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Dynamic Core Provisioning for Quantitative
Differentiated Services

Raymond R.-F. LiaoMember, IEEEand Andrew T. CampbellMember, IEEE

Abstract— Efficient network provisioning mechanisms that to simplify the resource management problem thereby gaining
support service differentiation and automatic capacity dimen- grchitectural scalability through provisioning the network on
sioning are essential to the realization of the Differentiated 5 per-aggregate basis, which results in some level of service
Services (DiffServ) Internet. Building on our prior work on . o . AT
edge provisioning, we propose a set of efficient dynamic nooled|fferent|at|on between service clas.s.es thaq:mhtatl_ve in
and core provisioning aigorithms for interior nodes and core nature. Although Under normal COI’]dItIOI’IS, the Comb|nat|0n Of
networks, respectively. The node provisioning algorithm prevents DiffServ router mechanisms and edge regulation of service
transient violations of service level agreements by predicting the |evel agreements (SLA) could plausibly be sufficient for ser-
onset of service level violations based on a multi-class virtual \ice gifferentiation in an over-provisioned Internet backbone,
gueue measurement technique, and by automatically adjusting . s .
the service weights of weighted fair queueing schedulers at core network practltlc_)ners nee_d to _uspjantltatlve prOV|S|0n|rig
routers. Persistent service level violations are reported to the rules to automatically re-dimension a network that experiences
core provisioning algorithm, which dimensions traffic aggregates persistent congestion or device failure while attempting to
at the network ingress edge. The core provisioning algorithm is maintain service differentiation [2], [3]. Therefore, a key
de5|_gned to address_, the difficult problem of provisioning DiffServ challenge for the emerging DiffServ Internet is to develop
traffic aggregates (i.e., rate-control can only be exerted at the - . . .
root of any traffic distribution tree) by taking into account sqlutlons that can de_ll\_/er suitable network control granularity
fairness issues not only across different traffic aggregates but With scalable and efficient network state management.
also within the same aggregate whose packets take different In this paper, we propose an approach to provisioning
routes through a core IP network. We demonstrate through quantitative differential services within a service provider’s
analysis and simulation that the proposed dynamic provisioning network (i.e., the intra-domain aspect of the provisioning

model is superior to static provisioning for DiffServ in providing . .
quantitative delay bounds with differentiated loss across per- problem). Our SLA provides quantitative per-class delay guar-

aggregate service classes under persistent Congestion and devic@ntees with differentiated loss bounds across core IP networks.

failure conditions when observed in core networks. We introduce a distributedode provisioning algorithnthat
Index Terms— Virtual Queue, Point-to-Multipoint Congestion, works with class-based weighted fair (WFQ) schedulers and
Service Differentiation, Capacity Dimension. gueue management schemes. This algorithm prevents transient

service level violations by adjusting the service weights for
different classes after detecting the onset of SLA violations.
. INTRODUCTION The algorithm uses a simple but effective approach (i.e.,

FFICIENT capacity provisioning for the Differentiatedthe Virtual queue method proposed in [4], [S]) to predict
E Services (DiffServ) Internet [1] appears more Cha”engir@ﬁrSiStent SLA violations from measurement data and sends
than in circuit-based networks such as the Asynchrono@krm signals to our networore provisioning algorithmOur
Transfer Mode (ATM) networks for two reasons. First, therglress test results for both bursty On-Off and TCP application
is a lack of detailed control information (e.g., per-flow statedfaffic show that the node provisioning algorithm alone can
and support mechanisms (e.g., per-flow queueing) in tBdarantee the delay and loss bounds when there is a low
network. Second, there is a need to provide increased leviégfuency (below 10%) of alarms raised. When there is a
of service differentiation over a single global IP infrastrucSLA Violation, the algorithm will first meet the delay bound
ture. In traditional telecommunication networks, where traffigacrificing the loss bound. For adaptive applications such
characteristics are well understood and well controlled, longs TCP which respond to packet losses, this approach has
term capacity planning can be effectively applied. We argugown to be effective even without the involvement of core
however, that in a DiffServ Internet more dynamic forms dprovisioning algorithms.
control will be required to compensate for coarser-grained One challenge facing DiffServ network provisioning is the
state information and the lack of network controllability, iffate control of traffic aggregates that comprise flows exiting the
service differentiation is to be realistically delivered. core network at different network egress points. A rate control

There exists a trade-off intrinsic to the DiffServ servicéunction includes traffic policing (i.e., packet dropping) and/or

model (i.e., qualitative vs. quantitative control). DiffServ aim#affic shaping. This problem occurs when rate control can only
be exerted on a per traffic aggregate basis, (i.e., at the root
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call such a penaltppranch-penalty Branch-penalty exists in traffic engineering, solutions for circuit-based networks have
DiffServ networks because rate control is performed at theeen widely investigated in literature (e.qg., [8], [9]). There has
ingress edge of the network instead of in the core of th®een recent progress on developing measurement techniques
network. Existing flow control algorithms have focused ofor IP networks [10]-[12]. In contrast, for the medium time
fairness across different traffic aggregates while overlookisgale mechanisms, most research effort has been focused on
the effect of branch-penalty, which can lead to severe baramission control issues including edge [13] and end host
width reduction on traffic aggregates whose portion of traffltased admission control [14]. However, these algorithms do
flowing through a congested link is small, and resulting inot provide fast mechanisms that are capable of reacting to
unnecessary under-utilization of network links that are nstidden traffic pattern changes. Our dynamic provisioning algo-
congested. Our approach, in contrast, comprises a suiterittims are capable of quickly restoring service differentiation
policies that minimize branch-penalty, deliver fairness withnder severely congested and device failure conditions.
equal reduction across traffic aggregates, or extend the maxbelivering quantitative service differentiation for the Diff-
min fairness for point-to-multipoint traffic aggregates. Serv service model in a scalable manner has attracted a lot of
In summary, this paper makes two contributions. Firsattentions recently. A number of researchers have proposed
our node provisioning algorithm prevents transient serviedfective scheduling algorithms. Stoica et. al. propose the
level violations by dynamically adjusting the service weight®ynamic Packet State [6] to maintain per-flow rate information
of a weighted fair queueing scheduler. The algorithm ig packet headers leading to fine-grained per-flow packet-
measurement-based and effectively uses the multi-class virtdedpping that is locally fair (i.e., at a local switch). However,
gueue technique to predict the onset of SLA violations. Seiltis scheme is not max-min fair due to the fact that any
ond, our core provisioning algorithm is designed to address tpacket drops inside the core network wastes upstream link
unique difficulty of provisioning DiffServ traffic aggregatesbandwidth that otherwise could be utilized. In [7], Stoica and
We proposed an algorithm that balances the trade-off betweBmng extend the solution of [6] to support per-flow delay
fairness and minimizing the branch-penalty. Collectively, theggiarantees in a DiffServ network. Our work operates on top
algorithms contribute toward a more quantitative differentiateaf per-class schedulers with emphasis on bandwidth allocation
service Internet, supporting per-class delay guarantees wathd the maintenance of service differentiation and network-
differentiated loss bounds across core IP networks. wide fairness properties. The proportional delay differentiation
This paper is structured as follows. In Section I, wecheme [15] defines a new qualitative “relative differentiation
discuss related work. In Section Ill, we introduce a dynamggrvice” as oppose to quantifying “absolute differentiated
provisioning architecture and service model. Following thiservices”. The node provisioning algorithm presented in this
in Section IV, we present our dynamic node provisioningaper also adopts a self-adaptive mechanism to adjust ser-
mechanism, which monitors buffer occupancy, self-adjustice weights at core routers. However, our service model
scheduler service weights and packet dropping threshofiiffers from [15] by providing delay guarantees across a core
at core routers. In Section V, we describe our core provietwork while maintaining relative loss differentiation. The
sioning algorithm, which dimensions bandwidth at ingresgork discussed in [16] has similar objectives to our node
traffic conditioners located at edge routers taking into accouprovisioning algorithm. However, it is motivated by a more
the fairness issue of point-to-multipoint traffic aggregatesmprehensive set of objectives in comparison to our work
and SLAs. In Section VI, we discuss our simulation resuligecause it attempts to support optimization objectives that
demonstrating that the proposed algorithms are capableimflude multiple constraints for both relative and absolute loss
supporting the dynamic provisioning of SLAs with guaranteegnd delay differentiation.
delay, differential loss and bandwidth prioritization across per- The idea of using virtual queues in scheduler design is a well
aggregate service classes. We also verify the effect of ratecepted technique. For example, in [17] a duplicate queue is
allocation policies on traffic aggregates. Finally, in Section VIgonstructed to support two “Alternative Best-Effort” services
we present some concluding remarks. (viz. low delay vs. high throughput). In our work, we use
virtual queues to predict the onset of SLA violations. The idea
was originally proposed in [4], [5] as a good traffic prediction
technique for traffic with complex characteristics, such as, self
Dynamic network provisioning algorithms are complemersimilarity, because its stochastic properties share the same
tary to scheduling and admission control algorithms. Th#ominant time scale with the original queue. Our algorithm
provisioning algorithms introduced in this paper operate @xtends this work by dynamically adjusting the virtual queue
a medium time scale, as illustrated in Fig. 1. In contrastcaling parameter with respect to queueing conditions.
packet scheduling and flow control operate on fast time Our approach to dynamic provisioning is complementary
scales (i.e., sub-second time scales); admission control aodhe work on edge/end-host based admission control [13],
dynamic provisioning operate on medium time scales in th#&4], with admission control at the edge of core networks
range of seconds to minutes; and traffic engineering, includiagd provisioning algorithms operating inside core networks.
rerouting and capacity planning, operate on slower time scals alternative approach that solely uses admission control for
on the order of hours to months. Significant progress hasDiffServ network can support stricter QoS guarantee but
been made in the area of scheduling and flow control, (e.glso lead to more complexity in the QoS control plane. For
dynamic packet state and its derivatives [6], [7]). In the area ekample, in [18] a complex bandwidth broker algorithm is

