
Lecture 2: Local Search

1 Max-Cut

Notation: (A,B) is used to denote the set of edges with one endpoint in A and the other in B.

Procedure LocalSearch-MC

1: (S, S) will be the cut returned. Initialize S to any arbitrary set of vertices.
Initialize Loc-Opt to false.

2: while Loc-Opt is false do
3: Set Loc-Opt to true.
4: If there exists vertex v ∈ S (or v ∈ S) such that w(S − v, S + v) > w(S, S) (respectively,

w(S + v, S − v) > w(S, S)), assign S = S − v (respectively, S = S + v).
Loc-Opt is set to false.

5: end while

The procedure above terminates since the weight of the cut increases in each iteration. Let
(S, S) be the locally-optimal cut returned by the algorithm. alg =

∑
v∈S w(v, S) =

∑
v∈S w(v, S).

We know

∀v ∈ S : w(v, S) ≤ w(v, S); ∀v ∈ S : w(v, S) ≤ w(v, S)

Thus, 4alg ≥
∑

v∈S(w(v, S) + w(v, S)) +
∑

v∈S(w(v, S) + w(v, S)) = 2w(E), giving us alg ≥
w(E)/2 ≥ opt/2.

Directed Graphs. In directed graphs, we use the notation (A,B) to denote the arcs with tail in
A and head in B. The local search algorithm for finding the maximum cut in a digraph is similar,
except in the end we return the cut (S, S) or (S, S), whichever is better.

Suppose the algorithm terminates with the partition (S, S). Note that alg ≥ w(S, S) =∑
v∈S w(v, S) =

∑
v∈S w(S, v). Local optimality gives

∀v ∈ S : w(S \ v, v) ≤ w(v, S); ∀v ∈ S : w(v, S \ v) ≤ w(S, v)

In the homework, you are asked to prove that the weight of the cut returned by the algorithm
is at least w(E)/4; thus it is a 1/4-approximation. You are also asked to come up with an example
for which the weight of the cut returned is exactly w(E)/4. Does this imply we can’t analyze the
algorithm better? No. This is because maybe opt is much less than m in these cases. Let us
analyze the performance of our algorithm with respect to opt.

Let (O,O) be the optimal dicut. We can write opt as follows

1

opt =
∑
v∈O

w(O, v) =
∑

v∈O∩S

w(O∩S, v) +
∑

v∈O∩S

w(O∩S, v) +
∑

v∈O∩S

w(O∩S, v) +
∑

v∈O∩S

w(O∩S, v)

(1)
It’ll be useful to draw the rectangle divided in four quadrants picture - I am too lazy to do it in
the notes. Now we use the local optimality conditions above for the first and the fourth term in
(1) to give ∑

v∈O∩S

w(O ∩ S, v) ≤
∑

v∈O∩S

w(v, S) = w(O ∩ S, S) ≤ w(S, S) (2)

∑
v∈O∩S

w(O ∩ S, v) =
∑

v∈O∩S

w(v,O ∩ S) ≤
∑

v∈O∩S

w(S, v) = w(S,O ∩ S) (3)

The second and third term in (1) are bounded as∑
v∈O∩S

w(O ∩ S, v) ≤
∑
v∈S

w(S, v) = w(S, S) (4)

∑
v∈O∩S

w(O ∩ S, v) ≤
∑

v∈O∩S

w(S, v) = w(S,O ∩ S) (5)

Putting all together, gives

opt ≤ w(S, S) + w(S, S) + w(S,O ∩ S) + w(S,O ∩ S) = 2w(S, S) + w(S, S) ≤ 3alg.

2 Metric Facility Location and k-Median

Procedure LocalSearch-UFL

1: X is the set of facilities opened initialized to an arbitrary facility. Clients always connect to
the closest facility in X. Initialize Loc-Opt to false.

2: while Loc-Opt is false do
3: Set Loc-Opt to true.
4: (Add): If adding a facility i ∈ F \X decreases the total cost, X = X ∪ i, and Loc-Opt is

set to false.
5: (Delete): If deleting a facility i ∈ X decreases the total cost, X = X − i, and Loc-Opt is

set to false.
6: (Swap): If swapping a facility i ∈ X with i′ ∈ F \X, decreases the total cost, X = X−i+i′,

and Loc-Opt is set to false.
7: end while

Let X be the set of facilities opened at the end of the above algorithm. We use notation as
in the previous class. σ(j) will denote the facility in X client j is connected to. Γ(i) denotes the
set of clients connected to facility i. X∗ will denote the set of facilities opened in the optimal
solution. σ∗ and Γ∗ are defined respectively. cj = c(σ(j), j) and c∗j = c(σ∗(j), j). Falg =

∑
i∈X fi,

Calg =
∑

j∈C cj . Similarly F ∗ and C∗ are defined.

