the maximum round trip
delay across the core network in order to smooth out the
traffic variations due to the transport protocol’s flow control
algorithm. Therefore, we introduce two control hystereses to
the dynamic adjustment algorithm (Fig. 4 line (18)), in the
form of a 10% bandwidth threshold and a 5 s delay.

The pseudo code for the node algorithm is detailed in Fig. 4.

dynamic adjustment algorithm
(1) upon the expiration of the update interval

timer or the arrival of early warning
events from the virtual queues:

(2) IF early warning event
(3) reset update interval timer
(4) ENDIF
(5) FOR all classes 1, · · · , n
(6) retrieve measurement: λ̄i and lossfree cnti
(7) IF lossfree cnti > −burst loss/p∗loss,i //overload
(8) use Eq. 14 to calculate service weight
(9) ELSE //under-load
(10) use Eq. 15 to calculate service weight
(11) ENDIF
(12) use Eq. 16 to enforce lower bound on µ(new)
(13) IF remaining service bandwidth < µi(new)
(14) adjust µi(new) and set all µj(new), j > i

to µmin

(15) send Congestion Alarm signal
(16) RETURN
(17) ENDIF
(18) adjust buffer size based on Eq. 5
(19) calculate κi for virtual queue with Eq. 11
(20) scale virtual queue service rate to

κiµi(new), and buffer size to κiQi(new)
(21) END FOR
(22) IF remaining service bandwidth > 10% linerate

for a duration > 5 s
(23) send LinkState Update signal to increase λi

(24) ENDIF
(25) RETURN

virtual queue prediction algorithm
(1) upon the arrival of class i packets:
(2) IF lossfree cnti(now) > 1/P ∗loss,i

AND lossfree cnti(now) > lossfree cnti(prev)
AND Congestion Alarm signal not present

for classes j ≤ i
(3) invoke the dynamic adjustment algorithm
(4) lossfree cnti(prev) = lossfree cnti(now)
(5) ENDIF
(6) RETURN

Fig. 4. Node Provisioning Algorithm Pseudo-Code

V. DYNAMIC CORE PROVISIONING

Our core provisioning algorithm has two functions: to
reduce edge bandwidth immediately after receiving aCon-
gestionAlarm signal from a node provisioning module, and
to provide periodic bandwidth re-alignment to establish a
modified max-min bandwidth allocation for traffic aggregates.
We will focus on the first function and discuss the latter
function in Section V-C.

A. Core Traffic Load Matrix

We consider a core network with a setL 4
= {1, 2, · · · , L}

of link identifiers of unidirectional links. Letcl be the finite
capacity of linkl, l ∈ L.

A core network traffic load distribution consists of a matrix
A = {al,i} that models per-DiffServ-aggregate traffic dis-
tribution on links l ∈ L, where the value ofal,i indicates
the portion of theith traffic aggregate that passes linkl. Let
the link load vector bec and ingress traffic vector beu,
whose coefficientui denotes a traffic aggregate of one service
class at one ingress point. Note that a network customer may
contribute traffic to multipleui for multiple service classes
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and at multiple network access points. This matrix formulation
also supports multiple service classes. LetJ be the total
number of service classes. Without loss of generality, we can
rearrange the columns ofA into J sub-matrices, one for

each class, which is:A = [A(1)
...A(2)

... · · · ...A(J)]. Similarly,

u = [u(1)
...u(2)

... · · · ...u(J)].
The constraint of link capacity leads to:AuT ≤ c. Fig. 5

illustrates an example network topology and its corresponding
traffic matrix. In this figure, node 1, 2, 3, and 4 are edge
nodes, while node 5 and 6 are core nodes. All the links are
unidirectional. To better explain the construct of the traffic load
matrix, we use the construct of the third column of the matrix
A: a·,3 as an example.a·,3 represents the traffic distribution
tree rooted at node 3, which is highlighted in the figure.
Each entryal,3 represents the portion of node 3’s incoming
traffic that passes linkl. For example, since 100% of node 3’s
incoming traffic passes through link 8,a8,3 = 1. Then at node
6, node 3’s traffic is split between link 6 and 9 with a ratio of
7 : 3, thereforea6,3 = 0.7, anda9,3 = 0.3. The 70% of traffic
on link 6 is further split between link 2 and 3 with a ratio of
6 : 1, as a result, we havea2,3 = 0.6, and a3,3 = 0.1. All
the other entries ina·,3 are zero since they model the reserve
links.

The construction of matrixA is based on the measure-
ment of its column vectorsa·,i, each represents the traffic
distribution of an ingress aggregateui over the set of links
L. The measurement ofui gives the trend of external traffic
demands. In a DiffServ network, ingress traffic conditioners
need to perform per-profile (usually per customer) policing or
shaping. Therefore, traffic conditioners can also provide per-
profile packet counting measurements without any additional
operational cost. This alleviates the need to place measurement
mechanisms at customer premises. We adopt this simple
approach to measurement, which is advocated in [11] and
measure bothui and a·,i at the ingress points of a core
network rather than measuring at the egress points which is
more challenging. The external traffic demandsui is simply
measured by packet counting at profile meters using ingress
traffic conditioners. The traffic vectora·,i is inferred from the
flow-level packet statistics collected at a profile meter. Some
additional packet probing (e.g., traceroute) or sampling (e.g.,
see [25]) methods can be used to improve the measurement
accuracy of intra-domain traffic matrix. Last, with the addition
of MPLS tunnels, fine granularity traffic measurement data is
available for each tunnel. In this case, the calculation of the
traffic matrix can be made more accurate. For example, in
Fig. 5, if there is an MPLS tunnel from node 3 to node 1
to accurate report the traffic volume,a2,3 can be calculated
exactly, and the inference ofa9,3, a6,3, anda3,3 can also be
more accurately determined after knowing the value ofa2,3.

