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Abstract. This paper assesses the state-of-the-art in Quality-of-Service (QoS) adaptive wireless networks and proposes new adaptation
techniques that better suit application specific needs. The contribution of the paper is as follows: we propose an adaptive service com-
prising (i) bandwidth utility functions, which capture the adaptive nature of mobile applications in terms of the range of bandwidth over
which they prefer to operate; and (ii) adaptation scripts, which enable adaptive mobile applications to program the per-flow adaptation
time scale and bandwidth granularity realizing application-specific adaptive services. To maintain adaptive services in wireless packet
access networks, we propose a split level adaptation control framework that operates at the network and application levels. Network
level control employs a periodic probing mechanism between mobile devices and network gateways in support of utility based max–min
fair resource allocation. Application level control is managed by a set of distributed adaptation handlers that operate at mobile devices
realizing application-specific adaptation strategies.
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1. Introduction

A key goal of next-generation wireless systems is to enable
mobile users to access and distribute audio, video and data
anytime anywhere. However, the support of multimedia ser-
vices over wireless networks presents a number of techni-
cal challenges. First, physical layer impairment (e.g., co-
channel interference, hidden terminals, path-loss, fast fading
and shadowing) contribute toward time-varying error char-
acteristics and time-varying channel capacity making the de-
livery of hard Quality-of-Service (QoS) guarantees unlikely.
Next, user mobility can trigger rapid degradation in deliv-
ered service quality (e.g., during handoff). Third, wireless
networks are typically bandwidth constrained in compari-
son to wireline networks. These system characteristics re-
sult in the delivery of time-varying Quality-of-Service to
mobile applications. In many cases, mobile applications
are not designed to operate successfully under such condi-
tions. We observe that an application’s ability to adapt to
network changes, while keeping the user’s perceptible qual-
ity meaningful, is very much application-specific. In this
paper, we argue that future mobile systems should be capa-
ble of capturing and supporting application-specific adapta-
tion characteristics in a flexible fashion. Many existing mo-
bile network systems (e.g., Mobile IP and third generation
cellular systems), however, lack the architectural flexibil-
ity to accommodate application-specific adaptation needs in
time-varying mobile environments. In particular, most net-
work resource allocation mechanisms rely on end systems
to declare QoS requirements such as bandwidth, delay and
delay jitter. This approach can lead to frequent renegotia-
tion with end systems during adaptation resulting in poor

scalability when the number of flows or traffic aggregates1

grows or adaptation becomes frequent as in the case of wire-
less/mobile environments.

Recently, a number of adaptive mobile networking pro-
posals have begun to address some of these issues [1–8].
However, unlike end-system oriented approaches, network-
based adaptation faces a number of additional challenges.
First, network-based adaptation is intrinsically more com-
plex than end-system oriented approaches. In order to main-
tain a balance between architectural flexibility and scal-
ability, we propose a split-level approach that supports
application-independent and application-specific adaptation
needs. We argue that support for common adaptation de-
mands should be managed by network mechanisms in order
to optimize efficiency, while support for application-specific
adaptation needs should be handled by a flexible platform
at the network edges. Second, it is challenging to develop
quantitative metrics capable of explicitly representing adap-
tation needs because the wide variety of application-specific
adaptation behavior complicates the definition of a single
unified metric. As a result, existing quantitative models (e.g.,
[9–11]) are coarse and not unified. In some cases, the adap-
tation metric is directly related to user perception (e.g., by
means of subjective testing such as the 5-level Mean Opinion
Score measure for video quality [12]). In other cases, objec-
tive measurements (e.g., signal-to-quantization noise ratio in
adaptive MPEG coding) are more effective.

Finally, network control needs to be extended in an effi-
cient manner to support common adaptation requirements,
which can be characterized as having two dimensions; that

1 The terms flow and traffic aggregate are used synonymously in this paper.
Both refer to packets satisfying the same packet header classification rule
and sharing the same routing path in a wireless packet access network.
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is, the bandwidth granularity and the time scale over which
adaptation occurs. Network resource allocation schemes,
however, are more complex than the case of a single link be-
cause one flow’s allocation can be affected by other flows
sharing a portion of a multi-hop route. Max–min fair-
ness [13] is the most widely used fairness criterion found
in bandwidth allocation algorithms for networks. Here, the
idea is to maximize the allocation of flows with the least al-
location; that is, to allow a flow to increase its allocation
provided that the increase does not subsequently cause a de-
crease in allocation of a flow holding a lower or equal band-
width allocation [14]. A new challenge is to extend max–
min fairness to support adaptation in an efficient and scalable
manner.

In this paper, we present the design and evaluation of a
utility-based adaptation framework for wireless packet ac-
cess networks comprising bandwidth utility functions and
adaptation scripts. Bandwidth utility functions capture the
adaptive nature of mobile applications in terms of the range
of bandwidth over which applications prefer to operate.
Adaptation scripts complement bandwidth utility functions
by capturing application-specific “adaptation time scales”
and “bandwidth granularities”. The utility-based adaptation
framework supports both generic network adaptation control
and flexible application-specific adaptation. In this sense, we
use bandwidth utility functions to formulate a generic model
for network adaptation, and deploy adaptation scripts to sat-
isfy individual application needs. Our framework is split into
two levels that support network level utility-based allocation
and application-level policy-based adaptation, respectively.
At the network level, we present an efficient extension of
max–min fair allocation to support utility-based max–min
fairness. A distributed algorithm periodically probes the
wireless packet network on behalf of mobile devices main-
taining their bandwidth allocations. Application level adap-
tation control employs adaptation handlers at mobile devices
that are capable of programming a wide variety of flow adap-
tation behavior using adaptation scripts.

The structure of the paper is as follows. In section 2 we
discuss related work in the area of adaptive resource con-
trol in wireless networks. Following this, in section 3, we
describe a utility-based adaptation framework for wireless
packet access networks. In section 4, we introduce utility
functions and their basic operations. In section 5, we present
a detailed description of our utility-based network control
algorithm that realizes utility-based max–min fairness. Fol-
lowing this, in section 6, we discuss our policy-based ap-
plication adaptation scheme that works in unison with a
network control algorithm to support a set of application-
specific adaptation policies. In section 7, we present our
simulation results. We show that our framework is capable
of supporting a wide range of adaptation needs under vari-
ous network conditions. We conclude the paper in section 8
and present the pseudo-code for the utility-fair max–min al-
gorithm in the appendix.

2. Related work

There has been a number of architectural proposals for adap-
tive services in mobile networks [1,2,4]. In [3], Lu and
Bharghavan present a set of admission control and reserva-
tion mechanisms that extend generic resource renegotiation
to wireless and mobile environments. In [2], utility functions
are proposed for network resource management. However,
there is no discussion concerning specific mechanisms. Our
previous work on network resource allocation [6–8] differs
from the work presented in [2] and [3] because our research
is motivated by the need to support multiple bandwidth al-
location strategies and utility-based resource allocation in
wireless networks. In [6], explicit support for the delivery of
multi-resolution flows is built into the network and transport
layers of the Mobiware system. In this case, wireless access
points support the transport of base and enhancement layers,
and media scaling and packet discarding techniques. Mobi-
ware supports per-mobile adaptive resources control that pe-
riodically probes the wireless access network for bandwidth
availability over slow time scales (i.e., in the order of sec-
onds). In [7], we propose a programmable MAC middleware
architecture to support QoS adaptation at the data link layer.
The scheme manages service weights of a channel-state de-
pendent scheduler [15,16] for both the uplink and downlink
with respect to per-flow utility functions. In this paper, we
extend this work to the network and transport layers by tak-
ing into consideration wireless access networks.

The use of utility functions has been widely cited in
the literature as a means of capturing application-specific
behavior in adaptive networking environments (e.g., Inter-
net [17,18], mobile networks [2] and ATM networks [9]).
The Q-RAM project [10] proposes a utility-based mecha-
nism that allocates resources to operating system processes
with the aim of maximizing the total system utility. Unlike
utility-maximizing allocation algorithms, which maximize
the global utility, our previous work [7] exploits “utility-fair
allocation”. This formulation has a simple closed-form so-
lution and is consistent under aggregation, which allows the
network bandwidth allocation mechanisms to operate on ag-
gregated traffic promoting a high degree of scalability.

