A relational database model enables logical representation of the data and its relationships.

SLIDE 03-01
1. A table is perceived as a 2-dimensional structure composed of rows and columns.
2. Each table row (*tuple*) represents a single entity occurrence within the entity set.
3. Each table column represents an attribute, and each column has a distinct name and datatype.
4. Each intersection of a row and column represents a single data value.
5. All values in a column must conform to the same data format (datatype).
6. Each column has a specific range of values known as the *attribute domain*.
7. The order of the rows and columns is immaterial to the DBMS.
8. Each table must have an attribute or combination of attributes that uniquely identifies each row (the *key*).

Keys

Keys ensure that there is precisely one way to identify a row in a table.

More formally, “Keys are one or more attributes that *determine* the other attributes in a row.”

> "Two tuples in R cannot agree on all of the attributes in set S, unless one of them is NULL. Any attempt to insert or update a tuple that violates this rule will cause the DBMS to reject the action that caused the violation." -- DSCB

Keys are also used to establish relationships among tables and to ensure data integrity.

The *Primary Key* is one or more attributes that uniquely identifies any given row (or tuple) **AND** the attribute(s) making up that Primary Key cannot be NULL.

Functional Dependence and stuff

The idea of “determination” is an important one in DB’s. We use it to “normalize” relations, thereby avoiding anomalies.
Functional dependence: Value of one or more attributes determines the value of one or more other attributes

- Determinant: Attribute whose value determines another
- Dependent: Attribute whose value is determined by the other attribute

Formally:

Let R be a relation schema, and α and β are sets of attributes.
The functional dependency $\alpha \rightarrow \beta$ holds on R if and only if for any legal relations $r(R)$, whenever any two tuples t_1 and t_2 of r agree on the attributes α, they also agree on the attributes β. That is,

$t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$

Example: Here’s a relation $r(A,B)$:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

Here, $A \rightarrow B$ does hold, but $B \rightarrow A$ does NOT hold since $t_1=(4,1)$ and $t_2=(5,1)$, and $t_1[B] = t_2[B]$ but $t_1[A] \neq t_2[A]$

Example:

Here’s another example

Student (SSN, sName, address, Hscode, Hsname, Hscity, GPA, priority)

- SSN \rightarrow sName
- SSN \rightarrow address (assuming a student doesn’t move during enrollment)
- HScode \rightarrow Hsname, HScity
- Hsname, HScity \rightarrow Hscode (Assume no two HS with same name in one city)
- SSN \rightarrow GPA
- GPA \rightarrow priority

SSN \rightarrow GPA (example of our old friend Transitivity!)

That’s enough about functional dependence for now. We’ll return to the topic later when we learn about Normalization.

Back to keys
Now we can talk about keys more specifically.

- **Composite key**: a key that is composed of more than one attribute
- **Key attribute**: Attribute that is a part of a key
- **Entity integrity**: Condition in which each row in the table has its own unique identity
 - All of the values in the primary key must be unique
 - No key attribute in the primary key can contain a null

Other special terms:
- **Null**: Absence of any data value that could represent:
 - An unknown attribute value
 - A known, but missing, attribute value
 - A inapplicable condition
- **Referential integrity**: Every reference to an entity instance by another entity instance is valid

Ask Students *how do you identify a key?*

There are a variety of keys we’ll talk about:

SLIDE 03-02

There can be LOTS of candidate keys,
Let's look at a simple DB

SLIDE 03-03 OR MySQLWorkBench

OK, let's see what kinds of keys are in this table

SLIDE 03-04

- First find the functional dependencies
 - $\text{STU_NUM} \rightarrow \text{STU_LNAME}$
 - $(\text{STU_FNAME}, \text{STU_LNAME}, \text{STU_INIT}, \text{STU_PHONE}) \rightarrow \text{STU_DOB, STU_HRS, STU_GPA}$
 - Sometimes the dependency is overspecified. Suppose we’re given:
 1. $\text{STU_NUM} \rightarrow \text{STU_GPA}$ and
 2. $(\text{STU_NUM, STU_LNAME}) \rightarrow \text{STU_GPA}$
 Here STU_LNAME is unnecessary since we already know 1.