B. Edge Rate Reduction Policy

Given the measured traffic load matrixA and the required
bandwidth reduction{−cδ

l (i)} at link l for classi, the alloca-
tion procedureRegulateIngressDown()needs to find the edge

bandwidth reduction vector−uδ = −[uδ(1)
...uδ(2)

... · · · ...uδ(J)]

such that:al,·(j) ∗ uδ(j)T cδ
l (j), where0 ≤ uδ

i ≤ ui.
Whenal,· has more than one nonzero coefficient, there is an

infinite number of solutions satisfying the above equation. In
what follows, we investigate two distinctly different optimiza-
tion policies for edge rate reduction: fairness and minimizing
the impact on other traffic. For clarity, we drop the class(j)
notation since the operations are the same for all classes.

1) Equal Reduction:Equal reduction minimizes the vari-
ance of rate reduction among various traffic aggregates, i.e.,

min
i

{
n∑

i=1

(
uδ

i −
∑n

i=1 uδ
i

n

)2
}

(17)

with constraints0 ≤ uδ
i ≤ ui and

∑n
i=1 al,iu

δ
i = cδ

l . Using
Kuhn-Tucker condition [26], we have:

Proposition 1: The solution to the problem of minimizing
the variance of rate reductions comprises three parts:

∀i with al,i = 0, we haveuδ
i = 0; (18)

then for notation simplicity, we re-number the remaining
indices with positiveal,i as1, 2, · · · , n; and

uδ
σ(1) = uσ(1), · · · , uδ

σ(k−1) = uσ(k−1); and (19)

uδ
σ(k) = · · · = uδ

σ(n)

cδ
l −

∑k−1
i=1 al,σ(i)uσ(i)∑n
i=k al,σ(i)

, (20)

where {σ(1), σ(2), · · · , σ(n)} is a permutation of
{1, 2, · · · , n} such thatuσ(i) is sorted in increasing order, and
k is chosen such that:

ceq(k − 1) < cδ
l ≤ ceq(k), (21)

whereceq(k) =
∑k

i=1 al,σ(i)uσ(i) + uσ(k)

∑n
i=k+1 al,σ(i).

Equal reduction gives each traffic aggregate the same amount
of rate reduction until the rate of a traffic aggregate reaches
zero.
Remark: A variation of the equal reduction policy is propor-
tional reduction: to reduce each of the aggregates contributing
traffic to bottleneck linkl by an amount proportional to its total
bandwidth. In particular, withα = cδ

l /
(∑

∀i,al,i>0 al,iui

)
, we

have:

uδ
i =

{
0 ∀i with al,i = 0
αui else.

(22)

2) Minimal Branch-Penalty Reduction:A concern that is
unique to DiffServ provisioning is to minimize the penalty on
traffic belonging to the same regulated traffic aggregate that
passes through non-congested branches of the routing tree.
We call this effect the “branch-penalty”, which is caused by
policing/shaping traffic aggregates at an ingress router. For
example, in Fig. 5, if link 7 is congested, the traffic aggregate
#1 is reduced before entering link 1. Hence penalizing a
portion of traffic aggregate #1 that passes through link 3 and
9.

The total amount of branch-penalty is
∑n

i=1(1 − al,i)uδ
i

since (1 − al,i) is the proportion of traffic not passing
through the congested link. Because of the constraint that∑n

i=1 al,iu
δ
i = cδ

l , we have
∑n

i=1(1−al,i)uδ
i =

∑n
i=1 uδ

i −cδ
l .
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Fig. 5. An Example of a Network Topology and its Traffic Matrix

Therefore, minimizing the branch-penalty is equivalent to
minimizing the total bandwidth reduction, that is:

min
n∑

i=1

(1− al,i)uδ
i ⇐⇒ min

n∑

i=1

uδ
i (23)

with constraints0 ≤ uδ
i ≤ ui and

∑n
i=1 al,iu

δ
i c

δ
l .

Proposition 2: The solution to the minimizing branch-
penalty problem comprises three parts:

uδ
σ(1) = uσ(1), · · · , uδ

σ(k−1) = uσ(k−1); (24)

uδ
σ(k) =

cδ
l −

∑k−1
i=1 al,σ(i)uσ(i)

al,σ(k)
; and (25)

uδ
σ(k) = · · · = uδ

σ(n) = 0, (26)

where {σ(1), σ(2), · · · , σ(n)} is a permutation of
{1, 2, · · · , n} such that al,σ(i) is sorted in decreasing
order, andk is chosen such that:

cbr(k − 1) < cδ
l ≤ cbr(k), (27)

wherecbr(k) =
∑k

i=1 al,σ(i)uσ(i).
Proof: A straightforward proof by contradiction can be

constructed as follows:
Let’s assume that there is another rate reduction vector

vδ 6= uδ such thatvδ minimizes the objective function (23),
that is

∑n
i=1 vδ

i <
∑n

i=1 uδ
i . This inequality, together with

the fact thatuδ
σ(i) (∀i < k) reaches the maximum possible

value, lead to the existence of at least one pair of indicesj
andm, wherej < k andm ≥ k, such thatal,j > al,m > 0;
vδ

σ(j) < uδ
σ(j) and vδ

σ(m) > uδ
σ(m). Now we can construct

a third vector wδ as follows: wδ
σ(i) = vδ

σ(i), i 6= j,m,
wδ

σ(j) = vδ
σ(j) + ε/al,σ(j), and wδ

σ(m) = vδ
σ(m) − ε/al,σ(m).

Here 0 < ε < min
{

al,σ(j)

(
vσ(j) − vδ

σ(j)

)
, al,σ(m)v

δ
σ(m)

}

so that bothwδ
σ(j) and wδ

σ(m) are positive. It is clear that∑n
i=1 al,iw

δ
i

∑n
i=1 al,iv

δ
i = cδ

l . However, becauseal,σ(j) >
al,σ(m), we have

∑n
i=1 wδ

i =
∑n

i=1 vδ
i − ε(1/al,σ(m) −

1/al,σ(j)) <
∑n

i=1 vδ
i . This contradicts the assumption that

vδ minimizes the objective function (23).
The solution is to sequentially reduce theui with the largest

al,i to zero, and then move on to theui with the second largest
al,i until the sum of reductions amounts tocδ

l .