There have been several proposals by the ATM Forum
to extend the notion of max–min fairness (e.g., the case of
non-zero minimum cell rate and allocation proportional to
weights [19,20]). In this paper, we formalize the utility-
based max–min fair allocation proposed in [8] and investi-
gate system issues associated with protocol design and adap-
tation policy, including algorithm and protocol scalability to
support aggregated flow states.

Our approach to realizing adaptation policies differs
from end-system oriented approaches (e.g., the Odyssey
Project [5] and the adaptation proxy work discussed in [21]).
We introduce a utility-based adaptation framework that pro-
vides a generic approach to adaptation allowing a wide range
of application specific policies to be implemented. For ex-
ample, a “smooth” adaptation policy can have the same ef-
fect as the end system playout-control mechanism discussed
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in [22]. However, with the utility-based framework, we can
deliver rate-smoothing features as a generic network service
which benefits a wide variety of applications including TCP.

In [23], feedback control theoretic mechanisms (e.g.,
control based on the Proportional-Integral-Differential of
the feedback signal) are used to direct QoS adaptation in
networks. We observe that while control theory based ap-
proaches are better than heuristic and measurement based
approaches, it is hard to apply the theory directly to traf-
fic aggregates without obtaining explicit resource require-
ments. In our framework, we attempt to reduce the reliance
on realtime signaling of application resource requirements
by using utility functions to model a range of requirements
in advance. In addition, we develop a platform comprising a
resource probing protocol and adaptation handlers that sup-
ports flexible adaptation policies in a scalable manner. By
pushing application-specific adaptation policy into a set of
edge-based programmable adaptation handlers we can re-
lieve the network control system of the burden of supporting
individual adaptation profiles in the network.

3. Utility-based adaptation framework

Figure 1 illustrates our utility-based adaptation framework
for wireless packet networks. At the top of the figure,
an adaptive service applications programming interface
(API) allows end users and service providers to program
the underlying control mechanisms. These mechanisms in-
clude network-level and application-level adaptation con-
trol, which we refer to as utility-based network control and
policy-based application adaptation, respectively.

3.1. Customizing adaptive services

3.1.1. Bandwidth utility functions
Utility functions can represent a wide variety of application
adaptation behavior, as illustrated in figure 2. The quality
index of a utility function refers to the level of satisfaction
perceived by an adaptive mobile application. Concave util-
ity functions represent strongly adaptive applications that are
not sensitive to bandwidth changes when bandwidth allo-
cation is close to the maximum requirement. TCP repre-
sents an example of such an adaptive application. In con-
trast, convex utility functions represent weakly adaptive ap-
plications that are sensitive to bandwidth changes when the
bandwidth allocation approaches the maximum requirement.
Some video applications exhibit this behavior. Linear util-
ity functions model the case of equal bandwidth adjustment
regardless of the original bandwidth. Hence, linear utility
functions are well suited to represent data applications that

Figure 2. Different styles of utility functions.

Figure 1. Utility-based adaptation framework.
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are insensitive to bandwidth variation over any particular
range of bandwidth allocation. Other types of utility func-
tions include discrete curves (e.g., step or staircase shaped
curves) that model discretely adaptive applications (e.g.,
multi-layered MPEG video flows). In our framework, utility
functions are defined by service providers as part of a cus-
tomer’s service plan. Applications specify their bandwidth
needs by choosing a service specific form of utility function
and modifying customizable parameters of the utility func-
tion (e.g., the maximum bandwidth value, or the bandwidth
values at the break points of a discrete utility curve).

3.1.2. Adaptation scripts
For adaptive mobile applications perceptible quality is
strongly related to how and when they respond to band-
width availability. While a utility function abstracts an ap-
plication’s resource needs, an adaptation script is central
to capturing the application-specific responses to resource
availability in terms of adaptation time scales and band-
width granularities; that is, what time scale and/or events
should trigger an increase in bandwidth allocation and by
how much.

In essence, a utility function and adaptation script capture
an application’s blueprint for adaptation. Collectively, these
form the semantics of application-specific adaptive services
in wireless networks. Using adaptation scripts, our utility-
based framework presents a comprehensive programmable
environment for customizing adaptive services. We have de-
signed four types of adaptation scripts (viz. greedy, discrete,
smooth, and handoff adaptations) for experimentation that
covers a wide set of application adaptation needs. Additional
policies can be implemented by programming new scripts, as
discussed in section 6.

3.2. Utility-based network control

We assume a two-tier network model, where the global In-
ternet provides interconnectivity to a set of wireless packet
access networks through gateways, as shown in figure 1. An
example of the wireless packet access network is a Cellu-
lar IP [24] network. The Cellular IP access network real-
izes micro-mobility in support of fast handoff and paging,
comprising a set of base stations, routers and gateways. In
contrast, Mobile IP enables support for macro-mobility be-
tween gateway nodes. Cellular IP is based on per-host rout-
ing where the routing state is stored at base stations and gate-
ways. Routing state is maintained by data and paging-update
packets flowing between a mobile device and its designated
gateway. We augment per-mobile state to include bandwidth
allocation and adaptation control information for per-mobile
traffic aggregates. A per-mobile traffic aggregate is a state
variable that represents all uplink and downlink traffic be-
tween a mobile device and its corresponding Internet gate-
way.

A periodic bandwidth reservation and adaptation proto-
col is used to allocate and maintain traffic aggregate reserva-
tions in a Cellular IP access network. The protocol operates

in three phases, as shown in figure 1. The first two phases
called reserve (1) and commit (2) are part of the network con-
trol scheme that performs utility-based max–min fair band-
width allocation (discussed in section 5.2) in a distributed
manner. The last phase called adapt (3) is associated with
the application adaptation control scheme.

The reserve and commit messages operate in a similar
manner to the RSVP [25] protocol. However, only uni-
cast traffic aggregates are supported. Bandwidth reservation
messages (reserve) are periodically sent from a mobile de-
vice toward the gateway for both uplink and downlink traffic
aggregates. This probing mechanism periodically refreshes
“soft-state” bandwidth reservations that are associated with
a traffic aggregate path between the mobile device and gate-
way. The state is “soft” because it is removed after a timeout
interval if the state is not reset (i.e., refreshed). Reserve mes-
sages interact with a set of utility-fair allocation mechanisms
en-route between the mobile device and gateway, as illus-
trated in figure 1. This probe drives the utility-based max–
min fair allocation based on the aggregate bandwidth needs
of all flows in a traffic aggregate. A gateway responds to a
reserve message by sending a commit message back to the
appropriate mobile device. This action commits resources
allocated by the reserve message to a traffic aggregate over
the next probing interval.

Utility-fair allocation operates locally at each node (e.g.,
base station, router and gateway) and provides explicit sup-
port for common bandwidth adaptation needs at the network
level. In addition, the reserve/commit probe efficiently im-
plements the utility-based max–min fair allocation in a dis-
tributed manner. This reservation/adaptation mechanism op-
erates over a slow time scale in the order of seconds, or dur-
ing handoff or flow renegotiation. Fast time scale control is
needed over the wireless hop, as discussed in our previous
work [7].

3.3. Policy-based application adaptation

As shown in figure 1, we design an additional control layer
on top of the utility-based network control. Software agents
called “adaptation handlers” execute at mobile devices and
implement application-specific adaptation scripts that are ca-
pable of operating on a per-application or per-service class
basis.

Application adaptation is performed as part of the last
phase of the resource probing and adaptation protocol. After
receiving a commit message, an adaptation handler located
at a receiving mobile device executes its adaptation script,
which could be in the form of a default script provided by
the system, or a script defined by a user or application ser-
vice provider. The schema of the adaptation script is shown
in figure 3.