Il. RELATED WORK
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packet flow dynamic provisioning rerouting—based capacity planning
scheduling control admission control traffic engineering  peering negotiation
1 1 1 1 —
sub—msec 100 of msec seconds to hours hours to days weeks to months

Fig. 1. Network Provisioning Time Scale

presented to maintain the control states of core routers aratious queue management schemes for dropping packets that

perform admission control for the whole network. In contrastverflow queue thresholds.

our provisioning algorithm uses a distributed node algorithm The dynamic capacity provisioning architecture illustrated

to detect and signal the need for bandwidth re-allocation. Thre Fig. 2 comprises dynamic core and node provisioning

centralized core algorithm only maintains the network loathodules for bandwidth brokers and core routers, respectively,

matrix and coordinates the allocation algorithm for fairnesss well as the edge provisioning modules that are located at

purposes. access and peering routers. The edge provisioning module [22]
One could argue that this problem could be resolved Iperforms ingress link sharing at access routers, and egress

breaking down a customer’s traffic aggregates into per ingresgpacity dimensioning at peering routers.

egress pairs and provisioning these pairs in a similar manner

to circuit-based Multi-Protocol Label Switching (MPLS) [19]B

. Control Messaging
tunnels. However, such an approach would only work If i o ] ] ]
the tunnel topology of virtual private networks (VPN) is Dynamic core provisioning sets appropriate ingress traffic

a mesh. It would not work if a more scaleable hub_an&_onditioners located at access routers by utilizirpee traffic

spoke topology is used for deploying VPNs because hufg@d matrix to apply rate-reduction (via &egulateingress
and-spoke topologies lead to point-to-multipoint distributio?OWn signal) at ingress conditioners, as shown in Fig. 2.
trees. In addition, this approach would not work when tH9ress conditioners are periodically invoked (via HReg-
number of tunnels exceeds the number of shaper queﬁlé%telngress UpS|gnaI) over .Ionger restoration t|me_scales
supported in edge routers. Our approach does not exchjaéncrease pandW|dth allocation restoring the.max-mln band-
support for MPLS tunnels, but benefits from any availabilit |dt_h allocation _When_ resources become a\_/allable._The core
of MPLS tunnels because MPLS per-tunnel traffic accounti b’—,\fﬁc load matrix maintains network state information. The
statistics will improve the measurement accuracy of our traffigafix is periodically updated (viainkStateUpdate signal)
matrix, as discussed in Section V-A. As a result, our approal#i! the measured per-class link load. In addition, when there
improves the scalability of per-MPLS-tunnel traffic shaping bl & significant changg in the rate aII.ocatlon at egress access
supporting traffic regulation for MPLS aggregates. routers, a core bandwidth broker useSiakTreeUpdatesignal
Currently network service providers use rerouting basd@ notify egress dimensioning modules at peering routers when

traffic engineering approaches to cope with network trafff€negotiating bandwidth with peering networks, as shown in
dynamics on slow time-scales. In the inter-domain case whérg: 2- We use the term “sink-tree” to refer to the topological
one provider has no direct control of its peering networks, af/ationship between a single egress link (representing the root
sence of direct control leads to the use of intra-domain routil% a smk-tree) and two or MOre INgress I|.nks (representing t.he
policy as the only viable technique, with potential solution§aVes Of a sink-tree) that contribute traffic to the egress point.
ranging from optimal planning of routes for circuits/virtual DYnamic core provisioning is triggered lyynamic node
paths [20], to traffic measurement based adjustment on Osggwsmmng(wa a CongestiopAlarm signal as illustrated in

weights and BGP route policies [10]. In the intra-domain ca$dd- 2) When a node persistently experiences congestion for a

where direct control is possible, dynamic provisioning cgparticular service class. This is typically the result of some

offer faster response to service degradation. Iogal threshgld being violated. Dynamip node provisioning
Our provisioning method bears similarity to the work Oﬁ\djusts service weights of per-class weighted sc_:hedulers and

edge-to-edge flow control [21] but differs in that we provid@uej”e .drlopplng thresholds at Iogal core routers with the gogl of

a solution for point-to-multipoint traffic aggregates unique tgraintaining delay bounds and differential loss, and bandwidth

a DiffServ network rather than the point-to-point approacﬂriority assurances.
discussed in [21]. In addition, our emphasis is on the delivery

of multiple levels of service differentiation. C. Service Model
The proportional delay differentiation service proposed in
I1l. DYNAMIC NETWORK PROVISIONING MODEL [15] defines the relative service differentiation of a single node

and not a path through a core network. In contrast, our work
produces service assurances that are quantitative in terms of

We assume a DiffServ framework where edge traffic condielay bound and loss differentiation, and support bandwidth
tioners perform traffic policing/shaping. Nodes within the corallocation priorities across service classes within a DiffServ
network use a class-based weighted fair (WFQ) scheduler arode network.

A. Architecture
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Fig. 2. Dynamic Capacity Provisioning Model
Our SLA comprises: loss and delay bounds.

. adelay guaranteewhere any packet delivered through In addition, the CongestioAlarm signal from the node
the core network (not including the shaping delay of edg&ovisioning algorithm will give an early warning to the core

traffic conditioners) has a delay bound f for network Provisioning algorithm, which can work with the admission
service class; control algorithm and edge-based traffic regulation algorithm

. a differentiated loss assurancevhere network service to remove congestion inside the core network. One benefit of

classes are loss differentiated, that is, for traffic route@dr dynamic provisioning algorithm is its ability to maintain
through the same path in a core network, the long-terpgrvice differentiation under unavoidable prediction errors
average loss rate experienced by clagsno larger than made by the admission control algorithm.

P The thresholds{ P, ;} are differentiated, i.e., The granularity of per-node delay bound3; is limited

loss,i* . S
Py < Plgs it by the nature of slow time scale aggregate provisioning. The

. alasésl’gy 1t;ound precedence over loss baunthen both choice ofD; has to take into consideration the sum of a single
the delay and loss bounds can not be maintained for clascket transmission time at the link rate and a single packet
i, the loss bound will be revoked first before the delagervice time through various fair queue schedulers [23]. This
bound; is in addition to the queueing delays due to traffic aggregates
« abandwidth allocation prioritywhere the traffic of class inside the core network.
J never affects the bandwidth/buffer allocation of class The choice of the loss threshalgf . . in an SLA also needs
i,i < j, that is, the delay and loss bounds of classill to consider the application behavior. For example, a service
be revoked only after there is no bandwidth availablelass intended for data applications should not specify a loss
(excluding the minimum bandwidth for each class) ithreshold that can impact steady-state TCP behavior. Studies
classesj,j > i ; and [24] indicate that the packet drop threshaky . . should
« abandwidth utility functionwhich provides an applica- not exceed).01 for data applications to avoid the penalty of
tion programming interface (API) for edge service differretransmission timeouts.
entiation. The utility function serves as a user-approved\\e define a service model for the core network that in-
per-class QoS degradation trajectory used by netwoglides a number of algorithms. A node provisioning algorithm
provisioning algorithms under network congestion o&nforces delay guarantees by dropping packets and adjusting
failure conditions. service weights accordingly. A core provisioning algorithm
We design the service model such that maintaining raaintains the dropping-rate differentiation by dimensioning
quantitative delay bound takes precedence over maintainthg network ingress bandwidth. Edge provisioning modules
the packet loss bound. This precedence helps to simplify therform rate regulation based on utility functions. Even though
complexity of jointly maintaining both loss and delay boundthese algorithms are not the only solution to supporting the
at the same time. In addition, such a service is suitable fofoposed SLA, their design is tailored toward delivering quan-
TCP applications that need packet loss as an indicator for fltiative differentiation in the SLA with minimum complexity.
control while guaranteed delay performance can support realNote that utility function based edge dimensioning has been
time applications. The precedence to delay bound does irotestigated in our prior work [22]. In the remaining part of
mean that the loss bound will be ignored. For a service clabés paper we focus on core network provisioning algorithms
with higher bandwidth allocation priority, its loss bound willthat are complementary components to the edge algorithms of
be maintained at the cost of violating lower priority classesiur dynamic provisioning architecture shown in Fig. 2.
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V. DYNAMIC NODE PROVISIONING The measurement ofnt,cceptea aNd cntaroppea USES A

The design of the node provisioning algorithm follows th easurement window;, which *'S one order of magnitude
typical logic of measurement based closed-loop control. T ger _tha_n th? pr(_)duct of/Pp.,; and the_ mean packet
algorithm is responsible for two tasks: (i) to predict SLA{ransm@smn time in order to have a stat.|st|callly accur_ate
violations from traffic measurements: and (ii) to respond t%alculatlon of the packet loss rate. In the simulation section,
potential violations with local reconfiguration. If violations ardV€ USen = 10s. However, a large; means that a currently
severe and persistent, then reports are sent to the core prBgfiial measurement sample has to be considered for the

sioning modules to regulate ingress conditioners, as shown'gtantaneous packet loss. To improve statistical reliability, we
Fig. 2 also use the complete sample in the preceding window for