Remark: A variation of the minimal branch-penalty solution
is to sort based onal,σ(i)uσ(i) rather thanal,σ(i). This ap-
proach first penalizes the aggregates with the largest volume
across the link (i.e., the “elephants”). This solution minimizes
the number of traffic aggregates affected by the rate reduction
procedure.

3) Penrose-Moore Inverse Reduction:It is clear that equal
reduction and minimizing the branch-penalty have conflicting
objectives. Equal reduction attempts to provide the same
amount of reduction to all traffic aggregates. In contrast, min-
imal branch-penalty reduction always depletes the bandwidth
associated with the traffic aggregate with the largest portion
of traffic passing through the congested link. To balance
these two competing optimization objectives, we propose a
new policy that minimizes the Euclidean distance of the rate
reduction vectoruδ:

min

{
n∑

i=1

(uδ
i )

2

}
, (28)

with constraints0 ≤ uδ
i ≤ ui and

∑n
i=1 al,iu

δ
i c

δ
l .

Similar to the solution of the minimizing variance problem
in the equal reduction case, we have:

Proposition 3: The solution to the problem of minimizing
the Euclidean distance of the rate reduction vector comprises
three parts:

∀i with al,i = 0, we haveuδ
i = 0; (29)

then for notation simplicity, we re-number the remaining
indices with positiveal,i as1, 2, · · · , n; and

uδ
σ(1) = uσ(1), · · · , uδ

σ(k−1) = uσ(k−1); and (30)

uδ
σ(k)

al,σ(k)
= · · · =

uδ
σ(n)

al,σ(n)
=

cδ
l −

∑k−1
i=1 al,σ(i)uσ(i)∑n
i=k a2

l,σ(i)

, (31)

where {σ(1), σ(2), · · · , σ(n)} is a permutation of
{1, 2, · · · , n} such thatuσ(i)/al,σ(i) is sorted in increasing
order, andk is chosen such that:

cpm(k − 1) < cδ
l ≤ cpm(k), (32)

where cpm(k) =
∑k

i=1 al,σ(i)uσ(i) +
(uσ(k)/al,σ(k))

∑n
i=k+1 a2

l,σ(i).
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(1) sort the indices i of traffic aggregates
based on :

the increasing order of ui for ER,
the decreasing order of al,i for BR,
the increasing order of ui/al,i for PM;

(2) locate the index k in the sorted index list
based on :

Ineq. 21 for ER,
Ineq. 27 for BR,
Ineq. 32 for PM;

(3) calculate reduction based on:
Eq. 18 - Eq. 20 for ER,
Eq. 24 - Eq. 26 for BR,
Eq. 29 - Eq. 31 for PM.

Fig. 6. Edge Rate Reduction Algorithm Pseudo-Code

Eq. 31 is equivalent to the Penrose-Moore (P-M) matrix
inverse [27], in the form of

[uδ
σ(k) uδ

σ(k+1) · · ·uδ
σ(n)]

T

[al,σ(k) al,σ(k+1) · · · al,σ(n)]+ ∗ (cδ
l −

k−1∑

i=1

al,σ(i)uσ(i)), (33)

where [· · ·]+ is the P-M matrix inverse. In particular, for an
n× 1 vectoral,·, the P-M inverse is a1×n vectora+

l,· where
a+

l,i = al,i/(
∑n

i=1 a2
l,i).

We name this policy as the “P-M inverse reduction” because
of the property of P-M matrix inverse. The P-M matrix inverse
always exists and is unique, and gives the least Euclidean dis-
tance among all possible solution satisfying the optimization
constraint.

Proposition 4: The performance of the P-M inverse reduc-
tion lies between the equal reduction and minimal branch-
penalty reduction. In terms of fairness, it is better than the
minimal branch-penalty reduction and in terms of minimizing
branch-penalty, it is better than the equal reduction.

Proof: By simple manipulation, the minimization objec-
tive of P-M inverse is equivalent to the following:

min





n∑

i=1

(
uδ

i − (
n∑

i=1

uδ
i )/n

)2

+

(
n∑

i=1

uδ
i

)2

/n



 . (34)

The first part of this formula is the optimization objective of
the equal reduction policy. The second part of formula (34)
is scaled from the optimization objective of the minimizing
branch penalty policy by squaring and division to be compara-
ble to the objective function of equal reduction; that is, the P-M
inverse method minimizes the sum of the objective functions
minimized by the equal reduction and minimal branch penalty
methods, respectively. Therefore, the P-M inverse policy has
a smaller value in the first part of formula (34) than what the
minimal branch penalty policy has; and a smaller value in the
second part of formula (34) than the corresponding value the
equal reduction policy has. Hence, the P-M inverse method
balances the trade-off between equal reduction and minimal
branch penalty.

It is noted that the P-M inverse reduction policy is not
the only method that balances the optimization objectives of

(1) identify the most loaded link l in the set
of non-saturated links:

l = arg minj∈Lu

{
xj =

cj−allocated capacity∑
i∈P aj,i

}
;

(2) increase allocation to all ingress
aggregates in P by xl, and update the
allocated capacity for links in Lu;

(3) remove ingress aggregates passing l from P ,
and remove link l from Lu;

(4) if P is empty, then stop; else go to (1).

Fig. 7. Edge Rate Alignment Algorithm Pseudo-Code

fairness and minimizing branch penalty. However, we choose
it because of its clear geometric meaning (i.e., minimizing the
Euclidean distance) and its simple closed-form formula.