2

Bounding Calg. We know that adding any facility i ∈ X∗ \X doesn’t decrease cost. Note that if
we add such an i, we could’ve moved all clients in Γ∗(i) to i. Since this doesn’t decrease cost,

∀i ∈ X∗ \X;
∑

j∈Γ∗(i)

cj ≤ fi +
∑

j∈Γ∗(i)

c∗j

Note that the above is true for i ∈ X∗ ∩X since j goes to the closest facility in X. So, adding over
all i ∈ X∗ we get,

∑
i∈X∗

∑
j∈Γ∗(i) cj ≤

∑
i∈X∗ fi +

∑
j∈Γ∗(i) c

∗
j , that is,

Calg ≤ F ∗ + C∗

Bounding Falg. Fix an i ∈ X. How much can the connection cost of clients increase if i is deleted?
All clients in Γ(i) will move to their second-nearest facility in X. But what handle do we have on
the distance between j and the second-nearest facility?

Well we know the cost to connect j and σ∗(j). So, if σ∗(j) is in X, let’s move j to that. What
if σ∗(j) isn’t there? Well move it to the facility in X closest to σ∗(j). This motivates the following
definition.

Given i∗ ∈ X∗, let nearest(i∗) denote the facility i in X with minimum c(i, i∗). Let’s get back
to our facility i. Let us look at clients j ∈ Γ(i) such that nearest(σ∗(j)) 6= i. Call these clients
Far(i). These clients we can argue about. If i is deleted, then clients in Far(i) can be assigned to
nearest(σ∗(j)), and their new connection cost becomes

c(nearest(σ∗(j)), j) ≤ c(σ∗(j), j) + c(σ∗(j), nearest(σ∗(j)))
≤ c∗j + c(σ∗(j), σ(j)) ≤ c∗j + c(σ∗(j), j) + c(j, σ(j)) = cj + 2c∗j

The second inequality follows from the definition of nearest(), and all others from metricity. So,
for all these clients, the connection cost increases by at most 2c∗j .

What about the other clients in Γ(i)? These clients j have nearest(σ∗(j)) = i. In fact, let all
these σ∗(j)’s be called the set X∗i . Formally,

X∗i := {i∗ ∈ X∗ : i∗ = σ∗(j) for some j ∈ Γ(i), and nearest(i∗) = i}. (6)

A simple but crucial observation is that X∗i ’s are disjoint for different i ∈ X (since nearest(i∗) = i
for i∗ ∈ X∗i). Let friend(i) be the facility in X∗i closest to i and consider swapping i and friend(i).
All clients in Far(i) go and connect to nearest(σ∗(j)). All clients in Γ(i) \ Far(i) connect to
friend(i). Since this swap can’t increase cost, we have

fi +
∑

j∈Γ(i)

cj ≤ ffriend(i) +
∑

j∈Far(i)

(
cj + 2c∗j

)
+

∑
j∈Γ(i)\Far(i)

c(friend(i), j) (7)

Now, c(friend(i), j) ≤ c(i, j)+ c(i, friend(i)) ≤ c(i, j)+ c(i, σ∗(j)) ≤ cj + c(i, j)+ c(σ∗(j), j) =
2cj + c∗j . Thus,

fi +
∑

j∈Γ(i)

cj ≤ ffriend(i) +
∑

j∈Far(i)

(
cj + 2c∗j

)
+

∑
j∈Γ(i)\Far(i)

(
2cj + c∗j

)

3

This implies, fi ≤ ffriend(i) +
∑

j∈Γ(i)(2c
∗
j + cj) (weak!). Adding over all i ∈ X, and using the fact

that X∗i ’s are disjoint, gives us

Falg =
∑
i∈X

fi ≤
∑

friend(i)∈X∗i

fi∗ + 2C∗ + Calg ≤ 2F ∗ + 3C∗

where we use the bound on Calg.

alg = Falg + Calg ≤ 3F ∗ + 4C∗

The above local search algorithm is a 4-approximation.

k-Median

(Some more details of what I was talking about in the last 25 minutes in class)

Procedure LocalSearch-kMed

1: X is the set of facilities opened initialized to any set of k arbitrary facility. Clients always
connect to the closest facility in X. Initialize Loc-Opt to false.