- **Superkey** - one or more attrs uniquely identifying a row
 - ask students
 - STU_NUM
 - $(\text{STU_FNAME, STU_LNAME, STU_INIT, STU_PHONE})$

- **Candidate Key** - minimal Superkey
 - STU_NUM
• Foreign Key - links to other tables

 o **ask students**
 o Can you think of other tables to which this one might be related?
 o **Draw on board**
 o DEPT_CODE key to DEPARTMENT table
 o PROF_NUM key to FACULTY table
 o ???

Note that keys must be chosen with care - what could go wrong?

• **ask students**
• Might not uniquely identify rows because of entities or data you didn't expect

Entity & Referential Integrity

For all this to work, one Candidate Key has to be selected for each table as its *Primary Key*.

The attribute(s) making up this key can **never** be *NULL*.

When might a *NULL* occur?

• no middle initial
• **ASK STUDENTS FOR OTHERS**

ASK STUDENTS why are *NULLs* problematic in a primary key?

• If it can’t uniquely identify a row/tuple
 o How can you compare a *NULL* to other things?

SLIDE 03-05

NULL means “no value”. Not ZERO, and not the empty string “\0”

The result of any arithmetic operation involving *NULL* is *NULL*

Aggregate functions simply ignore *NULL*. For matching, *NULL* is treated like any other value, and two *NULL*s will match.

• **Entity Integrity**
 o All primary key entries are unique and no part may be *NULL*.
 o This ensures each row will have a unique identity and that other tables can properly reference rows via the primary keys.
 o Example: “No invoice can have a duplicate number or be *NULL*."

• **Referential Integrity**
 o The entry for a Foreign Key may either be *NULL* or an entry that matches a primary key in a table to which this one is related.
 o It’s ok to have a missing reference, but it is not ok to have an invalid entry.
ASK STUDENTS Think about this:

DRAW ON BOARD

- If you have two tables linked via a Foreign Key, and you force all Foreign Keys to be non-\texttt{null} and valid, \textit{THEN} it would not be possible to ever delete a row in the table to which the Foreign key refers!
 - It is impossible to have an invalid invoice number on a Receipt.

SLIDE 03-06

Example of integrity rules

Lots of ways to handle \texttt{null}s … special values, typically.

Most DB’s allow you to specify a column as \texttt{NOT NULL}.

RELATIONAL ALGEBRA

Why do we study RA?

RA provides the formal mathematical basis for Relational DB’s.

RA is platform-independent and concise… MUCH simpler than SQL, yet complete.

Understanding RA enables the student to understand how RDBMS’s take a high-level query in \texttt{SQL} and implement it as an optimised series of sub-queries.

SQL is \textit{declarative}, describing what the user wants.

Relational Algebra is \textit{procedural}, describing the steps in how best to accomplish what the user wants.

Relational Algebra also has the property of \texttt{closure}
- Using Relational Algebra operators on existing relations produces new relations.

Relational Set Operators

SLIDE 03-07

Codd’s eight original operators:

Set operators: UNION, INTERSECTION, DIFFERENCE

Relation operators: JOIN, PROJECTION, SELECTION, CARTESIAN PRODUCT and DIVISION.

We’ll use these relations for examples.

SLIDE 03-08

PROJECT eliminates columns while SELECT eliminates rows.

\textit{Go through each operator, discuss, and write examples on board}

\textit{I USE SLIDES 03-09 THROUGH 03-26 TO EXPLAIN}

DISCUSSION

Question: Is it ever useful to compose two projection operators?

Example: \texttt{PROJECT}_{\text{cName}} (\texttt{PROJECT}_{\text{cName, pPos}} (\text{Campus}))
Question: Is it ever useful to compose two selection operators?

Example: \(\text{SELECT}_{\text{HS}>1000} \ (\text{SELECT} \ \text{yCard}='yes' \ \text{Player}) \)

Note Intersection doesn’t add any new expressive power to Relational Algebra since \(E_1 \ \text{INTERSECT} \ E_2 = E_1 - (E_1 - E_2) \). Explain with a Venn diagram.