4) Algorithm Implementation:The implementation com-
plexity of the preceding three reduction algorithms lies in the
boundary conditions where the rates of some traffic aggregates
are reduced to zero. Because all three algorithms have similar
structure, we can show the procedure of these algorithms in a
coherent manner, as shown in Fig. 6.

C. Edge Rate Alignment

Unlike edge rate reduction, which is triggered locally by a
link scheduler that needs to limit the impact on ingress traffic
aggregates, the design goal for the periodic rate alignment
algorithm is to re-align the bandwidth distribution across the
network for various classes of traffic aggregates and to re-
establish the ideal max-min fairness property.

However, we need to extend the max-min fair allocation
algorithm given in [28] to reflect the point-to-multipoint topol-
ogy of a DiffServ traffic aggregate. LetLu denote the set
of links that are not saturated andP be the set of ingress
aggregates that arenot bottlenecked, (i.e., have no branch of
traffic passing a saturated link). Then the procedure is given
as in Fig. 7.

Our modification of step (1) changes the calculation of
remaining capacity from(cl − allocated capacity)/||P|| to
(cl − allocated capacity)/

∑
i∈P al,i.

Remark: The convergence speed of the max-min allocation
for point-to-multipoint traffic aggregates is faster than for
point-to-point aggregate because it is more likely that two
traffic aggregates send traffic over the same congested link. In
the extreme case, when all the traffic aggregates have portions
of traffic over all the congested links, these aggregates are
only constrained by the most congested bottleneck link. In
this case, the algorithm takes one round to finish, and the
allocation effect is equivalent to the equal reduction (in this
case, “equal allocation”) method with respect to the capacity
of the most congested bottleneck link.

The edge rate alignment algorithm involves increasing edge
bandwidth, which makes the operation fundamentally more
difficult than the reduction operation. The problem is essen-
tially the same as that found in multi-class admission control
because we need to calculate the amount of offered bandwidth
cl(i) at each link for every service class. Rather than calculate
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cl(i) simultaneously for all the classes, we take a sequential
allocation approach. In this case, the algorithm waits for an
interval after bandwidth allocation for a higher priority. This
allows the lower priority queues to take measurements on the
impact of the changes, and to invoke RegulateDown() if rate
reduction is needed. The procedure is on a per class basis and
follows the decreasing order of allocation priority.

VI. SIMULATION RESULTS

A. Simulation Setup

We evaluate our algorithms by simulation using the ns-2
simulator [29]. Unless otherwise stated, we use the default
values in the standard ns-2 release for the simulation param-
eters.

We use the Weighted-Round-Robin scheduler which is a
variant of the WFQ algorithm. In our simulation, we consider
the performance of four service classes that loosely correspond
to the DiffServ Expedited Forwarding (EF), Assured Forward
(AF1, and AF2), and best-effort (BE) classes. The order above
represents the priority for bandwidth allocation. The initial
service weights for the four class queues are 30, 30, 30 and 10,
respectively, with a fixed total of 100. The minimum service
weight wi(min) for each class is 1. The initial buffer size is
30 packets for the EF class queue, 100 packets each of the
AF1 and AF2 class queues, respectively, and 200 packets for
the BE class queue.

The simulation network comprises eight nodes with traffic
conditioners at the edge, as shown in Fig. 8. The backbone
links are configured with 6 Mb/s capacity with a propagation
delay of 1 ms. The three backbone links (C1, C2 and C3)
highlighted in the figure are overloaded in various test cases
to represent the focus of our traffic overload study. The access
links leading to the congested link have 5 Mb/s with a 0.1 ms
propagation delay. The ingress traffic conditioners serve the
purpose of ingress edge routers. Each conditioner is configured
with one profile for each traffic source. The EF profile has a
default peak rate of 500 Kb/s and a bucket size of 10 Kb. The
AF profile has a default peak rate of 1 Mb/s and a token bucket
of 80 Kb. For simplicity, we program the conditioners to drop
packets that are not conforming to the leaky-bucket profile.
The core provisioning algorithm will regulate the ingress
traffic rates by changing the profiles in the traffic conditioners.

A combination of Constant-Bit-Rate (CBR), Pareto On-
Off and Exponential On-Off traffic sources are used in the
simulation, as well as applications including a large number
of greedy FTP sessions and HTTP transactions. The starting
time of all sources is a random variable uniformly distributed
in [0 5 s]. During the simulations, we vary the peak rate or the
number of sources to simulate different traffic load conditions.
Except where specifically noted, we use the default values for
all ns simulation parameters.

Throughout the simulations, we use the same set of DiffServ
SLAs:

• for the EF class, the delay boundD1 = 0.1 s, the loss
boundP ∗1 = 5 ∗ 10−5;

• for the AF1 class, the delay boundD2 = 0.5 s, the loss
boundP ∗2 = 5 ∗ 10−4;
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Fig. 8. Simulated Network Topology

• for the AF2 class, the delay boundD3 = 1 s, the loss
boundP ∗3 = 5 ∗ 10−3.

For the BE class, there is no SLA that needs to be supported.

B. Dynamic Node Provisioning

The dynamic node provisioning algorithm interacts with
the core provisioning algorithm via the CongestionAlarm
and LinkStateUpdate signals. To better stress test the node
provisioning algorithm, we disable the alarm and update
signals to the core provisioning algorithms in the simulations
described in this section. In addition, we simplify the network
shown in Fig. 8 into a dumb-bell topology (by combining
nodes 1 to 4 into one node, and nodes 5 to 8 into another
node). The 5 Mb/s link between these two “super” nodes will
be the focus of simulations in this sub-section.

1) Service Differentiation Effect:We first use traces to
highlight the impact of enabling and disabling the node
provisioning algorithm on our service model. We compare the
results where the algorithm is enabled and disabled.