2: while Loc-Opt is false do
3: Set Loc-Opt to true.
4: (Swap): If swapping a facility i ∈ X with i′ ∈ F \X, decreases the total cost, X = X−i+i′,

and Loc-Opt is set to false.
5: end while

We use notation as in the case of UFL. Note that there is no Falg and F ∗. However, we cannot
bound Calg as we did in the UFL case since we cannot add facilities.

Consider a facility i ∈ X, and define X∗i and friend(i) ∈ X∗i as in (6). From the previous
analysis, we can guess that we would want to analyze the case of swapping i with friend(i).
However, a little thought shows that this doesn’t work if |X∗i | > 1. In particular, we cannot argue
about the connection costs for j with nearest(σ∗(j)) = i but σ∗(j) 6= friend(i). The trick is not
to “swap-out” such facilities at all.

More definitions. Let X0 := {i ∈ X : |X∗i | = 0}, X1 := {i ∈ X : |X∗i | = 1}, and X2 := {i ∈
X : |X∗i | ≥ 2}. (Note that if there are no facilities in X2, we are in the lucky world, as we talked
about in class). Since |X| = |X∗| = k, and since X∗i ’s are disjoint for different i ∈ X, we have that
|X0| ≥ |X2|. This lets us define the following swap pairs. We will perform a swap of the facilities
in the swap pairs, and since they cannot help, we will be bounding connection costs. We use the
following definition: given a set R ⊆ X∗ ×X, the degree of i∗ ∈ X∗ is deg(i∗) := |{i : (i∗, i) ∈ R}|.
Similarly degree of i ∈ X is defined.

Claim 1. There exists a set R ⊆ X∗ × (X0 ∪ X1) such that for all i∗ ∈ X∗, deg(i∗) = 1, for all
i ∈ X1, deg(i) = 1, for all i ∈ X0, deg(i) ≤ 2.

Proof. For all i ∈ X1, add (friend(i), i) to R. Now arbitrarily map the remaining k−|X1| facilities
of X∗ with facilities in X0. Since k − |X1| = |X0| + |X2| ≤ 2|X0|, we can always find one which
maps i ∈ X with at most 2 facilities in X∗.

4

The above claim says that each i∗ ∈ X∗ is swapped in once, and each facility in X0 are swapped
out at most twice.

Now let us look at the swaps defined by R: for (i∗, i) ∈ R, add i∗ in and delete i. For each
j ∈ Γ∗(i∗), we re-assign it to i∗. If i ∈ X0, we assign each j ∈ Γ(i) \ Γ∗(i∗) to nearest(σ∗(j)). If
i ∈ X1, we assign each j ∈ Far(i) to nearest(σ∗(j)), and we know for each j ∈ Γ(i) \ Far(i), we
have σ∗(j) = friend(i) = i∗. That is, Far(i) = Γ(i) \ Γ∗(i∗). Since swaps don’t decrease cost, we
get the following:

If i ∈ X0 ∪X1∑
j∈Γ∗(i∗)

cj +
∑

j∈Γ(i)\Γ∗(i∗)

cj ≤
∑

j∈Γ∗(i∗)

c∗j +
∑

j∈Γ(i)\Γ∗(i∗)

(2c∗j + cj)

implying, ∑
j∈Γ∗(i∗)

(cj − c∗j) ≤
∑

j∈Γ(i)

2c∗j .

Thus, ∑
(i∗,i)∈R

∑
j∈Γ∗(i∗)

(cj − c∗j) ≤
∑

(i∗,i)∈R

∑
j∈Γ(i)

2c∗j

The LHS is precisely
∑

i∗∈X∗ deg(i∗) ·
(∑

j∈Γ∗(i∗)(cj − c∗j)
)

= Calg − C∗. The RHS is at precisely∑
i∈X0∪X1

deg(i) ·
(∑

j∈Γ(i) 2c∗j
)

. which is at most 4C∗. This implies a 5-approximation.

p swaps: the state of the art for k-Median.