Alternate representations of Relational Algebra expressions

Some of these expressions can get rather messy. There are a couple of schemes you can use to make them clearer.

- *expression trees* are visual aids for people, not so useful for computers.

 SLIDE 03-27

- *linear notation* allows you to break up complex expressions using temporary variables

 SLIDE 03-28

JOINS

Joins are extremely important to the relational model, as they are the means for combining tables in a variety of ways and subject to a variety of selection mechanisms.

Essentially, Joins allow information to be intelligently combined from two or more tables.

Joins represented by the “bowtie” symbol: \(\bowtie \).

There are quite a few of them, best explained visually using the superb diagram from C.K. Moffett. You might keep a copy handy.

SLIDE 03-29

- **Natural join**
 - Links tables by selecting only the rows with common values in their common attributes
 - a.k.a. common join.
 - Enforces equality on all attributes with the same name.
 - Eliminates all but one copy of duplicate named attributes

- **Equijoin**: Links tables on the basis of an equality condition that compares specified differently-named columns from each table.
 - Example: (write on board)

Employees

<table>
<thead>
<tr>
<th>Employee</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>A</td>
</tr>
<tr>
<td>Black</td>
<td>A</td>
</tr>
<tr>
<td>Black</td>
<td>B</td>
</tr>
</tbody>
</table>
Projects

<table>
<thead>
<tr>
<th>SecLevel</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Classified</td>
</tr>
<tr>
<td>B</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

Employees $\bowtie_{\text{Project}=\text{SecLevel}}$ Projects

<table>
<thead>
<tr>
<th>Employee</th>
<th>Project</th>
<th>SecLevel</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>A</td>
<td>A</td>
<td>Classified</td>
</tr>
<tr>
<td>Black</td>
<td>A</td>
<td>A</td>
<td>Classified</td>
</tr>
<tr>
<td>Black</td>
<td>B</td>
<td>B</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

- **Inner join**: (most common in SQL) Just returns the rows that match and exists in both table.
- **Outer join**: Returns the same as Inner, but also includes the rows that don’t have a matching value in the second table.
 - **Left outer join**: Yields all of the rows in the first table, including those that do not have a matching value in the second table
 - **Right outer join**: Yields all of the rows in the second table, including those that do not have matching values in the first table
- **Theta join**: Extension of natural join, denoted by adding a theta subscript after the \bowtie symbol

Explain these, then go through several of them with examples.

I USE SLIDES 03-30 THROUGH 03-36 TO EXPLAIN

- **Self Joins**
 - Sometimes you need to refer to more than one row (tuple) of the same table (relation) in the same query. Similar to what we did when explaining the rename operator.
 - Example:
 - “Who scored more points than the player with jersey number 10 for any of the regular season games?”
 - To answer this query, we need to compare two tuples p and q of the relation PlayerStats:
 - tuple p, corresponding to the player with jersey number 10, and
 - tuple q, corresponding to the same game as the tuple t, in which u.POINTS > t.POINTS.
 - $S := \rho_X(\text{PlayerStats}) \bowtie_{(X.GameNum=Y.GameNum)} \rho_Y(\text{PlayerStats})$
 $\pi_X(\text{JerseyNum} \land X.points>Y.points \land Y.JerseyNum=10)(S)$

Aggregate Functions

SLIDE 03-37 through 03-38

some of the functions are `avg`, `sum`, `min`, `max`, `count`

Algebraic Notes
● JOIN's are associative:

 - $(R \bowtie S) \bowtie T == R \bowtie (S \bowtie T)$

● Technically, “JOIN” chains need no parentheses …:

 - $R \bowtie S \bowtie T$

 … but it's always better to have clarity rather than showing off.

● JOIN is not commutative unless it is followed by a PROJECTION

 - $\Pi L (R \bowtie S) == \Pi L (S \bowtie R)$

● Selection Push-Down

 If predicate ϕ refers to attributes in S only, then an optimization may be used:

 - $\phi(R \bowtie S) == R \bowtie \phi(S)$

1. Lecture notes based on texts by Coronel, Widom, Ullman, and Silberschatz. ↩