Based on the commit message, the adapt message con-
firms the final committed bandwidth (i.e., the consumed
bandwidth) after taking the application’s adaptation policy
into account. As outlined in figure 3, the consumed band-
width can be less than or equal to the allocated bandwidth
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(1) Retrieve the allocated bandwidth value in
the commit message from the network;

(2) make adaptation decisions;

(3) calculate the consumed bandwidth to be no
greater than the allocated one;

(4) send an adapt message with the value of
consumed bandwidth toward the gateway.

Figure 3. Simple adaptation script schema.

presented at the receiver in the commit message. The adapt
message also notifies a traffic regulator located at the gate-
way if there is any change to the packet policing/shaping
functions, and/or media scaling and packet filtering func-
tions that may operate on the downlink traffic.

Our approach keeps the interior of the wireless packet ac-
cess network simple. With this reservation/adaptation mech-
anism, any traffic overload observed inside the wireless ac-
cess network will be controlled at the network edges (i.e., at
mobile devices and gateways). By locating adaptation han-
dlers at the edge, we relieve internal routers of supporting
adaptation functions.

4. Bandwidth utility functions

For simplicity and system scalability, we propose to use
bandwidth utility functions to support a per-service-class
model2 that quantitatively describes the trajectory of service
degradation in relation to time-varying bandwidth conditions
experienced by mobile devices in wireless networks.

4.1. Definition

We define a bandwidth utility function u(x) as the mapping
of the transmission bit rate, referred to as available network
bandwidth x, into a “utility” (i.e., quality) value that repre-
sents the level of service quality satisfaction perceived by an
application. Typically, an increase in available bandwidth
does not decrease the application quality, making the utility
function a non-decreasing function of the bandwidth x.

For ease of implementation, it is necessary to quantize
utility functions using a small set of parameters. Since the
utility value is used to model relative preference, its value
has only relative significance. Therefore, without loss of
generality, we can normalize the utility values of all curves
in the range of [0, K]. The quantization levels are the K

numbers of critical utility levels that divide the utility axis
range [0, K] into K equal intervals. Following on from this,
for flow i, its critical bandwidth value, bi,k , can be defined
as ui(bi,k) = k, k ∈ NK , where NK denotes the natural
number set {1, 2, . . . , K}.

Utility functions are an extremely flexible tool that allow
adaptive applications to share the same resources. For this

2 This does not, however, preclude the use of bandwidth utility functions
on a per-application or per-mobile basis.

Figure 4. Quantized utility function.

reason, we do not give any specific meaning to the utility
value, other than the utility range. The mapping between
utility values in the range [0, K] and the perceived level of
service quality is a task left to each individual adaptive ap-
plication. This mapping is dependent on application seman-
tics and on the way in which quality is accounted for (e.g.,
MOS, SNR, etc.). For an example of this type of mapping
for a video application see [11].

We approximate utility functions after quantization using
either a continuous piecewise linear shape, a discrete stair-
case shape, or a combination of the two. Figure 4 illustrates
an example of a quantized piecewise linear utility function.
However, in the following derivation of the bandwidth allo-
cation formula, we only assume strictly increasing and con-
tinuous piecewise-linear utility functions to avoid the com-
plexity of a “bin-packing problem”, which could arise from
resource partitioning using discrete granularity and does not
have closed-form solution. Later in section 6.2, we extend
our solution to support non-strictly-increasing or discrete
utility functions by an iterative approach. The support for
these type of utility functions is managed by adaptation han-
dlers at mobile devices, where discrete adaptation handlers
compete with each others for available residual bandwidth
based on their discrete bandwidth requirements. This ap-
proximation does not introduce significant error because the
error is bounded by the difference between critical band-
width values, where the actual and approximated piecewise-
linear curves coincide. In practice, the original utility func-
tion is normally obtained by coarse subjective testing [12]
and presented as a piecewise linear shape with a small num-
ber of quality levels.

Consider a flow i. The strictly increasing and continuous
piecewise linear utility function ui(x) has the general form
of

ui(x) = k + x − bi,k

bi,k+1 − bi,k

∀x ∈ [bi,k, bi,k+1], k ∈ NK−1. (4.1)
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Here bi,k < bi,k+1. The inverse of ui(x) has the form:

u−1
i (y) = bi,k + (y − k)(bi,k+1 − bi,k)

∀y ∈ [k, k + 1]. (4.2)

We observe that the critical utility value 1 is the lowest
acceptable operating point, where bi,1 (bi,1 � 0) is defined
as the minimum sustained rate corresponding to the mini-
mum bandwidth at which an application is able to success-
fully operate. In contrast, bi,K denotes the peak rate which
corresponds to an application’s optimal operating rate, and
ui(bi,K) = K represents the maximum satisfaction level.
Since {bi,k | i ∈ NK } completely characterize a piecewise
linear utility function with K critical utility levels, we use
the critical bandwidth vector ui � 〈bi,1, bi,2, . . . , bi,K 〉 to
represent the piecewise linear utility function ui(x) in the
remaining part of this paper.

Next, we define the aggregation of strictly-increasing
and continuous piecewise linear utility functions as follows.
A piecewise linear utility function u3 is the aggregation of
piecewise linear utility functions u1 and u2, denote u3 �
u1 ⊕ u2, where u−1

3 (η) = u−1
1 (η) + u−1

2 (η) ∀η ∈ [1, K].
Because of the linearity of u−1

i (y) when y ∈ [k, k + 1),
u1 ⊕ u2 can be equivalently represented in vector form as

u1 ⊕ u2 ⇐⇒ 〈b1,1 + b2,1, . . . , b1,K + b2,K〉.
Similarly, a piecewise linear utility function u3 is the

segregation of u2 from u1 denote u3 � u1 ⊕ u2, where
u−1

3 (η) = u−1
1 (η) − u−1

2 (η) ∀η ∈ [1, K] and u−1
1 (η) �

u−1
2 (η). In vector form, this is

u1 � u2 ⇐⇒ 〈b1,1 − b2,1, . . . , b1,K − b2,K〉.
From the vector form, the utility function aggregation and

segregation can be calculated with O(K) complexity.

4.2. Utility-based fairness

Typically, bandwidth allocation mechanisms treat fairness
with respect to bandwidth. In what follows, we define a new
fairness criterion with respect to the utility value that corre-
sponds to a flow’s allocated bandwidth.

Definition 4.1. A bandwidth allocation rule for n flows
characterized by utility functions ui(x), i = 1, . . . , n,
is utility-fair when the bandwidth allocation vector β �
〈β1, . . . , βi , . . . , βn〉, where βi the allocation to flow i, sat-
isfies the following:

ui(βi) = uj (βj ) ∀i, j ∈ N ,

and
n∑

i=1

βi = min

{
B,

n∑
i=1

bi,K

}
,

where bi,K is the peak rate requirement of flow i, and B is
the total bandwidth available for all flows on the link.

Consider n adaptive flows described by strictly increas-
ing piecewise linear utility functions uj = 〈bj,1, . . . , bj,K 〉,
j ∈ N . The aggregated utility function u⊕ = u1 ⊕ u2 ⊕
· · · ⊕ un = 〈B1, . . . , BK 〉, where Bk = ∑n

j=1 bj,k results
from the aggregation operation. Because of the admission
control on the minimum sustained rate bj,1, we may assume
B > B1.

In what follows, we show that for strictly increasing
piecewise linear utility functions, the utility-fair allocation
has a closed-form solution.

Proposition 4.2. For strictly increasing piecewise linear
utility functions, the utility-fair allocation rule is given by

βi =F(ui , u⊕,B)

=


bi,K if B � BK ,

bi,k + B − Bk

Bk+1 − Bk

(bi,k+1 − bi,k) otherwise, (4.3)

where k = �u⊕(B)� is the index such that Bk � B < Bk+1,
and

ui(βi) = u⊕(B) = k + B − Bk

Bk+1 − Bk

∀i ∈ Nn, (4.4)

namely, all flows are allocated the same utility value η �
u⊕(B).

