
Lecture 7: Approximation via Randomized Rounding

Often LPs return a fractional solution where the solution x, which is supposed to be in {0, 1}n, is
in [0, 1]n instead. There is a generic way of obtaining an {0, 1}n vector from a x ∈ [0, 1]n one: let
the ith variable be 1 with probability xi, 0 with probability (1− xi). The resulting random vector
xint has the desirable property that for any i,E[xinti] = xi. In particular, if x minimized a certain
linear function c ·x, then by linearity of expectation, the expected cost of the random {0, 1}n vector
is also equal to c · x. Of course, often the resulting xint won’t satisfy the constraints, and therein
lies the non-triviality.

We will need some facts in probability theory, mostly in the concentration of random variables
around their means. I will collect these facts down in the appendix; the proofs of which can be
found in texts on randomized algorithms or the web.

The Set Cover Problem. Recall the LP relaxation for the set cover problem.

min
m∑
j=1

c(Sj)xj (1)

subject to
∑
j:i∈Sj

xj ≥ 1 ∀i ∈ U (2)

xj ∈ [0, 1] ∀j = 1...m (3)

Let x be a solution to the LP. Consider the experiment where we randomly select set Sj with
probability xj , independently of each other. Let Xj be the indicator random variable which is 1 if
we picked Sj and 0 otherwise. The random variable

∑m
j=1 c(Sj)Xj indicates the cost of the sets

picked, and thus the expected cost of our solution is precisely
∑m

j=1 c(Sj)E[Xj] which is the LP
solution. Are all elements covered? Fix an element i. The following claim shows that each element
is covered with at least a constant probability.

Claim 1. The probability that an element i is covered is at least (1− 1/e).

Proof. Element i is covered iff a set containing i is picked. The probability that i is not covered,
thus, is at most ∏

j:i∈Sj

(1− xj)

due to independence. But this is at most∏
j:i∈Sj

e−xj = e
−

P
j:i∈Sj

xj ≤ 1
e

where the inequality follows from (2).

1

So our randomized algorithm returns a collection of sets whose expected cost is the LP cost,
and covers each element with probability at least (1− 1/e). Suppose we repeated this 2 lnn times
and returned the union of the sets picked in each round. The expected cost of our solution is going
to be 2 lnn times the LP solution. What’s the probability that an element i is not covered in any
of the rounds? Since the rounds are independent, this probability is at most (1

e)2 lnn = 1/n2. By
the union bound (Fact 2), the probability that there exists some element i which is not covered is
at most n · 1

n2 = 1/n. Thus, we get the following theorem.

Theorem 1. The algorithm described above returns a set cover with probability at least (1 − 1
n)

whose expected cost is 2 lnn times the LP solution.

Randomized approximation algorithms often look like the theorem above. They “succeed” with
high probability and return a solution whose expected cost is at most (or at least) a factor of the
optimum solution. By taking a slight hit at the approximation factor, the guarantee on the expected
cost can often be converted to a guarantee on the cost with high probability. For instance, Markov’s
inequality (Fact 3) tells us that the probability that the cost of the sets picked exceeds 4 lnn times
the optimum is at most 1/2. Thus, the algorithm returns a set cover of cost 4 lnn times the optimum
with probability at least 1

2 −
1
n ≥ 1/3. If we repeat this algorithm t times, then with probability

1− 1
3t (really, really high probability if t is some polynomial in n) we will encounter such a set cover.

Suppose we look at the set multicover problem where each element i needs to be covered at least bi
times for some positive integer bi? The above analysis needs to be modified a bit; in particular, the
probability that an element i is not covered in any iteration goes down from 1/e to 1/ebi , although,
it now needs to be covered bi times. This is true, and I’ll leave this calculation checking as an
exercise. I now show a slightly different (but similar in spirit) randomized algorithm. It runs in a
single round by sampling sets with higher probabilities.

Let x̂j = min(1, 6 lnn · xj). Sample each set Sj independently with probability x̂j . That’s it.
The expected cost now is

∑
j c(Sj)x̂j ≤ 6 lnn · lp. To argue that we cover each element sufficient

number of times, we use the Chernoff bound (Fact 4). Let Xj be the indicator random variable of
the event whether Sj is picked or not. For an element i, define Zi =

∑
j:i∈Sj

Xj . If Zi ≥ bi, then
i is covered, otherwise not. The following claim, using a union bound, gives that with probability
(1− 1/n), the sets picked form a set cover.

Claim 2. Pr[Zi < bi] ≤ 1
n2 .