We use 100 traffic sources: 20 CBR sources for the EF
class; 30 Pareto On-Off sources for the AF1 class; and 40 and
10 Exponential On-Off sources for the AF2 and BE classes,
respectively. Each source has the same average rate of 55 Kb/s,
which translates into an average of a 110% load on the 5 Mb/s
target link when all the sources are active. The simulation trace
lasts 100 s. To simulate the dynamics of traffic overload, we
activate and stop the EF and AF1 class sources in a slow-start
manner, i.e., the activation time for the EF and AF1 traffic
sources is uniformly distributed over the first 30 s. The stop
time for the EF and AF1 sources is uniformly distributed over
the last 40 s. With respect to the AF2 and BE sources, their
slow-start activation time lies within the first 5 s, and their
stop time is at the end of the simulation period. As a result,
congestion occurs between 30 and 60 s in the trace. The node
provisioning algorithmupdate interval is set to a value of
200 ms.

Accurately setting the service weights is very important to
the operation of the scheduler in the case where the node
provisioning algorithm is disabled because its service weights
are not adjusted during the simulation. We use the exact
information of the traffic load mixture to set the service
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Fig. 9. Node Provisioning Service Differentiation Effect

weights to 23, 33, 43 and 1 for the EF, AF1, AF2, and BE
classes, respectively. These settings yield a traffic intensity of
96%, 100% and 102% for the EF, AF1 and AF2 queues,
respectively, while leavingwmin = 1 for the BE traffic
during the congestion interval. These setting represent the
best-case scenario for the scheduler (in the case where the
node provisioning algorithm is disabled) to maintain service
differentiation for services classes that have SLA concerns. We
note that in practice, however, there is no prior knowledge of
traffic load during congestion. Therefore, the setting of service
weights in practice would be less ideal when comparing the
performance of the scheduler in a system where the node
provisioning algorithm is disabled. As we will show later,
even with such a best-case advantage, the scheduler still under-
performs the node provisioning algorithm in both delay and
loss performance because a fixed set of service weights can
not deal with the varying mixture of traffic loads from different
classes.

The statistical traces collected in this simulation are end-to-
end throughput, packet loss rate, and mean delay for all the
classes except BE. Each sample is averaged over a window of
0.5 s from the per-packet samples.

Fig. 9(a) and (b) show the throughput trace. When the
system is not overloaded, both plots exhibit the same shape of
curve. During congestion between 30 and 60 s into the trace,
however, the plot with node provisioning disabled (Fig. 9(a))
shows almost flat throughput curves for the EF, AF1 and AF2
classes, with a ratio of 2:3:4 matching the service weight
settings, respectively. In contrast, significant variations occur

for the results with the node provisioning algorithm enabled,
as shown in Fig. 9(b).

The effect of the node provisioning algorithm can be clearly
observed in the delay plots of Fig. 9(c) and (d). Unlike
Fig. 9(c) where both AF1 and AF2 delays exceed their bound
of 0.5 s and 1 s, respectively, Fig. 9(d) shows that only the AF2
class exceeds its delay bound. In addition, the delay values for
all three classes are smaller than the results shown in Fig. 9(c).

In the packet loss comparison, the lack of loss differentiation
is clearly evident in Fig. 9(e), where both EF and AF2 classes
have the same magnitude of loss rate of approximately 10%.
In contrast, in Fig. 9(f) with node provisioning enabled, only
AF2 has packet loss and the loss rate is comparable to the
result shown in Fig. 9(f).

2) Update Interval:In this set of simulation, we investigate
the appropriate value for theupdate interval when invoking
the node provisioning algorithm. Anupdate interval that
is too small, increases the variations in the measured traffic
arrival rate and leads to frequent oscillations in bandwidth
allocation. In contrast, anupdate interval that is too large,
delays the detection of under-load in some traffic classes and
hurts service differentiation.

We experiment with five different values of
update interval: 50 ms, 100 ms, 200 ms, 500 ms, 1 s
and 2 s. There are a total 70 traffic sources, with 20% for the
EF class, 30% for the AF1 class, 40% for the AF2 class and
10% for the BE class. The EF source is CBR with a peak rate
of 100 Kb/s. The AF1 and AF2 sources are Pareto On-Off
sources with default ns values: an average 0.5 s for the on
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Fig. 10. Node Provisioning Sensitivity toupdate interval, AF1 Class with Pareto On-Off Traffic

and off intervals, and a shape parameter with the value of
1.5. The AF2 sources have a peak rate of 200 Kb/s. The BE
class sources are CBR with 100 Kb/s rate. We vary the peak
rate for the AF1 class to change the offered load. The offered
load is calculated as the ratio between the total arrival rate
of the AF1 class and the available bandwidth to AF1 (which
is the link capacity subtracted by the total EF traffic arrival
rate).

Extensive statistics (e.g., delay, loss, service rate, arrival
rate, etc.) are collected for each queueing classes at each
network node, and for each flow from end-to-end. Most
samples are collected when the node provisioning algorithm
is invoked. Therefore, the maximum sampling interval is the
update interval. The collected samples are then consolidated
by the time-weighted average for the statistics requiring av-
eraging (e.g., traffic load, mean delay, and loss rate, etc.).
Statistics like maximum delay are calculated from the maxi-
mum of all the collected samples. The loss rate samples are
accumulated using the dual-window approach described in
Section IV, with the measurement windowτl set to 30 s for
the EF class and 10 s for all the other classes. The collected
samples are then consolidated by time-weighted average for
statistics including loss rate, mean delay, and arrival rate.

Fig. 10 shows both the packet loss and maximum delay
performance. For the purpose of clarity, we only show the
results for the AF1 class. Each sample point on the plot is a
simulation run of 100 s. In general, the algorithm performance
is not very sensitive to the value of theupdate interval. This
is expected because the node provisioning algorithm can also
be invoked by the virtual queues detecting an onset of SLA
violation. Among the small differences, we observe that the
update interval ≥ 1 s is not good because it has packet losses
and large variation of the maximum delay under low offered
load. In addition, we observe that anupdate interval value
of 200 ms achieves low maximum delay relative to the other
curves. This is consistently observed across the whole range
of offered loads below 80%. When the offered load increases
beyond 80% the system becomes over-loaded and the impact
of a different update interval becomes negligible. In what

follows, we will use anupdate interval = 200 ms for all the
simulations.