Proof. We simply need to verify that the allocation given
by equation (4.3) satisfies definition 4.1. Since Bk � B <

Bk+1, from equation (4.3) we have bi,k � βi < bi,k+1.
Then we can write down the utility value ui(βi) from equa-
tion (4.1) as

ui(βi) = k + βi − bi,k

bi,k+1 − bi,k

.

After substituting equation (4.3) in, we have:

ui(βi) = k + B − Bk

Bk+1 − Bk

bi,k+1 − bi,k

bi,k+1 − bi,k

= k + B − Bk

Bk+1 − Bk

= η.

Since the right-hand side of the above equation is not a func-
tion of i, it indicates that the same equation holds for all the
values of i. Therefore, we have

ui(βi) = uj (βj ) = η ∀i, j ∈ Nn,

which agrees with the definition of the utility-fair rule. �

In fact, from equation (4.4), another form ofF(ui , u⊕,B)

is given by

F(ui , u⊕,B) = u−1
i (η) = u−1

i

(
u⊕(B)

)
, i ∈ Nn. (4.5)

An example of the bandwidth allocation algorithm that
follows this rule is illustrated in figure 5. Our implementa-
tion of the allocation algorithm consists of three steps:

(1) update the aggregated utility function u⊕ with respect to
the change for flow i (with complexity O(K)); then,
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Figure 5. Graphical example of the utility-fair allocation rule. In the exam-
ple, K = 3 and B = 2.1. Results: η = 2.5, β1 = 0.6, β2 = 1.5.

(2) locate the critical utility level k so that the total available
bandwidth B fits in (this constitutes a binary search with
complexity O(log K)); then,

(3) apply equation (4.3) to calculate allocation βi (with
complexity O(1)).

The total complexity to update a flow’s bandwidth allo-
cation is of the order of O(K). The simplicity of the utility-
based fair allocation algorithm is a consequence of our op-
timization goal; that is, to maximize bandwidth utilization
under the constraint of utility-based fairness rather than to
maximize global utility as applied by existing network eco-
nomic literature (e.g., see [9]). An important property of the
utility-based fair allocation rule is the allocation consistency
under flow aggregations; that is:

Proposition 4.3. For any set of piecewise linear utility func-
tions {uj }, under the same available bandwidthB, the utility-
fair allocation for each flow is not affected by any order and
combination of utility function aggregations over {uj }.

Proof. We start with a set of three piecewise linear utility
functions {u1, u2, u3}. For flow #1, the property indicates
that first, flow #1’s allocation is not affected by aggregation
of other flows, which is to prove equation (4.6):

F(u1, u1 ⊕ u2 ⊕ u3,B) = F
(
u1, u1 ⊕ (u2 ⊕ u3),B

)
,

(4.6)

and second, flow #1’s allocation is not affected by aggrega-
tion involving itself, which is to prove equation (4.7):

F(u1, u1 ⊕ u2 ⊕ u3,B) = F(u1, u1 ⊕ u2, X), (4.7)

where

X � F
(
(u1 ⊕ u2), (u1 ⊕ u2) ⊕ u3,B

)
.

The proof of equation (4.6) directly follows from the as-
sociativity of operator ⊕, namely u1 ⊕ u2 ⊕ u3 = u1 ⊕
(u2 ⊕ u3). To prove equation (4.7), we use equation (4.5)
to rewrite the right-hand side of (4.7) as

F(u1, u1 ⊕ u2, X) = u−1
1

(
η∗),

and from equation (4.4),

η∗ = (u1 ⊕ u2)(X). (4.8)

Similarly, with equations (4.5) and (4.4), X can be simplified
as

X =F
(
(u1 ⊕ u2), (u1 ⊕ u2) ⊕ u3,B

)
= (u1 ⊕ u2)−1(η∗∗), (4.9)

η∗∗ = (
(u1 ⊕ u2) ⊕ u3

)
(B)

= (u1 ⊕ u2 ⊕ u3)(B) � η. (4.10)

Combining (4.9) and (4.10) into (4.8), we have

η∗ = (u1 ⊕ u2)
(
(u1 ⊕ u2)−1(η)

) = η.

Substituting the result into (4.8), we have

F(u1, u1 ⊕ u2, X) = u−1
1 (η) = F(u1, u1 ⊕ u2 ⊕ u3,B).

This proves equation (4.7). The extension of the proof to
more than three flows can be achieved by induction. �

This property implies that the allocation formula can be
recursively applied to different levels of aggregated utility
functions without distortion.

5. Utility-based network control

Based on service-specific utility functions multiple flows
can be represented by an aggregated utility function in the
wireless packet access network achieving utility-based fair-
ness. In what follows, we extend the per-hop utility-based
bandwidth allocation rule to cover a max–min fairness crite-
rion across multiple hops between mobile devices and bor-
der gateways in wireless access networks. This algorithm is
driven by the resource probing protocol introduced in sec-
tion 3 and detailed in this section.

5.1. Definition of utility-based max–min fairness

First, we define the feasibility constraint which specifies
that any allocation must not allocate more bandwidth than
a link’s total capacity Bl . The formal definition is:

Definition 5.1. A bandwidth allocation vector β = 〈β1, . . . ,

βn〉 is feasible if for each flow i ∈ Nn, βi � bi,1 and for each
link l,

∑
∀i passing link l βi � Bl .
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Definition 5.2. An allocation vector β is utility-based max–
min fair if it is feasible and for each flow i ∈ Nn, its al-
location βi cannot be increased while maintaining feasibil-
ity without decreasing some flow j ’s allocation βj , where
uj (βj ) � ui(βi).

Definition 5.3. A link l is a utility-based bottleneck link
with respect to a given feasible allocation vector β for a
flow i crossing l if l is saturated, i.e.,

∑
∀i passing link l βi

= Bl , and ui(βi) � uj (βj ) for all the flows j crossing l.

These definitions are similar to the max–min fairness de-
finition in [14]. The main change is to substitute the com-
parison in bandwidth values (e.g., βi � βj ) to a comparison
in corresponding utility values (e.g., ui(βi) � uj (βj )). The
utility-based max–min fairness also has the same properties
as conventional max–min fairness.

Proposition 5.4. A feasible allocation vector β is utility-
based max–min fair if and only if each flow has a utility-
based bottleneck link with respect to β.

The proof follows the same procedure as shown in [14]
except the change from bandwidth to utility value. This
property implies that under utility-based max–min fair al-
location, each flow has one bottleneck link. Therefore, we
will mark a flow bottlenecked at its only bottleneck link and
satisfied at all the other links in the path.

Proposition 5.5. There exists a unique allocation vector
that satisfies utility-based max–min fair rate allocation.

The proof of proposition 5.5 is to first construct one allo-
cation vector satisfying utility-based max–min fairness. One
may use the centralized allocation algorithm in [14] by sub-
stituting bandwidth with the utility value. Following this,
one can construct a proof by contradiction by showing that
any other allocation vector satisfying utility-based max–min
fairness will lead to a violation of definition 5.2.

Because a utility function has the notion of the minimum
sustained rate and peak rate for a flow, the utility-based max–
min fairness intrinsically captures the constraints on min-
imum and maximum rate. With the additional properties
such as simplicity and consistency under flow aggregation,
this extended max–min fairness criterion can be practically
implemented using distributed algorithms.

5.2. Distributed algorithm

With the advent of available bit rate (ABR) flow control
found in ATM networks, distributed algorithms that emulate
a centralized max–min fair allocation algorithm have been
proposed [26,27]. In [26], Charny proposes a distributed
and asynchronous algorithm for max–min fair allocation. At
each bandwidth allocation iteration, a two-step algorithm is
used to partition flows into bottlenecked and satisfied sets,

denoted by U l and Ll , respectively. The fair allocation for
bottlenecked flows at link l is calculated as

βi = Bl − Bl
L∑

j∈U l 1
= Bl − Bl

L
|U l | , (5.1)

where Bl
L �

∑
∀i∈Ll βi total allocated bandwidth to Ll , the

set of satisfied flows.
We propose a simple extension that replaces equation

(5.1) with the following derived from (4.5):

βi = F
(
ui , ul

U ,Bl − Bl
L
) = u−1

i

(
ul
U
(
Bl − Bl

L
))

, (5.2)

where ul
U �

⊕
∀i∈U l ui is the aggregated utility function of

U l , the set of bottlenecked flows. The composite function
from the inverse utility function u−1

i (·) and the aggregated
utility function ul

U (·) captures the notion of weighted fair-
ness, while the utility function has built-in support for the
minimum sustained rate.