The detection of SLA violation is triggered by the virtuaFalCUlat'on’ that is:

gueue method proposed in [4], [5]. A virtual queue has exactly

. . . . . cnt = accept_count(prev)+
the same incoming traffic as its corresponding real queue but aceepted P (prev)
) . : accept_count_partial (now)
with both the service rate and buffer size scaled down by _ 2
Ntaropped = drop_count(prev)+

a factor ofx € (0,1). The virtual queue technique offers a
generic and robust traffic control mechanism without assuming
any traffic model (e.g., the Poisson arrivals, etc.). It performs
well under complex traffic arrival processes including se
similarity [5]. In our node provisioning algorithm, we exten
this technique to queues with multiple classes served by aOur algorithm controls delay by buffer dimensioning and
weighted fair queueing scheduler by dynamically adjusting tlservice weight adjustment. Exact calculation of the maximum
scaling parametes; for each class. delay of all enqueued packets is expensive since it requires
The algorithm is invoked either by the event of detectracking the queueing delay incurred by every enqueued
ing the onset of an SLA violation, or periodically over arpacket. Instead, we calculate the current maximum queueing
update_interval interval. The value of thepdate_interval  delay with its upper bound:
does not effect the detection of SLA violations because the
virtual queue mechanism can trigger the algorithm execution d; < d; 2 d;(HOL) + N,/ i, (3)
immediately without the constraint of thepdate_interval.

However, theupdate_interval will effect the speed to detethheredi(HOL) is the queue delay of the head-of-line (HOL)
the system under-load, and the measurement of traffic StaB&cket,Nq is the queue size, and is the lower bound of the
tics. In Section VI-B.2, we investigate the appropriate choiggcket service rate calculated from the proportion of service
of the update_interval value. . _ “weights in a WFQ scheduleg; is a lower bound because the

~ The SLA service model introduced in Section Il-C isactual service rate will be higher when some of the other class
intended to be simple for ease of implementation. Howevejyeues are idle. The benefit of Eq. 3 is that we only need to
it still requires non-trivial joint control of both service weightcalculate the delay of the HOL packet. The downside of this
allocation and buffer dimensioning to maintain the delay ang thatd; becomes an approximation of the current maximum

drop_count_partial(now).

. Delay Constraint

loss boundsD; and P, ;, respectively. queueing delay. In fact, it represents an upper bound of the
current maximum queueing delay because the first portion of
A. Loss Measurement Eq. 3 represents the maximum queueing delay incurred by

. . . any of the enqueued packets handled so far. The bound can
When Py, ; is small, solely counting rare packet 10S$,¢"reached when all the enqueued packets arrived at the same

events can introduce a large bias. Instead, the algorithm wogkse Note that the same technique is used in [16] to measure
with the inverse of the loss rate which essentially tracks thgs maximum queueing delay.

number of consecutively accepted packets. For each class,
target loss control variablévss free_cnt; is measured upon
each update epoch,. Denote cntgcceptea the number of
accepted packets during the inter¢g]_+, ¢,,], andcnt gropped

the number of dropped packets in the same interval, then we
have

Rlow with d; < D;, and Ineqg. 3, we obtain a lower bound
for the service rate;:

pi(new) > N, /(D; — d;(HOL)). 4)

This means that; (new) needs to be above the lower bound

loss free_cnt;(ty) = (cntaropped + 1)/ Plasi — baccepted- in order to meet thg dela_y bpund of the gnqueued packets.
' 1) Subsequently, the dimensioning of buffer si@e for the ith

In other words/oss free_cnt; represents the number of pack£lass queue can be derived as:

ets that have to be accepted consecutively underAheg, , .

bound before the next packet drdpss free_cnt; < 0 signi- Qi(new) = D;, where

fies that theP,,.s; bound is not violatedjoss free_cnt; >

1/]3;;8511‘ indicates the opposite; whiléossfree_cnt; € - D; —d;(HOL) if D; > d;(HOL),

(0 1/]1’;5871.} indicates that there have not been sufficierft’ { D; otherwise, delay bound violated

packet arrivals yet. (5)
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C. Virtual Queue Scaling e x x x : : :

The virtual queue technique proposed in [4], [5] needs to be 098 fi-.
extended for a WFQ scheduler with multiple queues. Denote g6 ‘; ‘
w; the service weight of clasg then the minimum service
rate is:

0.94 |

i = Y inerate. ® 0.92
> Wi S o9

Denotex; the scaling parameter for thigh queue, then the = .| Q=20i=1 ]
buffer size of each class queue is scaled dowmn:pyFor the | SEaizd
total service rate of the WFQ scheduler, we have: 086 1 Q=100,i=3 ]

. Sk s 0.84 [ g - — ]

lineratey g = ZZ: K g = S o linerate.  (7) 082 | e ]

0.8 : * * * : : * : :

The scaling parameter for the total service rate is 20 30 40 50 60 70 80 90 100
S ki wi/ >, wi, which is the weighted average of the Offered Load rho
individual scaling parameters. Fig. 3. Example ofs Values

The setting ofx; takes into consideration the speed mis-
match between the instantaneous arrival rate and service rate,
and the response time of the queueing system to the adjustmgntwhich represents extremely bursty traffic conditions. This
of service weights. The purpose is to choosesuch that indicates that the dynamic adjustment of the virtual queue
the early warning generated from the virtual queue will givecaling parameter is applicable to a wide range of traffic

enough time for the WFQ scheduler to react. conditions. Indeed, taking the limit ¢f; in Eg. 11, we have:
Since the node provisioning algorithm targets operating at %
the buffer half-full point to counter both queue under-load lim k;=1- = (12)

and overload, we can assume that the available buffer space e @i _ _

we focus on the case where the traffic Io,aldé N/ps > keep the scaling parameter of a virtual queue not too small

1, which represents the extend of the rate mismatch betweq%ﬁermse the virtual queue will generate a lot of false positive

o .
qgueue arrival and departure. Therefore, the time that it ta@grms. That is,5; should remain close to zero. Because

Qs
to fill the real queue buffer is: =t increases agy); decreases, a smal); ~ pu;D; also

means smaller delay requirements usually for higher allocation
tro = Qi/2 _ ®) priority classes, thereforgis necessarily small as well. As a
(pi — D result, x; will stay away from values close to zero.

For the virtual queue, with; scaling down@; and p;, we
have the time that takes to fill the virtual queue buffer as: D. Control Action

ki Qi/2 9 The control action is to adjust the service rate (weight)
(pi — ki) () as well as buffer size based on the short-term measurement

. . of the traffic arrival rate\; and the queue lengthv, ;.
7 q,t
thrin?a\t/;”:tﬁegsylgte(?ﬁgr”e:v (ca)lngg; Er%lén;joTﬁ:lr::)hzghzdiﬂesrérwce measurement method is the same as the dual-window
. ) y resp . nang . vgraglng method used for loss measurement in Section IV-A,
weights asi/)\;; that is, the response time is proportiona . o
: ! except that the window size is much smaller, set to be the
to the number of queueing classes that have higher or equa . :
. L , . . ._same as thepdate_interval (i.e., the samples are averaged
allocation priority than, and inversely proportional to the line

rate. Here we Use. to approximate the line-rate Thereforeover an interval between 1 to 2 times thedate_interval).
i i 10 approxima - We find that this dual-window measurement is better than the
we have the following inequality in order to achieve the ear

. ! I\X/idely used exponentially-weighted moving-average method
warning of buffer overflow: : L .
for closely tracking the short-term variations in the sampled
Qi pi(l— ki) i statistics.
> . (20) : . .
2u; (pi — 1) (ps — ki) — pi i The baseline assignment of the service rate uses the
Solving this inequality, we have the upper bound for settinﬁeasured arrival ratg;(new) = A;. In addition to this,
. as: e decreasel/increase the service rate based on the under-
' Qi 2 (pi — 1) load/overload conditions, respectively.
9y Py — PilPi . .
Ri = G 3 1) (11)  We determine that a queue is overloaded when the
20 P\ lossfree_cnt; > —burst.loss/pj,,, ;. Here the meaning of
Fig. 3 shows some typical values efas a function ofp;, a negative target loss-free countoss_burst/ Py, ; provides
Q; andi. The value ofk; is sensitive to the buffer siz§; an early response when the loss rate is within an additional
and the number of higher or equal priority queueing clagseshurst_loss packet drops away fron®y;, . .. In this work, we
However, the value of does not vary much for large values ofsetburst_loss = 5 to account for simultaneous packet drops

tyg =

tRQ — tVQ =
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resulting from simultaneous arrivals at a full queue. In the caggamic adjustment algorithm

of queue overloady;(new) has an additional increment from(1) upon the expiration of the update_interval
) Ny im—Qi/2 + timer or the arrival of early warning
gueue-length adjustmen| apdateanterval ) - The purpose of events from the virtual queues:

this is to use an additional workload to bring the queue lengtf] ' er?sZt Wa";:;ga;"f;‘;emal imer

down to the half-point of the buffer size whe¥,; > Q:/2. (4) ENDIF

After replacingQ; with ju;(new) D; based on Eq. 5, we have:(5) FOR all classes Leoon
(6) retrieve measurement: A; and lossfree_cnt;