It is also interesting to observe one feature of the node
provisioning algorithm: namely the algorithm always tries to
guarantee the delay bound first. We observe that beyond 80%
load the loss rate starts to exceed the5∗10−4 bound, while the
delay bound of 0.5 s is always maintained even for an offered
load exceeding 1.

3) Stress Test Under Bursty Traffic:We continue the pre-
ceding simulation runs with different traffic sources for the
AF1 classes, including Pareto On-Off, Exponential On-Off and
CBR traffic sources. Each sample point represents a simulation
run of 1000 s. We use the CBR traffic source to provide a
baseline reference for the two bursty On-Off traffic types.

Fig. 11 presents four sets of consolidated statistics for
comparison. Fig. 11(a) plots the percentage of time that the
CongestionAlarm is raised for the AF1 class. Since we disable
the dynamic core provisioning algorithm to stress test the node
algorithm, the alarm frequency becomes a good indicator of
the node algorithm’s capability of handling bursty traffic. It
is also a convenient indicator of the performance boundary
below which the delay boundD2 = 0.5 s and loss bound
P ∗loss,2 = 5 ∗ 10−4 should hold and above which the loss
rate and maximum delay will grow to exceed these bounds.
We observe that the algorithm performs equally well for
both Pareto and Exponential On-Off sources, even though
the Pareto source is heavy-tailed and more bursty. It is clear
that the algorithm can handle up to 70% load for both the
Pareto and Exponential On-Off traffic under theD2 andP ∗loss,2

bounds. For the CBR traffic, the sustainable load reaches
85% as observed from the loss and delay measurements in
Fig. 11(c) and 11(d), respectively. This falls short of 100%
because the CBR traffic is also bursty being an aggregate of
21 individual CBR sources.

Fig. 11(b) shows the measured traffic intensity in the AF1
queue. Even though measuring the arrival rate is trivial,
measuring the per-class service time is not easy for a multi-
class queueing system. In the simulations, we use the sum
of the per-packet transmission time and the Head-of-the-Line
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Fig. 11. Node Provisioning Algorithm Performance, AF1 Class with Bursty Traffic Load

(HOL) waiting time as the total service time. The HOL waiting
time is the time after a packet enters the HOL position of
the queue, waiting for scheduler to finish serving the HOL
packets of other queues. From this plot we can observe the
algorithm’s efficiency in allocating bandwidth. For the CBR
traffic, the service bandwidth utilization remains at 100% until
the incoming traffic exceeds the maximum service capability.
For the Pareto and Exponential On-Off traffic, the utilization
stays at 100% until the offered load reaches 50%. After that
the utilization dips by about 10%. This is the amount of over
allocation necessary to maintain the SLA.

Fig. 11(c) and 11(d) plot the loss rate and maximum
delay measured at this AF1 class queue, respectively. The
results verify that when the alarm signal is not raised, the
system performance will remain below the SLA bounds. Once
again we observe that the algorithm gives precedence in
guaranteeing the delay bound first. Except two spikes for
the Pareto source, all the maximum delay curves are below
the 0.5 s bound. In addition, one can also discover the fact
that only when the alarm frequencies exceed 10%, the loss
rate will exceed the loss bound of5 ∗ 10−4. This is true for
both the Pareto and Exponential On-Off sources, where the
10% alarm frequency corresponds well to the 70% maximum
sustainable load, and for the CBR source, where the 10% alarm
frequency matches the 85% maximum sustainable load. This
information is important for the core provisioning algorithm

as it allows the core algorithm to gauge the overload severity
from the frequency of CongestionAlarm signals sent by the
node provisioning algorithms.

4) Scalability with Adaptive Applications:We further test
our scheme with TCP applications including greedy FTP
and transactional HTTP applications. Because TCP congestion
control reacts to packet loss, the packet dropping action alone
is also effective in reducing congestion for TCP. However,
the adaptive flow control of TCP also will push the traffic
load to 100% even with a small number of sources. To test
our algorithm’s performance in supporting a large number of
TCP sources, we repeat the above test but instead of varying
the peak rate of each source, we vary the number of TCP
applications that are connected to the target node.

The results are shown in Fig. 12 in the same setting as
Fig. 11. The traffic load for the EF, AF2 and BE classes remain
the same as in the previous tests. We vary the number of the
AF1 sessions: from 2 to 40 for greedy FTP traffic, and from
20 to 400 for web traffic. To better understand these results,
we plot the FTP and HTTP results with a corresponding 1:10
ratio in the number of sessions on the x axis.

The web traffic is simulated using the ns-2 “Page-
PoolWebTraf” module. The parameters for the web traffic are
set to increase the traffic volume of each web session so that
on the target link of 5 Mb/s, queueing overload can occur. The
inter-session time is exponentially distributed with a mean of
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Fig. 12. Node Provisioning Algorithm Performance, AF1 Class with TCP Applications

0.1 s. Each session size is a constant of 100 pages. The inter-
page time is also exponentially distributed but with a mean
of 5 s. Each page size is a constant of 5 objects, while the
inter-object time is exponentially distributed with a mean of
0.05 s. Last, the object size has a distribution of Pareto of the
Second Kind (also know as the Lomax distribution) with a
shape value of 1.2 and average size of 12 packets (which is
12 KB).