In [27], Kalampoukas simplifies Charny’s iterative mark-
ing procedure (which has complexity of O(n) for each itera-
tion where n is the number of flows) to an O(1) algorithm for
each iteration. Instead of trying to partition all the flows at
once, the algorithm only updates the bottlenecked/satisfied
status of the flow currently in process. Our implementation
is based on this efficient algorithmic approach.

Let us consider flow i at link l. If the flow is currently
marked as satisfied, to update its allocation, we reset its
marking to bottlenecked and aggregate its utility function ui

into ul
U , i.e., ul

U = ul
U ⊕ ui . Subsequently, an abstract view

of the bandwidth assignment rule is given as follows:

βi = max
{
F

(
ui , ul

U ,Bl − Bl
L
)
,

F
(
ui , ul

U ⊕ uk,Bl − Bl
L + βk

)}
,

where k = arg max
∀j∈Ll

{
uj (βj )

}
. (5.3)

Here k is the index of a flow that has the maximum utility
value inside the satisfied set Ll . It is possible that during a
transient phase a flow in the satisfied set could have a utility
value greater than the utility of a bottlenecked flow. There-
fore, the purpose of adding flow k into the bandwidth alloca-
tion pool is to reduce the allocation oscillation experienced
during the transient phase [27]. However, adding flow k, the
satisfied flow with the maximum utility value, into the allo-
cation pool could generate a larger allocation for a bottle-
necked flow in this case. In some cases, this allocation may
violate the feasibility constraint. We will solve this problem
in the next section.

5.3. Resource probing protocol

In what follows, we outline a resource probing protocol
which constitutes the first two phases (i.e., the reserve and
commit phases) of the three-way protocol described in sec-
tion 3. The probing protocol operates in the wireless ac-
cess network and periodically and asynchronously probes
the wireless access network on a per-traffic aggregate basis.
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In this instance, the bandwidth requirement of an individ-
ual application is derived from its corresponding aggregated
utility function based on equation (4.5).

The protocol operates on a slow time scale in the order
of seconds, and drives bandwidth renegotiation in the access
network. In contrast, the bandwidth renegotiation time scale
for ATM ABR flow control algorithms is in the millisecond
range. The main component affecting the convergence time
is the probing interval, which, in our case, is several orders
of magnitude greater than the round-trip delay3.

To reduce the convergence time of the probing scheme by
half, we exploit the backward signalling message (i.e., com-
mit message) to commit the reservation made by the forward
reserve message. Each reserve probe message contains four
parameters: (i) the mobile traffic aggregate identifier; (ii) the
ideal bandwidth request ρideal

i ; (iii) the actual bandwidth re-
quest ρactual

i ; and (iv) the utility function vector ui if it has
been changed since the last resource probe. The correspond-
ing commit message contains four parameters as well: (i) the
mobile traffic aggregate identifier; (ii) the ideal bandwidth
allocation r ideal

i ; (iii) the actual bandwidth allocation ractual
i ;

and (iv) the updated utility function vector ui , for the whole
mobile traffic aggregate to be confirmed along the path.

To speed up the convergence time while maintaining
the feasibility constraint (definition 5.1), two parallel sets
of reservation state (ρideal

i , r ideal
i,l ) and (ρactual

i , ractual
i,l ) are

maintained along the route, where ρ denotes the requested
bandwidth value in the reserve messages, and r denotes
the confirmed bandwidth value in the commit messages.
(ρactual

i , ractual
i,l ) the actual allocation under the feasibility

constraint, and (ρideal
i , r ideal

i,l ) tracks the ideal allocation with-

out the feasibility constraint4 and ensures convergence to
utility-based max–min allocation.

For a mobile traffic aggregate i, the states stored at
each link l include ui , r ideal

i,l , ractual
i,l , and a flag Si,l ∈

{bottlenecked,satisfied}. The Si,l flag implicitly partitions
the mobile traffic aggregates into two sets U l and Ll . The ag-
gregated states stored at each link l comprise the total avail-
able bandwidth Bl , the in-use bandwidth for the set Ll : Bl

L,
and the unused bandwidth Bl

free. The algorithm also main-
tains state for an aggregated utility function ul

U .
The allocation rule follows from equation (5.3). To reflect

the two allocation algorithms operating in parallel, the ideal
and actual allocations of a traffic aggregate are calculated
based on the following:

ideal: r ideal
i,l = min

{
βl

alloc, ρideal
i

}
,

actual: ractual
i,l = min

{
βl

alloc, ρactual
i ,Bl

free

}
.

(5.4)

After the allocation steps given by (5.3) and (5.4) are com-
plete, the Sl

i of the traffic aggregate is changed if necessary.

3 The round-trip delay is the time between sending a reserve message and
receiving the corresponding commit message.

4 The feasibility constraint could be violated during transient phases as
flows asynchronously update their bandwidth allocations. Tracking ideal
allocation allows each flow to converge faster toward the ideal allocation
value.

In this case, the state variables are adjusted when the commit
message arrives to relax any over-allocated bandwidth. Be-
cause we follow the approach of [27] not to adjust the states
of other traffic aggregates, the algorithm complexity is in the
order of O(K), where the utility vector size K is the number
of critical utility levels.

In what follows, we present the convergence property of
the algorithm and simulation results to verify this property.

5.4. Convergence property

The analysis of our algorithm’s convergence property fol-
lows closely from [28]. It is shown in [28] that a distrib-
uted algorithm needs at least M iterations to stabilize toward
max–min allocation in a descending order starting from the
most congested bottleneck link, where M is the number of
distinct bottleneck levels in the network. Each iteration of
our algorithm only requires one probing round without the
feasibility constraint because we utilize the commit message
and the explicit rate information carried in the probing proto-
col as described in the preceding section. This is not the case
with the ABR rate allocation algorithm, which requires three
messages to stabilize a change in bandwidth allocation and
one more message to notify the next level bottleneck links
along the route.

Denote T a probing interval and RTT as the longest
round-trip delay for the signalling message (i.e., reserve/
commit) in the access network. Then the amount of time
required is T + RTT. When we consider the feasibility con-
straint, one more round of probing is required to allow the
actual allocation to reach the ideal allocation. This adds a
factor T to the time required.

Proposition 5.6. Utility-based max–min fair allocation al-
gorithm converges in RTT/2 + (2T + RTT)M , and in
RTT/2 + (T + RTT)M without the overload reduction con-
straint.

The RTT/2 factor is attributed to the case where change is
caused by a newly arriving flow or a flow changing its utility
function. In this case, it takes RTT/2 for the intermediate
routers along the path to be updated accordingly.

In practice, the convergence upper-bound can be im-
proved by network engineering. One approach is to use a
centralized implementation of the bandwidth allocation al-
gorithm. This effectively removes the M factor from consid-
eration. Another approach taken in GSM wireless networks
is to over-provision the wireline part of the cellular network
such that only the base stations can be possible bottlenecks.
In both schemes the allocation algorithm located at internal
access network nodes can be disabled. However, the algo-
rithm is still needed at border gateways to support edge traf-
fic control. It is clear that using a small probing interval T

can significantly reduce the convergence time. However, re-
ducing the probing interval will increase the signalling traffic
load on the system. A compromise scheme could use vari-
able probing intervals on different portions of the network
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(e.g., a smaller value across the wireless hop and larger one
in the wireline access network) with the result of improving
bandwidth usage.