N ~ + 7 IF  lossfreecnt; > —burstloss/p; .., /loverload
wi(new) = \i + Na.i — Mi(ﬁew) Di/2 13) ® use Eq. 14 to calculate service weight
update_interval 9) ELSE //under-load
(20) use Eg. 15 to calculate service weight
The solution is: (11) ENDIF
- ) B o (12) use Eq. 16 to enforce lower bound on u(new)
/\iJCNq’i/“pdateimt””al if Ny;> \iD;/2 (13) IF remaining service bandwidth < pi(new)
pi(new) = }\*Di/@“pdat&mte”al) other’wise (14) adjust  pi(new) and set all  pj;(new), j>i
( to Hmin
(14) q@5) send Congestion  _Alarm signal
Similarly, we determine a queue is under-loaded whé#) RETURN
lossf t; < —burst_loss/p;, In this case, we set  q EnOIF
ossjreecnt; =~ —0urst-toss/pPr,qg ;- ) (18) adjust buffer size based on Eq. 5
- (29) calculate r; for virtual queue with Eqg. 11
pi(new) = max{u;(perv), A}, (15) (20 scale virtual queue service rate to
. . kipi(new), and buffer size to ki Qi (new)
The calculatedu;(new) is then checked against the con¢1) END FOR
straint of Eg. 4 and we have: (22) IFf rema(ijning' service bandwidth > 10% linerate
or a duration >5s
Mi(new) _ max{ui(new), Nq/Di7 Mmin}a (16) gig ENDslle;nd LinkState _Update signal to increase i

whereyiin is the minimum service rate reserved for each cla§®) RETURN

to avoid starving a traffic class particularly when it transitiongwar queue prediction algorithm

from idle to active. (1) upon the arrival of class i packets:
The service ratey;(new) is then converted to service(® IF  lossfreecnti(now) >1/Pp ;

. AND loss free_cnt;(now) > lossfree_cnt;(prev)
weight w;(new) for a WFQ scheduler. Note that;(new) AND Congestion Alarm signal not_present

is the minimum service rate in a WFQ style scheduler be- for classes  j <i
cause the unused service rate (weight) for some tempordﬁ}/ invoke the dynamic adjustment algorithm
lossfree_cnt;(prev) = loss free_cnt;(now)

idle classes will be proportionally allocated to busy classﬁ ENDIE
When there is congestion, i.e., not enough bandwidth RETURN
satisfy everyu;(new), we use a strict priority in the service
weight allocation procedure; that is, higher priority classes can
“steal” service weights from lower priority classes until th&'9 4
service weight of a lower priority class reaches its minimum
(#:(min)). We always change local service weights first before
sending a CongestioAlarm signal to the core provisioning Our core provisioning algorithm has two functions: to
module (discussed in Section V) to reduce the arrival rateduce edge bandwidth immediately after receivin@€an-
which would require a network-wide adjustment of ingresgestionAlarm signal from a node provisioning module, and
traffic conditioners at edge nodes. to provide periodic bandwidth re-alignment to establish a
Similarly, when there is a persistent under-load in theodified max-min bandwidth allocation for traffic aggregates.
gueues, an increasing arrival rate is signaled (via tWge will focus on the first function and discuss the latter
LinkState Update signal) to the core provisioning module. Afunction in Section V-C.
increase in the arrival rate is deferred to a periodic network-
wide rate re-alignment algorithm which operates over Iongir
time scales. In other words, the control system’s response A
to rate reduction is immediate, while, on the other hand, its We consider a core network with a sét= {1,2,---,L}
response to rate increase to improve utilization is delayefl link identifiers of unidirectional links. Let; be the finite
to limit any oscillation in rate allocation. In general, theapacity of linki,l € L.
timescale of changing ingress router bandwidth should beA core network traffic load distribution consists of a matrix
one order of magnitude greater than the maximum round ttp = {q;;} that models per-DiffServ-aggregate traffic dis-
delay across the core network in order to smooth out ttbution on links! € £, where the value ofy;; indicates
traffic variations due to the transport protocol’s flow contrahe portion of theith traffic aggregate that passes lihklet
algorithm. Therefore, we introduce two control hystereses tioe link load vector bec and ingress traffic vector be,
the dynamic adjustment algorithm (Fig. 4 line (18)), in thevhose coefficient,; denotes a traffic aggregate of one service
form of a10% bandwidth threshold and a 5s delay. class at one ingress point. Note that a network customer may
The pseudo code for the node algorithm is detailed in Fig. dontribute traffic to multipleu; for multiple service classes

Node Provisioning Algorithm Pseudo-Code

V. DYNAMIC CORE PROVISIONING

Core Traffic Load Matrix
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and at multiple network access points. This matrix formulatiosuch thata, .(j) * u®(j)%'c (5), where0 < u¢ < u;.
also supports multiple service classes. Letbe the total  Whena,; . has more than one nonzero coefficient, there is an
number of service classes. Without loss of generality, we carfinite number of solutions satisfying the above equation. In
rearrange the columns oA into J sub-matrices, one for what follows, we investigate two distinctly different optimiza-
il iGA — : s L tion policies for edge rate reduction: fairness and minimizing

each clas's, WhICh_ISA = [AQ)A2):-A(J)]. Similarly, the impact on other traffic. For clarity, we drop the cldgs
u = [u(l)u(2):--u(J)). notation since the operations are the same for all classes.

The constraint of link capacity leads t&u™ < c. Fig. 5 1) Equal Reduction:Equal reduction minimizes the vari-

illustrates an example network topology and its correspondiggice of rate reduction among various traffic aggregates, i.e.,
traffic matrix. In this figure, node 1, 2, 3, and 4 are edge

nodes, while node 5 and 6 are core nodes. All the links are . - s e ul ?
unidirectional. To better explain the construct of the traffic load i Z (u’ B n )
matrix, we use the construct of the third column of the matrix
A: a3 as an examplea. 3 represents the traffic distributionwith constraintsd < u! < w; and .7, a;;u = . Using
tree rooted at node 3, which is highlighted in the figur&Kuhn-Tucker condition [26], we have:

Each entryq,; 5 represents the portion of node 3's incoming Proposition 1: The solution to the problem of minimizing
traffic that passes link For example, since 100% of node 3'she variance of rate reductions comprises three parts:
incoming traffic passes through link 8 3 = 1. Then at node
6, node 3’s traffic is split between link 6 and 9 with a ratio of
7:3, thereforeag,s = 0.7, andag,g = 0.3. The 70% of traffic }hen for notation simplicity, we re-number the remaining
on link 6 is further split between link 2 and 3 with a ratio of

indices with positives; ; as1,2,---,n; and
6 : 1, as a result, we have, 3 = 0.6, andas s = 0.1. All

17)

i=1

Vi with a;; =0, we haveu! = 0; (18)

fhi other entries im. 3 are zero since they model the reserve “2(1) = Uy (1), ,Ug(kq) = Uy(k—1); and (19)
inks.
. . . k—1
The construction of matrixA is based on the measure- 5 s & = Y1 W) Uoi) 20
ment of its column vectora. ;, each represents the traffic Ug(k) = " = Ug(n) S QL) ) (20)
distribution of an ingress aggregatge over the set of links _ = _
L. The measurement af; gives the trend of external traffic where {o(1),0(2),---,0(n)} is a permutation of

demands. In a DiffServ network, ingress traffic conditioner§l,2,---,n} such that, ;) is sorted in increasing order, and

need to perform per-profile (usually per customer) policing dr is chosen such that:

shaping. Therefore, traffic conditioners can also provide per- 5

profile packet counting measurements without any additional Ceq(k = 1) <& < ceq(k), (21)

operational cost. This alleviates the need to place measuremgnt, e . ()
eq

mechanisms at customer premises. We adopt this simplg, o reduction gives each traffic aggregate the same amount
approach to measurement, Wh'c_h IS advoc_ated in [11] a8f'rate reduction until the rate of a traffic aggregate reaches
measure bothu; and a.; at the ingress points of a core, o

networl; rﬁther_ than hmeasurlngl at ?e ggress points Wr'ChR’ﬁmark: A variation of the equal reduction policy is propor-
more challenging. The external traffic demandsis simply tional reduction: to reduce each of the aggregates contributing

mee}sured by packet COU”‘”.‘Q at prof|lg meters usINg INYreRfic to bottleneck link by an amount proportional to its total
traffic conditioners. The traffic vecter. ; is inferred from the . . , 5
’ bandwidth. In particular, witlx = ¢} / (Zw,al >0 al,iui), we

flow-level packet statistics collected at a profile meter. Sonjie

additional packet probing (e.g., traceroute) or sampling (e.fj‘.e,‘ve: {
u; =

k n
=D i21 Qlo(i)Uo(i) T Yo (k) Doimkt1 Uo(i)-

0 Vi with ;=0

see [25]) methods can be used to improve the measurement
au; else.

accuracy of intra-domain traffic matrix. Last, with the addition
of MPLS tunnels, fine granularity traffic measurement data is2) Minimal Branch-Penalty ReductionA concern that is
available for each tunnel. In this case, the calculation of th@ique to DiffServ provisioning is to minimize the penalty on
traffic matrix can be made more accurate. For example, tiaffic belonging to the same regulated traffic aggregate that
Fig. 5, if there is an MPLS tunnel from node 3 to node passes through non-congested branches of the routing tree.
to accurate report the traffic volumeg 3 can be calculated We call this effect the “branch-penalty”, which is caused by
exactly, and the inference @k 3, ag 3, andas s can also be policing/shaping traffic aggregates at an ingress router. For
more accurately determined after knowing the value0f.  example, in Fig. 5, if link 7 is congested, the traffic aggregate
#1 is reduced before entering link 1. Hence penalizing a
B. Edge Rate Reduction Policy portion of traffic aggregate #1 that passes through link 3 and