Proof. By re-ordering suppose i ∈ Sj for 1 ≤ j ≤ k. We may assume x̂j < 1 for all such j; since all
others (say ` of them) are picked with probability 1, we can move to the residual problem where
the element i needs to be covered bi − ` times. Now, E[Zi] =

∑k
j=1 x̂j = 6 lnn · bi. Thus, Fact 4

gives us (with δ = 1− 1
6 lnn ≥ 5/6)

Pr[Zi < bi] ≤ exp(−6 lnn · 25
72

) ≤ 1
n2

Facility Location Problem

Let’s recall the LP relaxation for the facility location problem and it’s dual. Let (x, y) and (α, β)
be a pair of optimal primal-dual solutions. Recall the following claim from last class

2

min
∑
i∈F

fiyi +
∑

i∈F,j∈C
c(i, j)xij (4)

∑
i∈F

xij = 1, ∀j ∈ C (5)

yi ≥ xij , ∀i ∈ F, ∀j ∈ C (6)
x, y ≥ 0

max
∑
j∈C

αj (7)

∑
j∈C

βij ≤ fi, ∀i ∈ F (8)

αj − βij ≤ c(i, j), ∀i ∈ F, ∀j ∈ C (9)
β ≥ 0

Claim 3. If xij > 0, then c(i, j) ≤ αj.

Before we describe the algorithm, we are going to make a structural assumption about (x, y). I
will leave it as an exercise to prove that the assumption is without loss of generality.

Assumption: If xij > 0, then yi = xij .

Algorithm. (In class, we looked at the clustering algorithm which ordered clients in increasing
order of αj , and gave us a (2+2/e) approximation. Below we give a refined argument which attains
a (1 + 2/e)-approximation.)

The algorithm proceeds as follows. Let C∗j :=
∑

i cijxij . Order the clients in increasing order of
(αj + C∗j). Let U denote the set of unassigned clients initialized to C. Let j be the first client in
U in the order. Form the cluster N2(j) consisting of j, all facilities {i : xij > 0}, and all clients
{j′ ∈ U : xij′ > 0 for some i ∈ N2(j)}. j is called the cluster center of N2(j). Remove all clients
of N2(j) from U and repeat till U is empty. At the end of this step all clients are assigned some
cluster N2(j), for some client j.

Note that in any cluster N2(j),
∑

i∈N2(j) yi =
∑

i∈N2(j) xij = 1. In each such cluster, open
exactly one facility with probability yi - this is valid since

∑
i yi = 1. Let X be the set of facilities

opened. The clients are assigned their nearest facility.

Claim 4. The expected facility opening cost is precisely
∑

i∈F fiyi.

Proof. The probability a facility i is in X is precisely yi.

Let us now calculate the expected connection cost for a client j. Note that a cluster center j pays
expected connection cost

∑
i∈N2(j) c(i, j)xij = C∗j . Let’s take a non-center client j ∈ N2(j′). Let

Γ(j) := {i : xij > 0}, and let {j1, . . . , jr} be the centers such that N2(j`) ∩ Γ(j) is non-empty. For
` = 1, . . . , r, let p` :=

∑
i∈N2(j`)

xij be the probability a facility in N2(j`) ∩ Γ(j) is opened. Note
that

∑
` p` = 1, and that these r events are independent.

Let C∗j (`) be the expected cost of connecting to a client in N2(j`) ∩ Γ(j) conditioned on the
event that such a facility is open. Thus,

C∗j (`) :=
∑

i∈N2(j`)

c(i, j) · xij
p`

Let’s order j1, . . . , j` so that C∗j (1) ≤ · · · ≤ C∗j (`). Lastly, let’s define C∗j (∞) to be the expected
cost of connecting j conditioned on the event that no client in Γ(j) is opened. We’ll bound this
shortly. Now we are ready to bound the expected connection cost of client j.

3

Claim 5. The expected connection cost of client j is at most

p1C
∗
j (1) + (1− p1)p2C

∗
j (2) + · · ·+ (1− p1)(1− p2) · · · (1− pr−1)prC∗j (r) + C∗j (∞)

r∏
`=1

(1− p`)

Proof. We are conditioning on mutually exclusive events: event ` is when no facility in N2(j`′)∩Γ(j)
has been opened for `′ < `, and a facility in N2(j`)∩Γ(j) has been opened; and the last event when
no facility in Γ(j) has been opened.

Claim 6. C∗j (∞) ≤ C∗j + 2αj.

Proof. If no facility in Γ(j) is opened, then connect j to the facility i′ opened in N2(j′): recall
j ∈ N2(j′) and thus there exists i ∈ N2(j′) with xij > 0. The connection cost to i′ is c(i′, j) ≤
c(i, j) + c(i, j′) + c(i′, j′) ≤ 2αj + c(i′, j′), where we have used Claim 3 and the fact that αj′ ≤ αj .
Taking expectations, we get

C∗j (∞) ≤ 2αj +
∑

i∈N2(j)

c(i′, j′)xi′j′ .