6. Policy-based application adaptation

Adaptation policies capture different application behavior in
a flexible and customizable manner. A TCP application, for
example, may want to instantly take advantage of any re-
source availability. On the other hand, mobile multimedia
applications may prefer to follow trends in bandwidth avail-
ability to avoid frequent oscillation in utility level rather than
respond to instantaneous changes in available bandwidth.
Typically, following trends in this fashion leads to more sta-
bility in the user’s perceived quality. In contrast, an adap-
tation script that responds to instantaneous changes can lead
to fast time scale oscillations (“flip-flopping”), which may be
perceived as undesirable by many users. We have designed
a number of adaptation scripts representing some common
adaptation policies that mobile application can select from;
these include:

• greedy adaptation, which allows applications to instantly
move up along their utility functions when bandwidth
becomes available to satisfy any point on their utility
curves;

• discrete adaptation, which allows applications to move
up along step or staircase shaped utility functions, round-
ing off the assigned bandwidth to the lower discrete band-
width level;

• smooth adaptation, which allows applications to move up
along their utility functions only after a suitable damping
period has passed; and

• handoff adaptation, which allows applications to moves
up along their utility functions only after a handoff event
has occurred.

While these canned policies have been predefined, our
approach is open to supporting new policies (e.g., a hy-
brid of smooth and handoff policies). To facilitate the in-
troduction of customizable adaptive mobile services, we
allow programming and dynamic loading of application-
specific adaptation scripts. An abstract view of the adapta-
tion scripts is the commit(j, ρideal

j , ρactual
j ) function, where

pideal
j and ρactual

j are the assigned ideal and actual alloca-
tions for application j , respectively. Their values are de-
rived from the assigned ideal (ρideal) and actual (ρactual)

allocation for traffic aggregate in the commit message us-
ing equation (4.5). Based on the adaptation script, the
commit(j, ρideal

j , ρactual
j ) function determines the consumed

bandwidth
∑

j ∈ traffic aggregate ρideal
j and

∑
j ∈ traffic aggregate

ρactual
j to be returned in the adapt message.

Mobile devices are free to change their adaptation poli-
cies at any time because the adaptation handlers are im-
plemented locally at mobile devices. This allows users to
dynamically respond to the needs of particular applications

commit(j, ρideal
j , ρactual

j ) {
adapt(ρideal

j , ρactual
j );

}

Figure 6. Simple greedy adaptation script.

or dynamic quality of service conditions experienced in the
wireless access networks. For example, the default policy
for a particular flow could be set to a greedy script. After
a period of time the mobile device may assert a new script
for flows based on the measured conditions. Instantiating a
new adaptation script may be driven by a particular stability
test related to mobility movement, or the observed perfor-
mance of an application (e.g., changing to smooth adapta-
tion in cells where the observed QoS oscillates frequently).
In this respect, adaptation handlers represent programmable
objects that can be tailored to meet application specific ser-
vice needs under time-varying channel conditions.

6.1. Greedy adaptation script

The greedy adaptation script is the default adaptation script
used for all new mobile traffic aggregates that do not in-
stantiate adaptation handlers. Flows are greedy in the sense
that they will accept whatever bandwidth is offered by the
network at any instance. A greedy adaptation handler’s
commit(j, ρideal

j , ρactual
j ) function simply accepts the ρideal

j

and ρactual
j values derived from a commit message granted

by the network and returns them in an adapt message.
The choice of probing interval needs to balance the trade-

off between a desired fairness behavior and the increase in
signalling traffic that a short probing interval would bring.
In section 7, we study the effect of the probing interval on
allocation accuracy.

6.2. Discrete adaptation script

Discretely adaptive applications require discrete increments
of allocated bandwidth to support multi-layered data trans-
port (e.g., the transport used in [6], where the base and en-
hancement layers of MPEG2 flows receive different treat-
ments at network congestion points). The goal of such a
discrete adaptation script (as shown in figure 7, strategy A)
is to enforce a complete increment/decrement on allocated
bandwidth and avoid any partial changes. In our frame-
work, discrete adaptation is specified by a discrete type of
utility function (e.g., the staircase shape shown in figure 2).
A discrete shape utility function, however, only resides in
adaptation handlers at mobile devices. The network band-
width allocation algorithm and probing protocol only deal
with strictly-increasing piecewise linear functions.

Unfortunately, strategy A in figure 7 can cause allocation
disparity, as we will show in section 7. This disparity is gen-
eral to adaptation policies with discrete bandwidth granular-
ity. When the residual bandwidth is insufficient to accom-
modate all the flows (e.g., because of their bandwidth gran-
ularity) some flows will receive better treatment than others.
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Strategy A

commit(j, ρideal
j

, ρactual
j

) {
// locate discrete utility value

m = �uj (ρideal
j )�, n = �uj (ρactual

j )�;
// assign discrete bandwidth

ρideal
j = bj,m, ρactual

j = bj,n;

adapt(ρideal
j , ρactual

j );
}

Strategy B

commit(j, ρideal
j

, ρactual
j

) {
if ((ρactual

j == ρideal
j ) or (ρactual

j � prev_ρactual
j )) {

// for ρideal
j : discrete script

m = �uj (ρideal
j

)�;
ρideal

j
= bj,n;

}
prev_ρactual

j
= ρactual

j
;

n = �uj (ρactual
j

)�;
ρactual

j = bj,n;
adapt(ρideal

j
, ρactual

j
);

}

Figure 7. Two discrete adaptation scripts.

To resolve this fairness issue, the adaptation script should
give a flow an opportunity to increase its bandwidth alloca-
tion regardless of its adaptation style. Under this approach
the allocation disparity can be rotated among flows. Strat-
egy B in figure 7 presents one simple example. The al-
gorithm switches to a greedy adaptation script when a re-
duction on the assigned bandwidth is detected. By doing
so, a flow can register itself as a “bottlenecked” flow within
the network and force any unclaimed portion of bandwidth
to be released by other flows. This provides the flow with
a fair chance to share the extra bandwidth resources. If a
flow strictly follows a discrete adaptation script it usually is
tagged as satisfied within the network, and hence loses its
chance of sharing additional bandwidth. Strategy B detects
the reduction of the assigned bandwidth by comparing the
actual assigned bandwidth with the ideal assigned bandwidth
from the previous allocation.

6.3. Smooth adaptation script

Smooth adaptation suits the needs of the adaptive mul-
timedia applications (e.g., vic and vat) that can continu-
ously adapt their rate (e.g., by adjusting receiver-end play-
out buffers). Such applications require a script that supports
a smooth change of rate in the delivered service so that, for
example, the playout buffer does not underflow or overflow
often. In essence, these applications prefer to follow trends
in bandwidth availability as opposed to reacting to instanta-
neous changes that might be short lived. We describe this
form of adaptation as “smooth” because the adaptation han-
dler implements a low pass filter based on network assigned

commit(j, ρideal
j , ρactual

j ) {
ρideal

j
= calc_bw(ρideal

j
, prev_βideal

j
);

ρactual
j

= calc_bw(ρactual
j

, prev_βactual
j

);
if ((no increment) or

(time_since_last_increment � τ)) {
prev_βideal

j
= ρideal

j
, prev_βactual

j
= ρactual

j
;

reset timer;
} else // do not change

ρideal
j = prev_βideal

j , ρactual
j = prev_βactual

j ;
adapt(ρideal

j , ρactual
j );

}

calc_bw(ρ, prev_β) {
if (prev_β == 0) { // first time

return 0.5ρ;
} else if (κρ � prev_β − δ) {
// limit increment by δ and κ

return min{κρ, prev_β + δ};
} else {

return min{ρ, prev_β − δ};
}

}

Figure 8. Smooth adaptation script.

bandwidth. This type of application is supported within
our framework by limiting the bandwidth increment and en-
forcing the minimum time interval between two consecutive
bandwidth increments.

In what follows, we present one implementation of such
an adaptation script. There are three control parameters in
this script: δ denotes the maximum bandwidth (or utility
value) increment that the application can tolerate; τ is the
minimum interval between two consecutive allocation in-
crements; and κ is a filter factor. The pseudo-code for the
smooth adaptation strategy is shown in figure 8.