(22)

9.
Given the measured traffic load mattx and the required
bandwidth reductiof{ —c? (i)} at link [ for classi, the alloca-
tion procedurdregulatelngressDown() needs to find the edge

1

The total amount of branch-penalty 18, (1 — a;;)ul
since (1 — a;;) is the proportion of traffic not passing
through the congested link. Because of the constraint that
bandwidth reduction vectoru® = —[u?(1):u®(2):---®(J)] S0 apul = ¢, we haved " (1—a;)ud = S0 ud—¢.
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as

as
cl 1 0/o0lo0
2 0 05/06/0.1
3 02 0lo1/01
c4 0 1|00 ul
s | —— | 0805/0]0 u2
6 | —— | o olo7o2 u3
7 0501/ 0|08 ud
c8 0 o|1]0
c9 0.3 04[03| 0
c10 0 0|01

N
C A u

Fig. 5. An Example of a Network Topology and its Traffic Matrix

Therefore, minimizing the branch-penalty is equivalent tRemark: A variation of the minimal branch-penalty solution

penalty problem comprises three parts:

minimizing the total bandwidth reduction, that is: is to sort based om; ,(;)u,(;) rather thana; ,;y. This ap-
n n proach first penalizes the aggregates with the largest volume
minZ(l — al,i)uf — minzuf (23) across the link (i.e., the “elephants”). This solution minimizes
i=1 i=1 the number of traffic aggregates affected by the rate reduction
procedure.

with constraints) < uf < u; and > i, aj udc!.

Proposition 2: The solution to the minimizing branch- 3) Penrose-Moore Inverse Reductioli:is clear that equal

reduction and minimizing the branch-penalty have conflicting
objectives. Equal reduction attempts to provide the same

ui(l) = Ug(1)," 7u§(k,1) = Ug(k—1)> (24) amount of reduction to all traffic aggregates. In contrast, min-
5 b1 imal branch-penalty reduction always depletes the bandwidth
gy = &~ iz Qo). ang (25) associated with the traffic aggregate with the largest portion
Q1,6 (k) of traffic passing through the congested link. To balance
5 s these two competing optimization objectives, we propose a
Ugpy =+ = Ug(ny =0, (26)  new policy that minimizes the Euclidean distance of the rate
where {o(1),0(2),---,0(n)} is a permutation of reduction vecton.’:
1,2,---,n} such thata;,; is sorted in decreasing n
({)rder, andk:} is chosen such t(hz';lt: min {Z(UQ‘W} ; (28)
s i=1
cor(k = 1) < < cor(h), 27) with constraints) < ud < w; and Y"1 azudc.
wherecy,,. (k) = Zle 1,0 (i) U (i) - Similar to the solution of the minimizing variance problem
Proof: A straightforward proof by contradiction can bein the equal reduction case, we have:
constructed as follows: Proposition 3: The solution to the problem of minimizing

Let's assume that there is another rate reduction vectpe Euclidean distance of the rate reduction vector comprises

v® # u® such thatv® minimizes the objective function (23), three parts:
that is >0, v) < Y. ul. This inequality, together with

. . 5 .
the fact thatu? ,, (Vi < k) reaches the maximum possible Vi with a;; =0, we haveu; = 0; (29)

value, lead to the existence of at least one pair of indicéSen for notation simplicity, we re-number the remaining
andm, wherej < k andm > k, such thata; ; > a;,m > 0, indices with positives; ; as1,2,---,n; and

Sy < udy and vl > wd, .. Now we can construct

a third vectorw® as follows: w), = vl i # j.m, U1y = Uo(1), 5 U1y = Ug(h-1); &N (30)

W) = Vo) T €/ Uaty AN = 0] = €/1g(m). Up (k) oy & = Y ey tet)

Here0 < € < znln {al’a(j)(; (vg(j) — vg(j-). , alﬁ(m)vg(m) ot == P = ST aig(i) , (31)

so that bothw, , and wd(mo) are positive. It is clear that _ _

S awd S aw? = of. However, because, ;) > where {o(1),0(2),---,0(n)} is a permutation _of

o), WE have 37 wd = Y d - e(1/a1.m) — {1,2,~~~,n}_such thatug(i)/al,o.(i) is sorted in increasing

1/a10(;)) < Y0, vP. This contradicts the assumption thaP'der. andk is chosen such that:

v minimizes the objective function (23). u Com(k —1) < & < cpm(k), (32)
The solution is to sequentially reduce thgwith the largest

a; ; to zero, and then move on to thg with the second largest where ¢, (k) = S ayue)

a;; until the sum of reductions amounts ztf). (Yo (k) / 1,0 (k)) E?:IHJ alz,cr(i)'
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(1) sort the indices i of traffic aggregates (1) identify the most loaded link [ in the set
based on : of non-saturated links:
the increasing order of u; for ER, . c;—allocated  _capacity
the decreasing order of a;; for BR, l=argminjecu | z; = s ;
the increasing order of ui/ay,; for PM; (2) increase allocation to all ingress <
(2) locate the index k in the sorted index list aggregates in P by z;, and update the
based on : allocated  _capacity for links in LY,
Ineg. 21 for ER, (3) remove ingress aggregates passing [ from P,
Ineq. 27 for BR, and remove link [ from L%
Ineq. 32 for PM; (4) if P is empty, then stop; else go to (1).

(3) calculate reduction based on:
Eq. 18 - Eqg. 20 for ER,
Eq. 24 - Eq. 26 for BR, Fig. 7.
Eq. 29 - Eqg. 31 for PM.

Edge Rate Alignment Algorithm Pseudo-Code

Fig. 6. Edge Rate Reduction Algorithm Pseudo-Code fairness and minimizing branch penalty. However, we choose
it because of its clear geometric meaning (i.e., minimizing the
Euclidean distance) and its simple closed-form formula.

Eq. 31 is equivalent to the Penrose-Moore (P-M) matrix 4) Algorithm Implementation:The implementation com-
inverse [27], in the form of plexity of the preceding three reduction algorithms lies in the
boundary conditions where the rates of some traffic aggregates
are reduced to zero. Because all three algorithms have similar

k-l structure, we can show the procedure of these algorithms in a
[0 (0) ottty Qo] * (¢) — Z a10(i)Uo(i)), (33)  coherent manner, as shown in Fig. 6.
=1

5 5 5
[Ua(k) Ug(k41) """ ua(n)]T

where|---]* is the P-M matrix inverse. In particular, for an

n x 1 vectora,., the P-M inverse is @ x n vectora,” where

af; = ai/ (30, a?,). . Unlike edge rate reductionz which i_s triggereq locally by a
‘We name this po]icy as the “P-M inverse reduction” becaudgk scheduler that ngeds to limit the |mpqct on ingress traffic
of the property of P-M matrix inverse. The P-M matrix invers@99regates, the design goal for the periodic rate alignment
always exists and is unique, and gives the least Euclidean d’}@orlthm is to r_e-ahgn the bandW|dt_h distribution across the
tance among all possible solution satisfying the optimizatidiftWork for various classes of traffic aggregates and to re-

constraint. establish the ideal max-min fairness property.

Proposition 4: The performance of the P-M inverse reduc- However, we need to extend the max-min fair allocation
tion lies between the equal reduction and minimal brancA90rithm given in [28] to reflect the point-to-multipoint topol-
penalty reduction. In terms of fairness, it is better than tfRgY of & DiffServ traffic aggregate. Lef" denote the set

minimal branch-penalty reduction and in terms of minimizing' !inks that are not saturated and be the set of ingress
branch-penalty, it is better than the equal reduction. aggregates that amot bottlenecked(i.e., have no branch of

Proof: By simple manipulation, the minimization 0bjec_traffic passing a saturated link). Then the procedure is given

tive of P-M inverse is equivalent to the following: asinFig. 7. .
Our modification of step (1) changes the calculation of

" n 2 n 2 remaining capacity from(c; — allocated_capacity)/||P]| to
min Z <Uf - (Z Uf)/”) + (Z U?) fnp- (34) (a — allo%atec?,capsc/zcityr;(/ Y iep Ui Y
=1 =1 =1 Remark: The convergence speed of the max-min allocation

The first part of this formula is the optimization objective ofor point-to-multipoint traffic aggregates is faster than for
the equal reduction policy. The second part of formula (34pint-to-point aggregate because it is more likely that two
is scaled from the optimization objective of the minimizindraffic aggregates send traffic over the same congested link. In
branch penalty policy by squaring and division to be comparthe extreme case, when all the traffic aggregates have portions
ble to the objective function of equal reduction; that is, the P-Mif traffic over all the congested links, these aggregates are
inverse method minimizes the sum of the objective functiorly constrained by the most congested bottleneck link. In
minimized by the equal reduction and minimal branch penalthis case, the algorithm takes one round to finish, and the
methods, respectively. Therefore, the P-M inverse policy halocation effect is equivalent to the equal reduction (in this
a smaller value in the first part of formula (34) than what thease, “equal allocation”) method with respect to the capacity
minimal branch penalty policy has; and a smaller value in thed the most congested bottleneck link.
second part of formula (34) than the corresponding value theThe edge rate alignment algorithm involves increasing edge
equal reduction policy has. Hence, the P-M inverse methbdndwidth, which makes the operation fundamentally more
balances the trade-off between equal reduction and minineéfficult than the reduction operation. The problem is essen-
branch penalty. m tially the same as that found in multi-class admission control

It is noted that the P-M inverse reduction policy is nobecause we need to calculate the amount of offered bandwidth
the only method that balances the optimization objectives @f(¢) at each link for every service class. Rather than calculate

C. Edge Rate Alignment
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sources

¢ (1) simultaneously for all the classes, we take a sequential ul sinks
allocation approach. In this case, the algorithm waits for an

interval after bandwidth allocation for a higher priority. This c1

allows the lower priority queues to take measurements on the - @ 3

impact of the changes, and to invoke Regulatevn() if rate O

reduction is needed. The procedure is on a per class basis and u2
follows the decreasing order of allocation priority.