Putting it all together, we get the total connection cost of j is at most
r∑
`=1

[
p`(1− p`−1) · · · (1− p1)C∗j (`)

]
+ (C∗j + 2αj)

r∏
`=1

(1− p`) (10)

Since
∑r

`=1 p` = 1, we have the product
∏r
`=1(1 − p`) ≤ 1/e. As a first approximation, note

that (1 − p`) ≤ 1 and
∑r

`=1 p`C
∗
j (`) = C∗j . This gives us total expected facility + connection cost

of at most ∑
i∈F

fiyi +
∑
j∈C

C∗j +
1
e

∑
j∈C

(C∗j + 2αj) ≤ opt(1 + 3/e)

giving a 2.104...-approximation.
One can analyze better. Now we state the following inequality:

Lemma 1. Let A1 ≤ A2 · · · ≤ Ar, and let
∑r

i=1 pi = 1. Then,

p1A1 + p2(1− p1)A2 + · · ·+ pr(1− p1)(1− p2) · · · (1− pr−1)Ar ≤

(
r∑
i=1

piAi

)
·

(
1−

r∏
i=1

(1− pi)

)

Proof. Define qi := pi(1−p1)...(1−pi−1)
1−

Qr
i=1(1−pi)

. We need to prove that
∑r

i=1 qiAi ≤
∑r

i=1 piAi. Note that∑r
i=1 qi = 1 =

∑r
i=1 pi. Furthermore, there exists a 1 < k < r such that qi ≥ pi for all i ≤ k

and qi ≤ pi for all i > k; it’s the largest i for which
∏i
`=1(1 − p`) exceeds 1 −

∏r
i=1(1 − pi). Let

δi = qi − pi. Thus, δi ≥ 0 for i ≤ k, δi ≤ 0 for i > k and
∑

i δi = 0.

r∑
i=1

(qi − pi)Ai =
r∑
i=1

δiAi ≤ Ak

(
k∑
i=1

δi

)
+Ak+1

 r∑
i=(k+1)

δi

 =

(
k∑
i=1

δi

)
(Ak −Ak+1) ≤ 0

4

Given the above fact, we can get a stronger approximation factor. Let q :=
∏r
`=1(1 − p`). Then,

the expected connection cost is at most

(1− q)C∗j + qC∗j (∞) ≤ C∗j + 2αj/e

Putting it together gives a (1 + 2/e)-approximation.

The Group Steiner Tree Problem (on a tree)

In this problem, the input is a rooted tree T on n vertices. There are k disjoint groups g1, . . . , gk,
where each group is a subset of leaves. Each edge of the tree has a cost, and the goal is to find the
cheapest rooted sub-tree which contains a vertex from each group.

LP Relaxation.

min
∑

e∈E(T)

cexe x ≥ 0 (11)

subject to x(δ(S)) ≥ 1 ∀S ⊆ V : gi ⊆ S for some i, r /∈ S (12)

Algorithm. Let the root be r. Given a non-root vertex v in the tree, let ev denote the edge
connecting v to its parent. We’ll abuse notation and let xv denote xev . We call an edge f an
ancestor of edge e if the path from r to the end points of e contains f . f is the parent of e if its an
ancestor and shares an end point with e.

Preprocessing x. We process the solution x as follows. Firstly, remove all vertices v with xv ≤ 1/2g.
For any group gi, we still have

∑
v∈gi

xv ≥ 1/2. Secondly, increase xe for every edge to the nearest
power of (1/2). Note that the new LP cost at most doubles. Thirdly, for an edge e with parent
f , if xe = xf , then merge the two edges into a single edge with the same xe value. This doesn’t
change the feasibility of the solution. Note that the height of the tree now is at most 2 log g: any
path from root to a vertex v has strictly decreasing xe in powers of 1/2 ranging from at most 1
to at least 1/2g. Finally, decrease all the xev ’s such that for any group gi,

∑
v∈gi

xv = 1. Since
these are leaf edges and groups are disjoint, this can be done without changing the feasibility of
the solution.

Independently, sample all edges e incident on the root with probability xe. For every other
edge, e with parent f , sample e independently with probability xe

xf
. The resulting graph can have

many components - throw away all except the component containing the root. The above step is
repeated (16 lnn · log g) times independently and the final solution is the union of all edges picked;
g is the maximum size of a group.

Theorem 2. The above algorithm has an expected cost of O(log n log g) ·opt and is a feasible group
Steiner tree with high probability.

Proof. In each iteration the probability that an edge e is sampled is exactly xe. This is because,
let the path from root to e be ep, ep−1, . . . , e1, e. The probability e survives this iteration is at most

xe
xe1

xe1
xe2
· · ·

xep−1

xep

· xep = xe

5

By linearity of expectation, the expected cost of the edges in any iteration is opt, and the first
claim in the theorem follows.