In Fig. 12(a), for both traffic sources, the alarm frequency
rises above 10% for a small number of sessions, i.e., 5 sessions
for FTP and 20 sessions for HTTP, respectively. The average
traffic intensity (Fig. 12(b)), however, shows a difference. The
FTP traffic intensity increases quickly to 100% and then stays
at 100% after 5 sessions, while the HTTP traffic intensity
increases gradually and reaches 100% much later at 220
sessions. These two plots indicate that the HTTP traffic is more
bursty than the FTP traffic because for the HTTP traffic, its
alarm frequency rises quicker while its average traffic intensity
rises much slower than the FTP traffic. The FTP traffic, on the
other hand, is less bursty only because its average load reaches
100% for most of the cases. However, even with a large value
of alarm frequency, the system perform well for a wide range
of number of sessions. The loss rate exceeds5 ∗ 10−4 at 25
FTP sessions or 300 HTTP sessions. The delay bound of 0.5 s
is always met for the HTTP traffic. For the FTP traffic, because
of the heavy traffic load, the delay bound is first violated at

25 FTP sessions, but is not exceeded much after that point
(Fig. 12(d)).

In summary, the stress test results from both bursty On-
Off and TCP application traffic have shown that the node
provisioning algorithm will guarantee the delay and loss
bounds when there is no alarm raised, and also with a alarm
frequency below 10%. When there is a SLA violation, the
algorithm will first meet the delay bound sacrificing the loss
bound. For adaptive applications like TCP which respond to
packet loss, this approach has shown to be effective even
without the involvement of core provisioning algorithms.

C. Dynamic Core Provisioning

1) Effect of Rate Control Policy:In this section, we use test
scenarios to verify the effect of different rate control policies
in our core provisioning algorithm. We only use CBR traffic
sources in the following tests to focus on the effect of these
policies.

Table I gives the initial traffic distribution of the four
EF aggregates comprising only CBR flows in the simulation
network, as shown in Fig. 8. For clarity, we only show the
distribution over the three highlighted links (C1, C2 and C3).
The first three data-rows form the traffic load matrixA, and
the last data-row is the input vectoru.

In Fig. 13, we compare the metrics for equal reduction,
minimal branch-penalty and the P-M inverse reduction under
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Fig. 13. Reduction Policy Comparison (Ten Independent Tests)

ten randomly generated test cases. Each test case starts with
the same initial load condition, as given in Table I. The change
is introduced by reducing the capacity of one backbone link to
cause congestion which subsequently triggers rate reduction.

Fig. 13(a) shows the fairness metric: the variance of rate
reduction vectoruδ. The equal reduction policy always gener-
ates the smallest variance, in most of the cases the variances
are zero, and the non-zero variance cases are caused by the
boundary conditions where some of the traffic aggregates have
their rates reduced to zero. Here we observe that the P-M
inverse method always gives a variance value between those of
equal reduction and minimizing the branch penalty. Similarly,
Fig. 13(b) illustrates the branch penalty metric:

∑
i(1−al,i)uδ

i .
In this case, the minimizing branch penalty method consis-
tently has the lowest branch penalty values, followed by the
P-M inverse method. The last figure, Fig. 13(c), shows the
Euclidean distance ofuδ, i.e.,

∑
i(u

δ
i )

2. In this case, the P-M
inverse method always has the lowest values, while there is
no clear winner between the equal reduction and minimizing
branch penalty methods.

The results support our assertion that the P-M Inverse
method balances the trade-off between equal reduction and
minimal branch penalty.

In Fig. 14, we plot the time sequence of rate-regulating
results using the default policies of our core provisioning
algorithm, i.e., the P-M inverse method for rate reduction and
the modified max-min fair rate alignment method for rate re-
alignment. The traffic dynamics are introduced by sequentially
changing link capacity ofC1, C2 andC3 as follows:

1) at 100 s into the trace,C2 capacity is reduced to 3 Mb/s
and requires a bandwidth reduction of 0.8 Mb/s from
ingress traffic conditioners

2) at 200 s into the trace,C3 capacity is reduced to 2 Mb/s,
and requires a bandwidth reduction of 0.1 Mb/s,

3) at 300 s into the trace,C1 capacity is reduced

TABLE I

TRAFFIC DISTRIBUTION MATRIX

Bottleneck User Traffic Aggregates
Link U1 U2 U3 U4

C1 0.20 0.25 0.57 0.10
C2 0.80 0.75 0.43 0.90
C3 0.40 0.50 0.15 0.80

Load (Mb/s) 1.0 0.8 1.4 2.0
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Fig. 14. Core Provisioning Allocation Result, Default Policies

to 0.5 Mb/s, and requires a bandwidth reduction of
0.6 Mb/s, and

4) at 400 s into the trace,C1 notices a capacity increase to
6 Mb/s, which leavesC3 the only bottleneck.

The first three cases of reduction are also the first three test
cases used in Fig. 131. The last case invokes a bandwidth
increment rather than a reduction. In this case, we use the
modified max-min fair allocation algorithm to re-align the
bandwidth allocation of all ingress aggregates. The allocation
effect is the same as “equal allocation” because all the traffic
aggregates share all the congested links.

2) Responsiveness to Network Dynamics:We use a com-
bination of CBR and FTP sources to study the joint effect
of our dynamic core provisioning algorithm (i.e., the P-M
Inverse method for rate reduction and max-min fair for rate
alignment) and our node provisioning algorithm. Periodic edge
rate alignment is invoked every 60 s. We use CBR and FTP
sources for EF and AF1 traffic aggregates, respectively. Each
traffic class comprises four traffic aggregates entering the
network in the same manner, as shown in Fig. 8. A large
number (50) of FTP sessions are used in each AF1 aggregate to
simulate a continuously bursty traffic demand. The distribution
of the AF1 traffic across the network is the same as shown in
Table I.

The number of CBR flows in each aggregate varies to

1We note that it does not make sense to plot the performance metrics shown
in Fig. 13 in the same time sequence style as that of Fig. 14. The reason is
that in a time-sequenced test, after the first test case, the load conditions prior
to each rate reduction could be different for different allocation methods, and
the results from the comparison metrics would not be comparable.