VI. SIMULATION RESULTS

4 C2
A. Simulation Setup
We evaluate our algorithms by simulation using the ns-2 ug trefic
conditioners

simulator [29]. Unless otherwise stated, we use the default
values in the standard ns-2 release for the simulation paragyy; g. simulated Network Topology
eters.
We use the Weighted-Round-Robin scheduler which is a
variant of the WFQ algorithm. In our simulation, we consider « for the AF2 class, the delay bounfd; = 1s, the loss
the performance of four service classes that loosely correspond bound P; = 5 * 1073.
to the DiffServ Expedited Forwarding (EF), Assured Forwardyr the BE class, there is no SLA that needs to be supported.
(AF1, and AF2), and best-effort (BE) classes. The order above
represents the priority for bandwidth allocation. The initial
service weights for the four class queues are 30, 30, 30 and Bp,Dynamic Node Provisioning
respectively, with a fixed total of 100. The minimum service The dynamic node provisioning algorithm interacts with
weight w;(min) for each class is 1. The initial buffer size isthe core provisioning algorithm via the Congestialarm
30 packets for the EF class queue, 100 packets each of gl LinkStateUpdate signals. To better stress test the node
AF1 and AF2 class queues, respectively, and 200 packets figsvisioning algorithm, we disable the alarm and update
the BE class queue. signals to the core provisioning algorithms in the simulations
The simulation network comprises eight nodes with traffigescribed in this section. In addition, we simplify the network
conditioners at the edge, as shown in Fig. 8. The backbogigown in Fig. 8 into a dumb-bell topology (by combining
links are configured with 6 Mb/s capacity with a propagationodes 1 to 4 into one node, and nodes 5 to 8 into another
delay of 1ms. The three backbone links (C1, C2 and Cgpde). The 5Mb/s link between these two “super” nodes will
highlighted in the figure are overloaded in various test casgs the focus of simulations in this sub-section.
to represent the focus of our traffic overload study. The accesg) Service Differentiation EffectWe first use traces to
links leading to the congested link have 5Mb/s with a 0.1 Mighlight the impact of enabling and disabling the node
propagation delay. The ingress traffic conditioners serve thgovisioning algorithm on our service model. We compare the
purpose of ingress edge routers. Each conditioner is configufgdults where the algorithm is enabled and disabled.
with one profile for each traffic source. The EF profile has awe use 100 traffic sources: 20 CBR sources for the EF
default peak rate of 500 Kb/s and a bucket size of 10Kb. Theass; 30 Pareto On-Off sources for the AF1 class; and 40 and
AF profile has a default peak rate of 1 Mb/s and a token buckg} Exponential On-Off sources for the AF2 and BE classes,
of 80 Kb. For simplicity, we program the conditioners to dropespectively. Each source has the same average rate of 55 Kb/s,
packets that are not conforming to the leaky-bucket profil@hich translates into an average of a 110% load on the 5 Mb/s
The core provisioning algorithm will regulate the ingresgarget link when all the sources are active. The simulation trace
traffic rates by changing the profiles in the traffic conditionerfasts 100s. To simulate the dynamics of traffic overload, we
A combination of Constant-Bit-Rate (CBR), Pareto Onactivate and stop the EF and AF1 class sources in a slow-start
Off and Exponential On-Off traffic sources are used in th@anner, i.e., the activation time for the EF and AF1 traffic
simulation, as well as applications including a large numbgpurces is uniformly distributed over the first 30s. The stop
of greedy FTP sessions and HTTP transactions. The startifile for the EF and AF1 sources is uniformly distributed over
time of all sources is a random variable uniformly distributeghe last 40s. With respect to the AF2 and BE sources, their
in [0 5s]. During the simulations, we vary the peak rate or thglow-start activation time lies within the first 5s, and their
number of sources to simulate different traffic load conditiongtop time is at the end of the simulation period. As a result,

Except where specifically noted, we use the default values {@ngestion occurs between 30 and 60's in the trace. The node

all ns simulation parameters. provisioning algorithmupdate_interval is set to a value of
Throughout the simulations, we use the same set of DiffSepgo ms.
SLAs: Accurately setting the service weights is very important to
« for the EF class, the delay bound; = 0.1s, the loss the operation of the scheduler in the case where the node
bound Py = 5% 1075; provisioning algorithm is disabled because its service weights

« for the AF1 class, the delay bounid, = 0.5s, the loss are not adjusted during the simulation. We use the exact
boundP; =5 107%; information of the traffic load mixture to set the service
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Fig. 9. Node Provisioning Service Differentiation Effect

weights to 23, 33, 43 and 1 for the EF, AF1, AF2, and BEor the results with the node provisioning algorithm enabled,
classes, respectively. These settings yield a traffic intensityad shown in Fig. 9(b).

96%, 100% and 102% for the EF, AF1 and AF2 queues, The effect of the node provisioning algorithm can be clearly
respectively, while leavingwn,i, = 1 for the BE traffic observed in the delay plots of Fig. 9(c) and (d). Unlike
during the congestion interval. These setting represent thig. 9(c) where both AF1 and AF2 delays exceed their bound
best-case scenario for the scheduler (in the case where dh8.5s and 1 s, respectively, Fig. 9(d) shows that only the AF2
node provisioning algorithm is disabled) to maintain servicgass exceeds its delay bound. In addition, the delay values for
differentiation for services classes that have SLA concerns. \Btthree classes are smaller than the results shown in Fig. 9(c).
note that in practice, however, there is no prior knowledge of In the packet loss comparison, the lack of loss differentiation
traffic load during congestion. Therefore, the setting of servite clearly evident in Fig. 9(e), where both EF and AF2 classes
weights in practice would be less ideal when comparing tiave the same magnitude of loss rate of approximately 10%.
performance of the scheduler in a system where the nddecontrast, in Fig. 9(f) with node provisioning enabled, only
provisioning algorithm is disabled. As we will show laterAF2 has packet loss and the loss rate is comparable to the
even with such a best-case advantage, the scheduler still undesult shown in Fig. 9(f).

performs the node provisioning algorithm in both delay and 2) Update Interval:In this set of simulation, we investigate
loss performance because a fixed set of service weights ¢the appropriate value for thepdate_interval when invoking

not deal with the varying mixture of traffic loads from differenthe node provisioning algorithm. Ampdate_interval that
classes. is too small, increases the variations in the measured traffic

The statistical traces collected in this simulation are end-tarrival rate and leads to frequent oscillations in bandwidth
end throughput, packet loss rate, and mean delay for all thikocation. In contrast, ampdate_interval that is too large,
classes except BE. Each sample is averaged over a windovdefays the detection of under-load in some traffic classes and
0.5s from the per-packet samples. hurts service differentiation.

Fig. 9(a) and (b) show the throughput trace. When the We experiment with five different values of
system is not overloaded, both plots exhibit the same shapeuptiate_interval: 50ms, 100ms, 200ms, 500ms, 1s
curve. During congestion between 30 and 60s into the traead 2s. There are a total 70 traffic sources, with 20% for the
however, the plot with node provisioning disabled (Fig. 9(aBF class, 30% for the AF1 class, 40% for the AF2 class and
shows almost flat throughput curves for the EF, AF1 and AFD% for the BE class. The EF source is CBR with a peak rate
classes, with a ratio of 2:3:4 matching the service weigbf 100Kb/s. The AF1 and AF2 sources are Pareto On-Off
settings, respectively. In contrast, significant variations occsources with default ns values: an average 0.5s for the on



112 IEEE TRANSACTIONS ON NETWORKING, VOL. XX, NO. Y, MONTH 2004

1
. 0.5 | 50ms update_interval —+— B
50ms update_interval —+— 100ms update_interval ---x--- 4
100ms update_interval ---x--- 200ms update_interval - K
01 | 200msupdate_interval ---x-- | 500ms update_interval @ a
. 500ms update_interval - 04 1s update_interval —-#-- i i
1s update_interval --a-- s 2s update_interval --e-- o7}’
2s update_interval --e-- -7 [ - , y
L @ !
& by
9 0.01 | g 03r 1
o
= £
< 2 i
° £ Pl ;
[ X 02f [ ; 1
0.001 | = A 1
0.1 [ } : |
[] i H i ! i
0.0001 |- 1 | o 7 ‘
I L I P i D I I I 0 Ls - 10 = =@ I I I I I
01 02 03 04 05 06 07 08 09 1 11 12 01 02 03 04 05 06 07 08 09 1 11 1.2
Offered Load Offered Load
(a) Loss Rate (b) Maximum Delay

Fig. 10. Node Provisioning Sensitivity topdate_interval, AF1 Class with Pareto On-Off Traffic

and off intervals, and a shape parameter with the value follows, we will use anupdate_interval = 200 ms for all the

1.5. The AF2 sources have a peak rate of 200 Kb/s. The BEnulations.

class sources are CBR with 100Kb/s rate. We vary the peakt s also interesting to observe one feature of the node
rate for the AF1 class to change the offered load. The offerggbvisioning algorithm: namely the algorithm always tries to
load is calculated as the ratio between the total arrival raggarantee the delay bound first. We observe that beyond 80%
of the AF1 class and the available bandwidth to AF1 (whicldad the loss rate starts to exceed Ska0—* bound, while the

is the link capacity subtracted by the total EF traffic arrivadelay bound of 0.5s is always maintained even for an offered
rate). load exceeding 1.