How can we do better than 5? Well, this brings us to the idea of swapping more than one facility
at a time (this was brought up in the class). Suppose I can swap p facilities in-and-out at a time
(p is a constant). Well, instead of defining swap pairs, we will have swap sets. That is, each entry
of R would be (A∗, A) with |A∗| = |A| ≤ p. We still define deg(i∗) = |{(A∗, A) ∈ R : i∗ ∈ A∗}|, and
similarly, deg(i).

Let Xt := {i ∈ X : |X∗i | = t}. Note that |X0| =
∑

t≥1(t−1)|Xt| since
∑

t≥0 |Xt| =
∑

t≥0 t|Xt| =
k. For each t ≥ 1, and for each i ∈ Xt, assgin (t − 1) arbitrary distinct facilities of X0 to i. The
above equality tells us that this can be done. We describe the swap sets now.

For 1 ≤ t ≤ p, and for i ∈ Xt, form the swap set A∗i = X∗i and Ai being i and the (t − 1)
facilities of X0 assigned to it. Add p copies of (A∗i , Ai) to R.

For t > p, for i ∈ Xt we the sets Ai will not contain i. Thus, facilities in Xp+1 or larger are
never swapped out. Instead, consider the t facilities in X∗i and pick t subsets of size exactly p such
that each i∗ ∈ X∗i appears in exactly p subsets. This can be done in many ways. Similarly, consider
the (t − 1) facilities of X0 assigned to i and for t subsets of size exactly p such that each facility
appears in at most (p+ 1). Pair these up arbitrarily and add it to R.

This completes the description of R. It should be clear that deg(i∗) = p for all i∗ ∈ X∗,
deg(i) ≤ p+ 1 for all i ∈ X0 ∪ · · · ∪Xp and deg(i) = 0 for al i ∈ Xp+1 ∪ · · · . The following should
also be clear from the analysis of the 5 factor and the sets that we add.

5

Claim 2. For any (A∗i , Ai) ∈ R,∑
i∗∈A∗i

∑
j∈Γ∗(i∗)

(cj − c∗j) ≤
∑
i′∈Ai

∑
j∈Γ(i′)

2c∗j

Proof. Consider (A∗i , Ai) for i ∈ X1 ∪ · · · ∪Xp first. Firstly, for all i∗ ∈ A∗i , assign clients in Γ∗(i∗)
to i∗. Consider a facility i′ deleted in Ai. Let Γ′(i′) be the set of clients in Γ(i) which haven’t been
assigned to a client in Γ∗(i∗) for some i∗ ∈ A∗i . Note that by our choice of Ai, all these clients j
can be assigned to nearest(σ∗(j)). Thus, we get the following inequality∑

i∗∈A∗i

∑
j∈Γ∗(i∗)

cj +
∑
i′∈Ai

∑
j∈Γ′(i′)

cj ≤
∑

i∗∈A∗i

∑
j∈Γ∗(i∗)

c∗j +
∑
i′∈Ai

∑
j∈Γ′(i′)

(cj + 2c∗j)

Rearranging, we get the claim. For (A∗i , Ai) for i ∈ Xt, t > p, note that we swap out facilities only
in X0. So the above inequality holds for those as well.

Theorem 1. The p-swap local search algorithm for k-median is a (3 + 2
p)-approximation.

Proof. Add the inequalities given in the above claim for all swap sets in R. We get in the LHS

∑
(A∗i ,Ai)∈R

∑
i∗∈A∗i

∑
j∈Γ∗(i∗)

(cj − c∗j) =
∑

i∗∈X∗

deg(i∗)

 ∑
j∈Γ∗(i∗)

(cj − c∗j)

 = p(Calg − C∗)

since deg(i∗) = p for all i∗ ∈ X∗. The RHS in the sum is∑
(A∗i ,Ai)∈R

∑
i′∈Ai

∑
j∈Γ(i′)

2c∗j =
∑
i∈X

deg(i)
∑

j∈Γ(i)

2c∗j ≤ 2(p+ 1)
∑
i∈X

∑
j∈Γ(i)

c∗j = 2(p+ 1)C∗.

since deg(i) ≤ p+ 1 for all i ∈ X. Equating the two, pCalg ≤ (3p+ 2)C∗.

6

	Max-Cut
	Metric Facility Location and k-Median