116 IEEE TRANSACTIONS ON NETWORKING, VOL. XX, NO. Y, MONTH 2004

200 400 600 800 1000

Time (s)

0

0.5

1

1.5
B

an
dw

id
th

 (
M

b/
s)

U1
U2
U3
U4

(a) Bandwidth Allocation (Link C1)

200 400 600 800 1000

Time (s)

0

0.5

1

1.5

2

B
an

dw
id

th
 (

M
b/

s)

U1
U2
U3
U4

(b) Bandwidth Allocation (Link C2)

200 400 600 800 1000

Time (s)

0

0.1

0.2

0.3

0.4

0.5

D
el

ay
 (

m
s)

U1
U2
U3
U4

(c) Delay (Link C1)

200 400 600 800 1000

Time (s)

0

2

4

6

8

10

D
el

ay
 (

m
s)

U1
U2
U3
U4

(d) Delay (Link C2)

Fig. 15. Average Bandwidth Allocation and Delay Traces for AF1 Aggregates

simulate the effect of varying bandwidth availability for the
AF1 class (which could be caused in reality by changes in
traffic load, route, and/or network topology). The changes in
the available bandwidth for the AF1 class includes: at time
400 s into the trace,C2 (the available bandwidth at link 2)
is reduced to 2 Mb/s; at 500 s into the trace,C3 is reduced
to 0.5 Mb/s; and at 700 s into the trace,C3 is increased to
3 Mb/s. In addition, at time 800 s into the trace, we simulate the
effect of a route change, specifically, all packets from traffic
aggregateu1 andu3 to node 5 are rerouted to node 8, while
the routing foru2 andu4 remains intact.

Fig. 15 illustrates the allocation and delay results for the
four AF1 aggregates. We observe that not every injected
change of bandwidth availability triggers an edge rate reduc-
tion; however, in such a case it does cause changes in packet
delay. Since the measured delay is within the performance
bound, the node provisioning algorithm does not generate
CongestionAlarm signals to the core provisioning module,
hence, rate reduction is not invoked. In most cases, edge
rate alignment does not take effect either because the node
provisioning algorithm does not report the need for an edge
rate increase. Both phenomena demonstrate the robustness of
our control system.

The system correctly responds to route changes because the
core provisioning algorithm continuously measures the traffic
load matrix. As shown in Fig. 15(a) and 15(b), after time 800 s
into the trace, the allocation ofu1 andu3 at link C1 drops to
zero, while the corresponding allocation at link C2 increases
to accommodate the surging traffic demand.

VII. C ONCLUSION

This paper makes two contributions. First, our node provi-
sioning algorithm prevents transient service level violations by

dynamically adjusting the service weights of a weighted fair
queueing scheduler. The algorithm is measurement-based and
effectively uses a multi-class virtual queue technique to predict
the onset of SLA violations. Second, our core provisioning
algorithm is designed to address the unique difficulty of
provisioning DiffServ traffic aggregates where rate-control can
only be exerted at the root of traffic distribution trees. We
proposed the Penrose-Moore (P-M) Inverse Method for edge
rate reduction which balances the trade-off between fairness
and minimizing the branch-penalty. We also extended max-
min fair allocation for edge rate alignment and demonstrated
its convergence property.

Collectively, these algorithms contribute toward a more
quantitative differentiated service Internet, supporting per-
class delay guarantees with differentiated loss bounds across
core IP networks. We have argued that such an approach to
dynamic provisioning is superior to static provisioning for
DiffServ because it affords network mechanisms the flexibility
to regulate edge traffic, maintaining service differentiation
under persistent congestion and device failure conditions when
observed in core networks.

Our service model uses two priority orders in QoS provi-
sioning; that is, the relaxation of the loss bound in favor of
a delay bound, and a static order of relaxation among service
classes. The preference of a delay bound instead of a loss
bound is intended to better support TCP applications with
reduced round trip delays and early congestion notification
through packet drops. However, under high loss rate condi-
tions, low-priority flows would be starved due to the interac-
tion of a high loss rate and TCP congestion control algorithms.
Therefore, it is important for the core provisioning algorithm
to prevent severe congestion from happening by regulating
traffic at the edges. In this paper, we have shown that the
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node provisioning algorithm can provide reliable early warning
signals using a virtual queue technique, which does not require
prior knowledge of traffic characteristics. We are currently
studying how to extend the core provisioning algorithm to also
provide loss guarantees across traffic classes. This problem
bears similarity to the measurement based admission control
algorithms discussed in the related work section (Section II).

The complexity of the proposed algorithms mainly resides
in the node provisioning algorithm, which is distributed across
core routers and is scalable to large network configurations.
The challenge of implementing the centralized core provi-
sioning algorithm lies in the continuous monitoring of the
traffic matrix across the core network. To improve scalability,
we a studying approaches that can enlarge the monitoring
granularity and time scale; for example, focusing on a few
potential bottleneck links instead of every internal link in the
network, or, increasing theupdate interval provisioning time
scale. Recent work on network measurement [11], [12], [25]
of the AT&T backbone network provides valuable insights and
directions on how we could scale the monitoring process up to
handle large networks. The centralized approach to the current
design of the core provisioning algorithm provides a better
response time to sudden changes in network traffic overloads.
To improve survivability against network failures (e.g., out-
ages, DDoS), fault tolerant practices in network management
can be used to deploy redundant core provisioning algorithms.
We are currently studying a fully distributed core provisioning
algorithm that removes the single point of failure presented
by the existing centralized scheme. A key challenge is to
design and analyze the convergence and stability properties
of a distributed solution in order to recover in a timely
fashion after network failure. We plan to develop some form of
analytical proof or argument guaranteeing the stability of such
a scheme subject to the perturbations unbounded in magnitude,
but bounded in time.
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