Extensive statistics (e.g., delay, loss, service rate, arrival3) Stress Test Under Bursty TraffisVe continue the pre-
rate, etc.) are collected for each queueing classes at eaeling simulation runs with different traffic sources for the
network node, and for each flow from end-to-end. MosiF1 classes, including Pareto On-Off, Exponential On-Off and
samples are collected when the node provisioning algorith@BR traffic sources. Each sample point represents a simulation
is invoked. Therefore, the maximum sampling interval is thein of 1000s. We use the CBR traffic source to provide a
update_interval. The collected samples are then consolidatdshseline reference for the two bursty On-Off traffic types.

by the time-weighted average for the statistics requiring av-rig. 11 presents four sets of consolidated statistics for
eraging (e.g., traffic load, mean delay, and loss rate, et@dmparison. Fig. 11(a) plots the percentage of time that the
Statistics like maximum delay are calculated from the maxgongestionAlarm is raised for the AF1 class. Since we disable
mum of all the collected samples. The loss rate samples @i@ dynamic core provisioning algorithm to stress test the node
accumulated using the dual-window approach described diyorithm, the alarm frequency becomes a good indicator of
Section IV, with the measurement window set to 30s for the node algorithm’s capability of handling bursty traffic. It
the EF class and 10s for all the other classes. The collecigdaiso a convenient indicator of the performance boundary
samples are then consolidated by time-weighted average fi@low which the delay bound), = 0.5s and loss bound
statistics including loss rate, mean delay, and arrival rate. pr  — 54 10~* should hold and above which the loss

Fig. 10 shows both the packet loss and maximum del&gte and maximum delay will grow to exceed these bounds.
performance. For the purpose of clarity, we only show th&%e observe that the algorithm performs equally well for
results for the AF1 class. Each sample point on the plot isb@th Pareto and Exponential On-Off sources, even though
simulation run of 100s. In general, the algorithm performandBe Pareto source is heavy-tailed and more bursty. It is clear
is not very sensitive to the value of ta@date_interval. This that the algorithm can handle up to 70% load for both the
is expected because the node provisioning algorithm can aR@yeto and Exponential On-Off traffic under the and P, ,
be invoked by the virtual queues detecting an onset of Sprunds. For the CBR traffic, the sustainable load reaches
violation. Among the small differences, we observe that tH&% as observed from the loss and delay measurements in
update_interval > 1s is not good because it has packet lossédd. 11(c) and 11(d), respectively. This falls short of 100%
and large variation of the maximum delay under low offere@ecause the CBR traffic is also bursty being an aggregate of
load. In addition, we observe that amdate_interval value 21 individual CBR sources.
of 200 ms achieves low maximum delay relative to the other Fig. 11(b) shows the measured traffic intensity in the AF1
curves. This is consistently observed across the whole rargqgesue. Even though measuring the arrival rate is trivial,
of offered loads below 80%. When the offered load increasagasuring the per-class service time is not easy for a multi-
beyond 80% the system becomes over-loaded and the impaats queueing system. In the simulations, we use the sum
of a differentupdate_interval becomes negligible. In what of the per-packet transmission time and the Head-of-the-Line
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Fig. 11. Node Provisioning Algorithm Performance, AF1 Class with Bursty Traffic Load

(HOL) waiting time as the total service time. The HOL waitings it allows the core algorithm to gauge the overload severity
time is the time after a packet enters the HOL position dfom the frequency of Congestiohlarm signals sent by the
the queue, waiting for scheduler to finish serving the HOhode provisioning algorithms.

packets c?f other queues. From this plot we can observe thgy gcqiapility with Adaptive Applicationswe further test
algorithm’s efficiency in allocating bandwidth. For the CBR,,." scheme with TCP applications including greedy FTP
traffic, the service bandwidth utilization remains at 100% until, transactional HTTP applications. Because TCP congestion
the incoming traffic exceeds the maximum service capabilityoniro| reacts to packet loss, the packet dropping action alone
For the Pareto and Exponential On-Off traffic, the utilizatiofy 5,50 effective in reducing congestion for TCP. However
stays at 100% until the offered load reaches 50%. After thl‘ﬂe adaptive flow control of TCP also will push the traﬁ‘ic,
the utilization dips by about 10%. This is the amount of 0v§g, 15 1009% even with a small number of sources. To test
allocation necessary to maintain the SLA. our algorithm’s performance in supporting a large number of
: : CP sources, we repeat the above test but instead of varyin
Fig. 11(c) and 11(d) plot the loss rate and maxmu#l peak rate of eaFc):h source, we vary the number of TyCPg

delay measured at this AF1 class queue, respectively. lications that ar nnected to the target nod
results verify that when the alarm signal is not raised, gfppiications that are connected fo the farget node.

system performance will remain below the SLA bounds. Once The results are shown in Fig. 12 in the same setting as
again we observe that the algorithm gives precedence Rig. 11. The traffic load for the EF, AF2 and BE classes remain
guaranteeing the delay bound first. Except two spikes fie same as in the previous tests. We vary the number of the
the Pareto source, all the maximum delay curves are bel@fy1 sessions: from 2 to 40 for greedy FTP traffic, and from
the 0.5s bound. In addition, one can also discover the f&Q to 400 for web traffic. To better understand these results,
that only when the alarm frequencies exceed 10%, the 1048 plot the FTP and HTTP results with a corresponding 1:10
rate will exceed the loss bound 6f« 10~4. This is true for ratio in the number of sessions on the x axis.

both the Pareto and Exponential On-Off sources, where theThe web traffic is simulated using the ns-2 “Page-
10% alarm frequency corresponds well to the 70% maximuRoolWebTraf’ module. The parameters for the web traffic are
sustainable load, and for the CBR source, where the 10% alaget to increase the traffic volume of each web session so that
frequency matches the 85% maximum sustainable load. This the target link of 5 Mb/s, queueing overload can occur. The
information is important for the core provisioning algorithninter-session time is exponentially distributed with a mean of
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Fig. 12. Node Provisioning Algorithm Performance, AF1 Class with TCP Applications

0.1s. Each session size is a constant of 100 pages. The in2&r-FTP sessions, but is not exceeded much after that point
page time is also exponentially distributed but with a medfrig. 12(d)).
of 5s. Each page size is a constant of 5 objects, while theln summary, the stress test results from both bursty On-
inter-object time is exponentially distributed with a mean ddff and TCP application traffic have shown that the node
0.05s. Last, the object size has a distribution of Pareto of theovisioning algorithm will guarantee the delay and loss
Second Kind (also know as the Lomax distribution) with &ounds when there is no alarm raised, and also with a alarm
shape value of 1.2 and average size of 12 packets (whichfresquency below 10%. When there is a SLA violation, the
12 KB). algorithm will first meet the delay bound sacrificing the loss
bound. For adaptive applications like TCP which respond to
In Fig. 12(a), for both traffic sources, the alarm frequengyacket loss, this approach has shown to be effective even

rises above 10% for a small number of sessions, i.e., 5 sessigihout the involvement of core provisioning algorithms.
for FTP and 20 sessions for HTTP, respectively. The average

traffic intensity (Fig. 12(b)), however, shows a difference. The ) L

FTP traffic intensity increases quickly to 100% and then stays Dynamic Core Provisioning

at 100% after 5 sessions, while the HTTP traffic intensity 1) Effect of Rate Control Policytn this section, we use test
increases gradually and reaches 100% much later at Z2@narios to verify the effect of different rate control policies
sessions. These two plots indicate that the HTTP traffic is mdreour core provisioning algorithm. We only use CBR traffic
bursty than the FTP traffic because for the HTTP traffic, igources in the following tests to focus on the effect of these
alarm frequency rises quicker while its average traffic intensipplicies.

rises much slower than the FTP traffic. The FTP traffic, on the Table | gives the initial traffic distribution of the four
other hand, is less bursty only because its average load readBlésaggregates comprising only CBR flows in the simulation
100% for most of the cases. However, even with a large valoetwork, as shown in Fig. 8. For clarity, we only show the
of alarm frequency, the system perform well for a wide ranggistribution over the three highlighted links (C1, C2 and C3).
of number of sessions. The loss rate excegdd0~* at 25 The first three data-rows form the traffic load matAx and
FTP sessions or 300 HTTP sessions. The delay bound of Ot&e& last data-row is the input vectar

is always met for the HTTP traffic. For the FTP traffic, because In Fig. 13, we compare the metrics for equal reduction,
of the heavy traffic load, the delay bound is first violated ahinimal branch-penalty and the P-M inverse reduction under
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ten randomly generated test cases. Each test case starts with 22 T EFAgg#l_
the same initial load condition, as given in Table I. The change 1_; [T A\ EF Agg #2 —
is introduced by reducing the capacity of one backbone linkto & 1.6 | T erea e mmggﬁgg #4 o

cause congestion which subsequently triggers rate reduction.Z

Fig. 13(a) shows the fairness metric: the variance of rate-g 1t
reduction vectom’. The equal reduction policy always gener- & I
ates the smallest variance, in most of the cases the variance® o4 |

R DEH AN KK KX

are zero, and the non-zero variance cases are caused by the O-S e
boundary conditions where some of the traffic aggregates have 0 50 100 150 200 250 300 350 400 450 500
their rates reduced to zero. Here we observe that the P-M Time (s)

inverse method always gives a variance value between those of - . .