6.4. Handoff adaptation script

The final canned adaptation script deals with different adap-
tation strategies that can be adopted during handoff. Mobile
applications may only want to deal with adaptation on the
time scale of handoff thereby limiting fluctuation in the ob-
served service quality. Typically, these applications require
uniform service while resident in a cell and prefer to deal
with adaptation issues only during handoff. A number of
adaptation scenarios are possible during handoff depending
on the conditions found in a new cell and the bandwidth re-
quirements of the mobile traffic aggregate being handed off.
Figure 9 shows a number of possible outcomes for hand-
off adaptation illustrated in the experimental trace obtained
from Mobiware [29], a programmable mobile networking
platform that operates over an experimental indoor pico-
cellular testbed.

In this experiment, four mobile devices (M1, M2, M3 and
M4) are handing off in sequential order (H1, H2, H3 and H4)
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from base station AP1 to AP2. Mobile device M1 enters the
new cell at H1 and scales up its utility to take advantage of
available resources. The M1 adaptation script only adapts
after handoff. At point H2 in the trace the mobile device
M2 hands off to the base station AP2 and is forced to scale
down to its base layer. Mobile device M3 has an adaptation
script that never adapts. At H3 the mobile device M3 hands
off to AP2 and maintains its current utility. In the final part
of the experiment, M4 hands off to AP2 at point H4 in the
trace. At this instance, insufficient resources are available to
support the base layers of M1, M2, M3 and M4 forcing the
base station to block handoff.

7. Simulation

We have presented four common adaptation scripts in sec-
tion 6. However, a wide range of policies can be pro-
grammed using our approach. In what follows, we use sim-
ulation to investigate the adaptation performance of flows
measured at the base stations AP1 and AP2 in the simulation
topology illustrated in figure 10. We are interested in assess-

Figure 9. Handoff adaptation script results.

ing the adaptation performance of flows that are forced to
adapt to the observed conditions based on their instantiated
adaptation scripts.

7.1. Simulation environment

In figure 10, the simulated wireless packet access network
comprises two base stations (AP1 and AP2), two border
gateways (GW1 and GW2) and two intermediate routers
(SW1 and SW2). In the simulation, we only observe the per-
formance of downlink flows which is sufficient to illustrate
the effect of the adaptation script on mobile applications.

7.1.1. Flow parameters
A total of ten flows with various adaptation scripts are sim-
ulated. For clarity, we assume one flow per traffic aggre-
gate. Table 1 illustrates each flow’s utility function parame-
ters. All flows have zero minimum bandwidth requirements.
Flows 9 and 10 simulate aggregated cross traffic in the access
network with 25 Mbps maximum bandwidth requirement
(B·,K), the others simulate the flows across wireless links
with B·,K varying from 2 to 6 and 10 Mbps. Two types of
utility functions are used during simulations, as shown in fig-
ure 11. Flow 4 and 6 have convex shape of utility functions
u(x) = (K − 1) log2(1 + x/B·,K) + 1 while the other flows
have linear shape utility functions u(x) = (K−1)x/B·,K+1.

The route of each flow is designed carefully to give a fair-
ness comparison under different utility functions and/or dif-

Table 1
Flow utility curve parameters.

Flow ID 1 2 3 4 5

U-C Shape linear linear linear log linear
Max BW (Mbps) 2 10 6 10 6

Flow ID 6 7 8 9 10

U-C Shape log linear linear linear linear
Max BW (Mbps) 2 6 6 25 25

Figure 10. Simulated mobile access network topology.
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Figure 11. Utility curves used in simulations.

ferent B·,K . To test the correctness of the flow aggregation
operation, flows 1 and 4, 2 and 6, and 3 and 5 are aggregated
into three flow aggregates, respectively. The remaining flows
(7–10) are associated with different mobile devices.

7.1.2. Simulated dynamics
We simplified the simulated wireless network by indirectly
simulating the effect of user mobility and wireless channel
variations on available bandwidth. There are three levels
of simulated dynamics related to available bandwidth varia-
tions in the simulated network, denoted as noise level 0 to 2.

Noise level 0 denotes the setting where the wireless links
are ideal with no degradation. The available bandwidth vari-
ations are caused solely by the flows coming online, hand-
ing off and terminating. The scenario used in the simulation
comprises a sequential setup of 10 flows in the first 10 s, one
flow is established every second, followed by flow 6 termi-
nating at 85 s, flow 4 terminating at 127 s, flow 1 handing off
at 171 s and returning again at 204 s into the scenario. Un-
der noise level 0, the network topology shown in figure 10
has three bottleneck links. The most congested bottleneck in
this scenario is the link SW2 → AP1, followed by the link
SW2 → AP2, and finally link GW1 → SW1.

Noise level 1 denotes a setting where wireless link degra-
dation is added to each base station, as well as the dynamics
introduced by noise level 0. The links between a base station
and router SW2 (illustrated in figure 10 as links SW2–AP1
and SW2–AP2) have a capacity of 15 Mbps, which models
the overall air interface capacity between a base station and
the mobile devices in its cell. Under noise level 1 condi-
tions, the air interface capacity is changed by three random
ON–OFF noise processes to simulate the effect of the wire-
less channel degradation common to all the mobile devices
within the same cell. For each random noise process, during
the ON interval, a uniform decrement of up to 3 Mbps is de-
ducted from the link capacity. During the OFF interval, no
degradation is introduced in the link capacity. The ON and
OFF intervals are exponentially distributed with a mean of 5
and 40 s, respectively.

Noise level 2 denotes a setting where channel-dependent
degradation is further added to each mobile device. This is

in addition to all the dynamics introduced by noise level 0
and 1. To model channel-dependent degradation, we intro-
duce links between the mobile devices (D1 to D7) and their
base stations (AP1 and AP2). These links have 10 Mbps
channel capacity under ideal channel conditions. This ca-
pacity is large enough to prevent the links from becoming
bottlenecks because 10 Mbps is no less than the maximum
bandwidth requirement from each mobile device. When a
random ON–OFF noise process is introduced at each link,
however, the link capacity may be reduced to a level so that
the per-mobile link becomes a bottleneck.

It should be noted that these common-channel and chan-
nel-dependent random ON–OFF noise models are not in-
tended to closely capture the characteristics of a wireless
channel under a fast time scale. Rather, they coarsely sim-
ulate the effect of persistent fading, flow setup, release and
handoff events on the time scale comparable to the resource
probing interval which is under study and is in the order of
seconds.

7.2. Fairness metric

The simulator implements two versions of the utility-based
max–min allocation algorithms. A centralized scheme has
global information and reacts instantaneously to any band-
width change in the network. Therefore, the centralized
scheme serves as the optimal (but not realistic) allocation
reference. In our experiments, a distributed scheme imple-
ments our distributed utility-based max–min fair algorithm,
as described in section 5.3.

The fairness metric of the distributed scheme is calculated
using the “fairness index” proposed in [30]. More specif-
ically, denoting ti the time instants when the bandwidth
change occurs, the instantaneous fairness index of our dis-
tributed scheme during time interval [ti , ti+1) is calculated as

FI(ti) = (
∑N

j=1 γj (ti ))
2

N
∑N

j=1 γj (ti )2
and γj (ti ) = βj (ti )

β̃j (ti )
, (7.1)

where N is the total number of flows, βj (ti ) is the allocation
for flow j at time ti under our distributed scheme, and β̃j (ti )

is the corresponding allocation under centralized scheme.
The average fairness metric between time t0 and tL is the

time weighted average of the instantaneous fairness index,
that is:

FI =
∑L

i=1 FI(ti−1)(ti − ti−1)

tL − t0
. (7.2)

7.3. Results

In what follows, we show that our utility-based adaptation
framework is capable of meeting the needs of a wide range of
application adaptation strategies under diverse network con-
ditions.

7.3.1. Greedy adaptation
Figure 12 shows the simulation results under two noise lev-
els. The fairness index under noise level 0 shows that the dis-
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Figure 12. Greedy adaptation results: fairness index.