Fix a group gi and a iteration. We claim that the probability that the sub-tree sampled contains
a vertex from g is at least 1

8 log g . This will prove the second claim of the theorem since the probability

group gi is not covered in 16 lnn log g iterations is at most
(

1− 1
8 log g

)16 lnn log g
≤ 1

n2 . Union bound
over all groups (there are n many at most) ends the argument.

For a vertex u ∈ gi, let Eu be the event that u is contained in the subtree. We are trying to
lower bound the event Pr[

⋃
u∈gi
Eu]. Let’s calculate Pr[Eu]. u is contained in the tree if and only

if all the edges on the path from u to r are sampled. This probability is xu. Furthermore, the
constraint in the LP gives us

∑
u∈gi

xu = 1. So, we have

µ :=
∑
u∈gi

Pr[Eu] = 1.

(Thus, if all the Eu’s were independent in a group gi, then in fact the probability that none of the
vertices are contained in the tree would have been at most 1/e.) Let u ∼ v if the events Eu and Ev
are not independent. Define ∆ :=

∑
u∼v Pr[Eu ∧ Ev].

Claim 7. ∆ ≤ 2 log g

Proof. For u and v in the tree, let w be the least common ancestor. Note that conditioned on the
event Ew, the event Eu and Ev are independent. Thus the probability

Pr[Eu ∧ Ev] = Pr[Eu ∧ Ev|Ew] ·Pr[Ew] = Pr[Eu|Ew] ·Pr[Ev|Ew] ·Pr[Ew] =
xuxv
xw

Now for any interior node w, let Tw be the sub-tree rooted at w. Note that xw ≥
∑

u∈gi∩Tw
xu.

This is because of the feasibility of the LP constraint with S containing all vertices in Tw and all
vertices in gi \ Tw:

1 ≤ x(δ(S)) = xw +
∑

u∈gi\Tw

xu = xw + 1−
∑

u∈gi∩Tw

xu

Let Au denote the set of ancestors of u in the tree. Since the height of the tree is at most 2 log g,
|Au| ≤ 2 log g. Thus,

∆ =
∑
u∼v

xuxv
xw

≤
∑
u∈gi

∑
w∈Au

∑
v∈gi∩Tw

xuxv
xw

≤
∑
u∈gi

xu
∑
w∈Au

1
xw

∑
v∈gi∩Tw

xv ≤
∑
u∈gi

xu|Au| ≤ 2 log g

Now by Janson’s inequality (Fact 5), we get that

Pr[
∧
u∈gi

Eu] ≤ exp
(
− µ2

µ+ ∆

)
≤ exp

(
− 1

4 log g

)
≤ 1− 1

8 log g

since e−x ≤ 1− x+ x2

2 ≤ 1− x/2 when 0 ≤ x ≤ 1. So we get that in any iteration and any group
gi, the probability we pick a vertex from the group is at least 1

8 log g . This completes the proof.

6

Some Probabilistic Facts.

Fact 1 (Linearity of Expectation). Let X1, . . . , Xn be random variables and let X :=
∑n

i=1Xi.
Then, E[X] =

∑n
i=1 E[Xi].

Fact 2 (The Union Bound). Given n events E1, . . . , En, the probability that one of them occurs is
at most the sum of their probabilities.

Pr[E1 ∨ E2 ∨ · · · ∨ En] ≤
n∑
i=1

Pr[Ei]

Fact 3 (Markov’s Inequality). Let X be a non-negative random variable. Then

Pr[X ≥ tE[X]] ≤ 1
t

Fact 4 (Chernoff Bound). X1, · · · , Xn be n independent {0, 1} random variables with Pr[Xi =
1] = pi. Let X :=

∑n
i=1Xi and let µ =

∑n
i=1 pi = E[X]. Then

Pr[X > (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ

Pr[X < (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ
Useful versions of the above:

• For any δ > 0,
Pr[X > (1 + δ)µ] ≤ exp(−µδ2/3)

Pr[X < (1− δ)µ] ≤ exp(−µδ2/2)

• For t > 0,
Pr[|X − µ| > t] ≤ 2 exp(−2t2/n)

• For t > 4µ,
Pr[X > t] ≤ 2−t

Fact 5 (Janson’s Inequality). Let X ⊂ U obtained by sampling element i ∈ U with probability
pi independently. A1, . . . , At be subsets of U and let Ei be the event that Ai ⊆ X. Then, if
µ =

∑t
i=1 Pr[Ei] and ∆ =

∑
i,j:Ai∩Aj 6=∅Pr[Ei ∧ Ej], then

Pr[
t∧
i=1

Ei] ≤ exp
(
− µ2

µ+ ∆

)
.

7