. e . Fig. 14. Core Provisioning Allocation Result, Default Policies
equal reduction and minimizing the branch penalty. Similarly,
Fig. 13(b) illustrates the branch penalty metic; (1—a; ;)u?.

In this case, the minimizing branch penalty method consis- to 0.5Mb/s, and requires a bandwidth reduction of
tently has the lowest branch penalty values, followed by the 0.6 Mb/s. and

P-M_inverse_ method.éThe last ﬁ%u2re, Fig_. 13(c), shows the4) at 400 s into the trace); notices a capacity increase to
Euclidean distance af’, i.e.,),(u{)*. In this case, the P-M 6 Mbrs, which leaves’; the only bottleneck

inverse method always has the lowest values, while there_is _ _ i
no clear winner between the equal reduction and minimizinT e first three cases of reduction are also the first three test
branch penalty methods cases used in Fig. 13The last case invokes a bandwidth

The results support our assertion that the P-M Inverlicrement rather than a reduction. In this case, we use the

method balances the trade-off between equal reduction EEH do'lf'e.gthma}r'm'p falrf allllqcatlon aIgonthrr; o _Fﬁ'a“?ln tht?
minimal branch penalty. andwidth allocation of all ingress aggregates. The allocation

In Fig. 14, we plot the time sequence of rate—regulatin?ﬁed is the same as “equal allocation” because all the traffic

. g 2. . aggregates share all the congested links.
results using the default policies of our core provisioning 2) Responsiveness to Network Dynamiée use a com-
algorithm, i.e., the P-M inverse method for rate reduction arbqn tion pf CBR and FTP ; )t/ tudv the ioint effect
the modified max-min fair rate alignment method for rate re- ation o a sources 1o study the joint etiec

. ' : . ._pf our dynamic core provisioning algorithm (i.e., the P-M
alignment. The traffic dynamics are introduced by sequential |¥ erse method for rate reduction and max-min fair for rate
changing link capacity of’;, C, and C5 as follows: Vers uctl XMl :

. o alignment) and our node provisioning algorithm. Periodic edge
1) at 100s into the trace, capacity is reduced to 3Mb/Syate glignment is invoked every 60s. We use CBR and FTP
and requires a bandwidth reduction of 0.8 Mb/s fromagyrces for EF and AF1 traffic aggregates, respectively. Each

ingress t_raffic conditioners o traffic class comprises four traffic aggregates entering the
2) at 200s into the traces capacity is reduced to 2Mb/s, petwork in the same manner, as shown in Fig. 8. A large
and requires a bandwidth reduction of 0.1 Mb/s, number (50) of FTP sessions are used in each AF1 aggregate to

3) at 300s into the trace,Cy capacity is reduced gimylate a continuously bursty traffic demand. The distribution
of the AF1 traffic across the network is the same as shown in
Table I.

The number of CBR flows in each aggregate varies to

TABLE |
TRAFFIC DISTRIBUTION MATRIX

Bottleneck User Traffic Aggregates
Link Uy Uz Us Us 1We note that it does not make sense to plot the performance metrics shown
1 0.20 0.25 0.57 0.10 in Fig. 13 in the same time sequence style as that of Fig. 14. The reason is
Co 0.80 0.75 0.43 0.90 that in a time-sequenced test, after the first test case, the load conditions prior
Cs 040 | 050 | 015 | 0.80 to each rate reduction could be different for different allocation methods, and

[Load (Mb/s) ] 1.0 [ 08 [ 14 [ 20 | the results from the comparison metrics would not be comparable.
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Fig. 15. Average Bandwidth Allocation and Delay Traces for AF1 Aggregates

simulate the effect of varying bandwidth availability for thedlynamically adjusting the service weights of a weighted fair
AF1 class (which could be caused in reality by changes fueueing scheduler. The algorithm is measurement-based and
traffic load, route, and/or network topology). The changes #&ffectively uses a multi-class virtual queue technique to predict
the available bandwidth for the AF1 class includes: at tinthe onset of SLA violations. Second, our core provisioning
400s into the trace(’2 (the available bandwidth at link 2) algorithm is designed to address the unique difficulty of
is reduced to 2Mb/s; at 500s into the trace3 is reduced provisioning DiffServ traffic aggregates where rate-control can
to 0.5Mb/s; and at 700s into the trac€3 is increased to only be exerted at the root of traffic distribution trees. We
3 Mb/s. In addition, at time 800 s into the trace, we simulate tioposed the Penrose-Moore (P-M) Inverse Method for edge
effect of a route change, specifically, all packets from traffi@te reduction which balances the trade-off between fairness
aggregate:1 and«3 to node 5 are rerouted to node 8, whileand minimizing the branch-penalty. We also extended max-
the routing foru2 andu4 remains intact. min fair allocation for edge rate alignment and demonstrated
Fig. 15 illustrates the allocation and delay results for thés convergence property.

four AF1 aggregates. We observe that not every injectedcyjiectively, these algorithms contribute toward a more
change of bandwidth availability triggers an edge rate reduggantitative differentiated service Internet, supporting per-
tion; however, in such a case it does cause changes in pagfgls delay guarantees with differentiated loss bounds across
delay. Since the measured delay is within the performanggre |p networks. We have argued that such an approach to
bound, the node provisioning algorithm does not genergignamic provisioning is superior to static provisioning for
CongestionAlarm signals to the core provisioning modulepifisery because it affords network mechanisms the flexibility
hence, rate reduction is not invoked. In most cases, edgerequlate edge traffic, maintaining service differentiation

rate alignment does not take effect either because the nofger persistent congestion and device failure conditions when
provisioning algorithm does not report the need for an edg@served in core networks.

rate increase. Both phenomena demonstrate the robustness of . . : :

our control system. Our service model uses two priority orders in QoS provi-
The system correctly responds to route changes becausef Ilng; ;hat ('js’ thg rel?x?tmn dOf thfe Ic|>ss tt?ound in favor qf

core provisioning algorithm continuously measures the traﬂ% elay bound, and a stalic order of relaxalion among service

load matrix. As shown in Fig. 15(a) and 15(b), after time 800 asses. T_he preference of a delay bound inst_ead_ of a I.OSS
into the trace, the allocation efl andu3 at link C1 drops to bound is intended to better support TCP applications with

zero, while the corresponding allocation at link C2 increasé%ducergj rouknd t(;'p deIaHys and earlé/ cohqgﬁsltlon nOt'f'Cat'?jr,]
to accommodate the surging traffic demand. through packet drops. However, under high loss rate condi-

tions, low-priority flows would be starved due to the interac-
tion of a high loss rate and TCP congestion control algorithms.
VIl. CONCLUSION Therefore, it is important for the core provisioning algorithm
This paper makes two contributions. First, our node provie prevent severe congestion from happening by regulating
sioning algorithm prevents transient service level violations ligaffic at the edges. In this paper, we have shown that the
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node provisioning algorithm can provide reliable early warnings]
signals using a virtual queue technique, which does not require
prior knowledge of traffic characteristics. We are currently
studying how to extend the core provisioning algorithm to alsqr]
provide loss guarantees across traffic classes. This problem
bears similarity to the measurement based admission contr
algorithms discussed in the related work section (Section ).

The complexity of the proposed algorithms mainly resides
in the node provisioning algorithm, which is distributed acrosgg,
core routers and is scalable to large network configurations.
The challenge of implementing the centralized core prov'l-o]
sioning algorithm lies in the continuous monitoring of th
traffic matrix across the core network. To improve scalability,
we a studying approaches that can enlarge the monitorig
granularity and time scale; for example, focusing on a few
potential bottleneck links instead of every internal link in th@2]
network, or, increasing thepdate_interval provisioning time
scale. Recent work on network measurement [11], [12], [25]
of the AT&T backbone network provides valuable insights and
directions on how we could scale the monitoring process up g’
handle large networks. The centralized approach to the current
design of the core provisioning algorithm provides a bettér4]
response time to sudden changes in network traffic overloads.
To improve survivability against network failures (e.g., out-
ages, DDoS), fault tolerant practices in network managemét]
can be used to deploy redundant core provisioning algorithms.
We are currently studying a fully distributed core provisioning
algorithm that removes the single point of failure presentétb]
by the existing centralized scheme. A key challenge is to
design and analyze the convergence and stability propertigg
of a distributed solution in order to recover in a timely
fashion after network failure. We plan to develop some form of
analytical proof or argument guaranteeing the stability of sugty;
a scheme subject to the perturbations unbounded in magnitude,
but bounded in time.
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