Figure 13. Greedy adaptation results: FI versus probing cycle.

tributed algorithm converges to the theoretical utility-based
max–min allocation. For example, in the figure, after the
initial batch of flow setups up to 10 s; tear-downs at 85 and
127 s; and finally one flow hands off at 171 s and returns at
204 s, the fairness index reaches the maximum value of one
within 20 s in all instances. This verifies the convergence
property of our algorithm, as discussed in section 5.2.

The fairness index under noise level 2 illustrates the sys-
tem performance under severe channel-dependent degrada-
tion across wireless links. Here the deep drops in the fairness
index imply that the allocation cannot react to instantaneous
channel degradations. However, the fact that all drops are
less than 10 s in duration indicates that the system recti-
fies the allocation inaccuracy within its probing interval of
10 s. This verifies that the periodic resource probing algo-
rithm should be applied to persistent channel degradations
and bandwidth variations at a time scale slower than the
probing interval.

The effect of the probing interval on allocation accuracy
is further illustrated in figure 13. This figure shows that un-
der noise level 2 conditions, the average fairness index (FI
averaged over 100000 s) decreases as the probing interval in-
creases. A good choice of the probing interval needs to bal-
ance the tradeoff between a desired fairness index value and
increased signalling generated by a short probing interval.

Figure 14. Greedy adaptation results: utility value.

Figure 15. Discrete adaptation script results: utility value.

To visualize the effect of utility-based fair allocation, we
use figure 14 to compare the allocated utility value of flows
with different utility functions and maximum bandwidth re-
quirements. For a fair comparison, we invoke noise level 1
and consider flows 1, 3, 4, 5 which are in the same cell.
These flows experience the same common-channel degra-
dation under noise level 1 because the air interface is sim-
ulated to be the same for each of the flows. We observe
that after allocation convergence, all four flows observe the
same utility value regardless of their utility function parame-
ters.

7.3.2. Discrete adaptation
Figure 15 presents results from a simulation (see section 7)
that has the same configuration as the greedy adaptation sce-
nario. However, in this case the utility functions for flows 1
to 7 are made discrete, with three critical utility levels. Even
though these seven flows have different shapes of discrete
utility functions, they all operate at the same set of critical
utility values {1, 2, and 3}.

We observe that strategy A can cause allocation dispar-
ity, as shown in figure 16 (which is under the same sce-
nario as in figure 15 but for flow 3 and 5 only). Because
flow 3 and 5 have the same utility function parameters and
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Figure 16. Comparison of discrete adaptation strategies.

the same route, they should receive the same bandwidth allo-
cation. However, as shown in figure 16(a), under strategy A,
flow 3 consistently receives allocation levels one level higher
than flow 5. Strategy B corrects this disparity. The approach
taken switches to a greedy adaptation script when a reduc-
tion of the assigned bandwidth is detected. The effect of this
strategy is shown in figure 16(b), where the two flows take
turns receiving additional bandwidth. By successfully tak-
ing advantage of the distributed and asynchronous nature of
adaptation, strategy B resolves the fairness problem experi-
enced by strategy A, which otherwise would be difficult to
resolve in a deterministic manner.

7.3.3. Smooth adaptation
Figure 17 presents the simulation results under the same net-
work configuration as the previous simulations except that,
flow 1, 3 and 7 have smooth adaptation strategies, while
the other flows are greedy. For comparison purposes, only
flows 1, 2, 3 and 7 are shown in figure 17 (with noise level 2
to introduce large bandwidth variations).

The smooth adaptation script consists of parameters: δ,
τ and κ as defined above. In the simulation, all the smooth
adaptation flows have the same κ = 80%. Flow 1 is con-
strained by τ and δ, where τ = 20 s and δ = 0.66 Mbps, one
third of its maximum bandwidth requirement. Flow 2 is not

Figure 17. Smooth adaptation script results.

constrained by either τ or δ, so its τ = 10 s, the default prob-
ing cycle, and δ = 10 Mbps, its maximum bandwidth re-
quirement. Flow 3 is constrained only by τ , where τ = 40 s
and δ = 6 Mbps, its maximum bandwidth requirement. Fi-
nally, flow 7 is constrained only by δ, where δ = 0.2 Mbps
and τ = 10 s, the default probing cycle. In comparison with
the greedy adaptation flow 2, smooth adaptation flows expe-
rience less bandwidth oscillations (i.e., “QoS flapping”), as
shown in figure 17. When τ increases with multiples of the
probing interval, the allocated bandwidth becomes more sta-
ble, as shown by flows 1 and 3. One can also employ small
but frequent increments (i.e., small τ and δ) and achieve the
behavior like flow 7 to follow the trend of bandwidth varia-
tion.

We note from this experiment that the mean allocated
bandwidth under smooth adaptation is smaller than greedy
adaptation. This is because the gain on smoothness is traded
off with the allocation increment one can accept each
time.

8. Conclusion

In this paper, we have introduced a utility-based adaptation
framework for mobile networking that enables users and
service providers to program application-specific adaptive
services in wireless packet access networks. The architec-
ture provides split-level support for adaptive QoS control
at the network and application levels based on bandwidth
utility functions and adaptation scripts. We have discussed
the detailed design of network-level and application-level
adaptation control mechanisms that maintain a balance be-
tween architectural scalability and flexibility. Our network-
level algorithms and protocols employ utility functions to
support common adaptation needs in a manner that is scal-
able for traffic aggregates and across multiple network hops.
Our application-level adaptation handlers operate at mo-
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bile devices realizing application-specific adaptation scripts.
Through simulations we have shown the convergence prop-
erty of the network-level adaptation algorithm. In addition,
we have demonstrated the operation of different styles of
adaptation scripts that can be programmed by the user or
application service provider.
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Appendix. Pseudo-code for the utility-weighted
max–min fair allocation algorithm

// a reserve message arrives at a network
// node
reserve(id, reqideal, reqactual, u) {

if (id is new flow) {
// first flow, init states

βideal
id = 0; βactual

id = 0;
uid = u;
stateid = SATISFIED;
update u into uALL;
add u into uU;

} else {
update uALL
if (stateid ==SATISFIED) {
// prepare for allocation
add u into uU
BU+ = βideal

id ;
}
Bfree+ = βactual

id ;
}
alloc_bw(id, reqideal, reqactual);

}

// utility-fair algorithm: equation (4.3)
alloc_bw(id, reqideal, reqactual) {

βalloc = util_fair_alloc(id);
// without feasibility constraint

βideal
id = min{βaloc, recideal};
// with feasibility constraint

βactual
id = min{βalloc, reqactual,Bfree};
// adjust flow state
if (βideal

id < reqideal) stateid = BTLNECKED;
else stateid = SATISFIED;
if (stateid ==SATISFIED) {
remove u from uU
BU− = βideal

id ;
}
Bfree− = βactual

id ;
reqideal

id = βideal
id ;

reqactual
id = βactual

id ;
}

// a commit message arrives at a network
// node
commit(id, ackideal, ackactual) {

Bfree+ = (βactual
id − ackactual);

βactual
id = ackactual;

if (ackideal � βideal
id ) return;

// ackideal < βideal
id , adjust flow states

if (stateid ==SATISFIED) BU+ = βideal
id ;

βideal
id = ackideal;
// update index for umax
if (βideal

id > βmax) {
βmax = βideal

id ;
max_id = id;

} else if (βideal
id < βmax and id == max_id) {

βmax = βideal
id ;// reduce βmax

}
if (id == max_id) {

if (stateid ==SATISFIED) {
stateid = BTLNECKED;
add uid into uU;

}
} else {

if (stateid ==BTLNECKED) {
stateid = SATISFIED;
remove uid from uU;

}
BU− = βideal

id ;
}

}

// flow release or timeout
release(id) {
remove uid from uALL;
if (stateid ==BTLNECKED)

remove uid from uU;
else

BU+ = βideal
id ;

// return BW to free pool

Bfree+ = βactual
id ;

delete flow states;
}
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